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Abstract—In M2M applications, it is very common to en-
counter the ad hoc snapshot query that requires fast responses
from many local machines in which all the data are distributed. In
the scenario when the query is more complex, the communication
cost for sending it to all the local machines for processing can be
very high. This paper aims to address this issue. Given a reference
set of multiple and large-size patterns, we propose an approach
to identifying its k nearest and farthest neighbors globally across
all the local machines. By decomposing the reference patterns
into a multi-resolution representation and using novel distance
bound designs, our method guarantees the exact results in a
communication-efficient manner. Analytical and empirical studies
show that our method outperforms the state-of-the-art methods in
saving significant bandwidth usage, especially for large numbers
of machines and large-sized reference patterns.

I. INTRODUCTION

Pattern matching in distributed environments is generally
considered a challenging but important task for applications
relevant to machine-to-machine (M2M) systems. In such set-
tings where a large amount of local machines are involved in
computation and storage, a primary goal is often to minimize
the amount of communication needed to compute the answer.
This paper aims at advancing the current state-of-the-art on
distributed pattern matching from ‘single reference pattern’ to
‘multiple reference patterns’, and proposes a general frame-
work to handle both k nearest and farthest neighbor search of
the multiple reference pattern set, while significantly reducing
the communication cost, mainly the bandwidth consumption.

Consider a first scenario in which, through sensor data in
a specific area, a scientist detects some unusual and poten-
tially dangerous event (e.g., the dramatic oscillation of CO2
level), and wants to learn quickly whether a similar event has
happened at other places. To do so, it is required to use the
signal obtained by multiple sensors in one area to match sensor
signals produced in the other areas. A second scenario assumes
a distributed database of historical sensor readings such as the
past 50 years’ temperature information for many locations.
Researchers might want to specify a set of time series that
they identify with a certain known event (e.g., El Niño, solar
activity, or the increased spread of a pest-borne disease) and
query the distributed database to determine the wheres and
whens of the most similar patterns. A third scenario assumes
that we are monitoring certain environmental levels at many
locations, and we would like to issue a warning whenever a

Fig. 1. The system model

location’s pattern of recent levels deviates significantly, but
perhaps subtly, from the recent patterns at a set of reference
locations, because it might indicate an abnormal environmental
event is happening at that location (e.g., hazardous material
being improperly transported).

Designing a general framework that can handle the above
scenarios requires addressing several challenges. First, the
query to be matched may consist of multiple patterns, in order
to provide a more robust reference set beyond what any one
pattern might provide. For example, there may be more than
one “signature” pattern for an event or more than one nearby
sensor monitoring an event. The multiple patterns in a single
query may be highly correlated, such as when collected by
nearby sensors (1st and 2nd scenarios), or only moderately
correlated, such as when collected from a set of reference
locations (3rd scenario). Second, the query to be matched is
often a one-time (i.e., snapshot) query, either posed as an ad
hoc query (1st and 2nd scenarios) or as a continuous sequence
of queries such that recent readings determine the next query
in the sequence (3rd scenario). Third, we need to handle not
only similarity (1st and 2nd scenarios) but also dissimilarity
(3rd scenario) search. Fourth, we seek the k most similar
(or k most dissimilar) neighbors from across a potentially
large collection of distributed data sources. Finally, because in
many situations there are bandwidth limitations and concerns
of energy consumption as well as cost during communication,
it is usually critical to design an approach that requires as little
communication between machines as possible. To be more
precise, our goal is to reduce the bandwidth consumption while
not missing any k most similar/dissimilar neighbors.

To address the above challenges, we propose a new
framework that, given multiple reference patterns, allows us



to find their exact k-nearest (most similar) and k-farthest
(most dissimilar) neighbors, denoted as kNN and kFN, in a
distributed environment where bandwidth is limited. In M2M
applications such as the aforementioned three scenarios, a huge
amount of measurement readings over a period of time are
collected. Therefore the multiple reference patterns to be dealt
with in this paper are mainly multiple time series. The system
diagram can be seen in Fig. 1, where there are m distributed
machines, each monitoring one or more series of measurement
readings, and a server orchestrating the processing of kNN and
kFN discoveries. Given a set Q of multiple time series patterns
as the query at the server, the goal is to find a set of k time
series among all m local machines with the highest similarity
(or dissimilarity) to the query. Our primary cost metric is the
total number of bytes exchanged between the server and the
local machines to answer the query. We do not explicitly model
the small cost that may sometimes be required to assemble the
query at the server such as in the 3rd scenario. Also, while we
do not explicitly model response time, our solutions are highly
parallel and fast.

Prior work has considered kNN search for the system
model in Fig. 1, but restricted to a single reference pattern
(i.e., |Q| = 1) [1], [2]. In a naive solution the server sends the
query to each local machine, each local machine computes
the kNN to the query from among the locally maintained
measurement readings and sends them back to the server, and
finally the server determines the overall kNN solution from
among the results received. This solution, called Concurrent
Processing (CP) [1], incurs a high bandwidth cost because
each of the m machines sends back k results, out of which only
k are in the overall solution. To address this, Papadopoulos
and Manolopoulos [1] proposed the Probabilistic Processing
method (PRP), which reduces the amount of data required to
be transmitted back to the server from the local machines. To
further reduce bandwidth consumption, our earlier work [2]
proposed LEEWAVE, which leverages the multi-resolution
property of the Haar wavelet transformation of time series.
However, none of this prior work considered multiple reference
patterns or kFN search, and straightforward generalizations
of LEEWAVE produce incorrect results (as we will show in
Section II-C).

Our framework, called MSWAVE, is designed based on
the following insights. First, to handle multiple reference
patterns as queries, we propose three distance measurements,
namely single-linkage distance, average-linkage distance, and
complete-linkage distance, which report the shortest, average,
and largest distances among all the distances of a candidate
time series to each reference pattern in the query set. The
above three distance measures are analogous to the single-link,
average-link, and complete-link clustering models. Second,
based on the characteristics of the Haar wavelet transform,
MSWAVE pre-processes each series of measurement readings
by decomposing it into a multi-resolution representation. In-
stead of sending the whole query set Q to the local machines,
the server iteratively sends information on each query in Q
in a level-wise manner starting with the coarsest resolution
(fewest bytes sent) and continuing with increasingly finer
resolutions (more bytes sent). We further derive and maintain
certain similarity range bounds for each of the three dis-
tance measurements, such that the upper and lower bounds
can be incrementally updated at each iteration/level. More

importantly, we prove that these similarity range narrow as
we move from one wavelet coefficients level to the next,
enabling effective pruning of the candidate time series that
reduces bandwidth consumption without causing any false
dismissal. Although prior work has proposed wavelet level-
wise pruning strategies [2], [3], we not only generalize it to
multiple reference patterns but also further reduce bandwidth
by shifting the similarity bounds calculations from the server
to the local machines.

We conduct extensive experiments using both real and
synthetic data. The results show that our solution significantly
outperforms the competitive approaches in total bandwidth
consumption in a variety of different setups for searching both
kNN and kFN.

Our main contributions can be summarized as follows:

• We present MSWAVE, a general communication-
efficient framework to identify both kNN and kFN
instances given multiple time series reference patterns
in a distributed environment. To our knowledge, this
is the first solution proposed for such purpose.

• Methodology-wise, we propose to use average, clos-
est, and furthest neighbor distance to process multiple
query (dis)similarity. We then take advantage of the
multiple-resolution property of wavelet coefficients,
and then for each distance measurement we derive
upper and lower bounds of the similarity between each
candidate time series to the query set. Such bounds
can be exploited to prune candidates for more efficient
search without compromising correctness. Moreover,
in further contrast to prior approaches, we propose
to shift the bounds computation from the server to
the local machines to further reduce the bandwidth
consumption.

• We conduct theoretical analysis and proofs to validate
several of our arguments, including the infeasibil-
ity/feasibility of the existing/proposed approaches, and
derive the equation to represent the bandwidth savings
from shifting the bounds computations to the local
machines. Finally, we conduct extensive experiments
that demonstrate MSWAVE’s significant bandwidth
savings.

II. PRELIMINARIES

In this section we first describe the state-of-the-art ap-
proach, LEEWAVE, for answering distributed kNN queries for
a single time series. Then we formally define our distributed
multiple time series query problem and discuss why the prior
approach is inadequate for dealing with the proposed problem.

A. Distributed kNN for Single Time Series

The conventional kNN (or kFN) search for a single refer-
ence time series aims at finding k time series of the smallest
(largest) distance to a given reference time series. In this paper,
we will focus on the Euclidean distance: Given two time series
Sref and Sx of length T , Dst(Sref, Sx) is defined to be the
squared sum of the Euclidean distance between them. Namely,

Dst(Sref, Sx) =
T∑

i=1

(Sref[i]− Sx[i])
2, (1)
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Fig. 2. (a) Error tree for a time series {4,6,7,4,8,6,5,7} (b) Error tree notation

where Sref[i] and Sx[i] are the values of Sref and Sx, respec-
tively, at timestamp i.

To deal with time series matching problems, Wavelet
transformation, especially the Haar Wavelet [4], has been
applied in a variety of studies [2], [3], [5]. In Haar wavelet
decomposition, each time series is decomposed into multiple
resolutions and can be represented using an error tree struc-
ture [6], as shown in Fig. 2(a). Note that only the non-leaf

node coefficients are retained. The notation n
(u)
(l,p) shown in

Fig. 2(b) is used to represent the coefficient at level l having
offset p of time series Su.

Given wavelet coefficients of two time series, Dst(Sref, Sx)
can be calculated directly from the coefficients themselves, in
a top-down level-wise manner as suggested in LEEWAVE [2]:

Dst(Sref, Sx) =

L∑
l=1

Dstl(Sref, Sx)

= accDst�(Sref, Sx) +

�−1∑
l=1

Dstl(Sref, Sx), (2)

where
Dstl(Sref, Sx) = 2l ×

∑
p

[n
(ref)
(l,p) − n

(x)

(l,p)]
2,

accDst�(Sref, Sx) =

L∑
l=�

Dstl(Sref, Sx),

� represents the current level, and L is the height of the error
tree.

In LEEWAVE, instead of simultaneously distributing all the
relevant coefficients of the reference series Sref to all the local
machines, the server only sends the coefficients one level at
a time, starting from the top (the coarsest) level.1 Each local
machine responds with the level distance Dstl(Sref, Sx) for
its time series Sx (each machine has just one time series).
Using such information, the server can determine the similarity
range (i.e., upper/lower bounds) of each local time series to
the reference series:

accDst�(Sref, Sx) ≤ Dst(Sref, Sx) ≤

accDst�(Sref, Sx) +

�−1∑
l=1

∑
p

([n
(ref)
(l,p)]

2 + [n
(x)

(l,p)]
2)× 2l

+ 2×
√√√√

�−1∑
l=1

∑
p

[n
(ref)
(l,p) × 2l]2 ×

�−1∑
l=1

∑
p

[n
(x)

(l,p)]
2. (3)

1Note that when the length of a time series is not a power of 2, the
corresponding wavelet coefficients can be represented with multiple error trees
of different heights because any integer value can always be represented as the
summation of distinct powers of two. In such cases, we still send coefficients
from different sub-trees in a level-wise manner.

Based on these bounds, the server progressively (level-wise)
informs each local machine as to whether its time series is still
a candidate for kNN, and if not, the machine drops out of the
computation.

Note that the server can compute the lower and upper

bounds in Eq. (3) from its n
(ref)
(l,p) terms and three summation

terms provided by a local machine. This saves considerable
bandwidth compared to the local machine sending its com-
plete time series. Also, our earlier work [2] proved that the
derived upper bound is non-increasing and the lower bound
is non-decreasing when moving from one level to the next.
These increasingly tightened similarity ranges enable effective
pruning of candidates without any false dismissals.

B. Defining Distributed kNN/kFN Search for Multiple Time
Series

Before discussing the limitations of the above framework,
we first formulate the distributed kNN and kFN search prob-
lem for multiple time series.

Let Q = {Sq1, . . . , Sqn} be a set of n reference time series
of length T . To match a candidate time series to the given set
of multiple time series, we propose the following three linkage
distances.

Definition 1: The single-link, average-link, and complete-
link distances of a time series Sx to a reference set Q =
{Sq1, . . . , Sqn} are defined as:

dsin(Q,Sx) = min
1≤i≤n

Dst(Sqi, Sx),

davg(Q,Sx) =

n∑
i=1

Dst(Sqi, Sx)/n, and

dcom(Q,Sx) = max
1≤i≤n

Dst(Sqi, Sx).

These definitions are intended to be analogous to the
single-link, average-link, and complete-link distances used in
clustering. Intuitively, a time series Sx is considered close to
a group of time series Q if either there exists one time series
in Q that is very similar to Sx (i.e., dsin), or most of the
time series in Q are close enough to Sx to make their average
similar to Sx (i.e., davg), or the most dissimilar time series in
Q is still similar to Sx (i.e., dcom).

With Definition 1, we can now define the distributed kNN
and kFN search problem for multiple time series queries,
referring to Fig. 1.

Definition 2: Given a server P with a reference time series
set Q = {Sq1, . . . , Sqn}, each of length T , and a set of
distributed local machines M1, . . . ,Mm, each with one or
more time series of length T , a distributed kNN (kFN) search
for query Q is to find the exact k time series among all the
machines that have the smallest (largest, respectively) linkage
distance, either single-link, average-link, or complete-link as
predefined by the user.

C. Limitations of the Existing Framework

One immediate question is whether the LEEWAVE frame-
work from Section II-A can be exploited directly to handle
the multiple time series case. A simple idea would be to



use LEEWAVE independently for each of the time series in
Q, and then try to use these answers to re-construct the
overall kNN according to dsin, davg , or dcom. We call this
framework LEEWAVE-M. Unfortunately, considering the 6
cases (3 linkage distance measurements for 2 kinds of queries),
LEEWAVE-M can guarantee correct solutions for only 2 of the
6, namely, for dsin in kNN and dcom in kFN. To see this,
consider the following simple counterexample for 1NN search.

Example 1: Suppose we have a two length-1 reference
time series Sq1 = {2}, Sq2 = {-2}, and candidate time series
S1 = {0}, S2={3}, and S3={-3} stored in local machine M1

and candidate time series S4={4} and S5={5} stored in local
machine M2. For M1, S2 gets returned for Sq1 and S3 for
Sq2; while for M2, S4 gets returned for both reference series.
Considering both machines, S2 is the 1NN for Sq1 and S3

is the 1NN for Sq2. However, the true 1NN results under
davg(Q,Sx) and dcom(Q,Sx) are both S1, which was not even
selected to be returned to the server.

Similarly, we can find counterexamples for kFN under dsin
and davg .

Besides the limitation of being able to solve only 2 out of
the 6 cases, directly apply LEEWAVE-M cannot be considered
a bandwidth-efficient approach because each reference series
in Q is processed independently.

The third limitation of LEEWAVE lies in its server-oriented
computation strategy. Most of the bounds are calculated on
the server machine based on sum terms sent by the local
machines; for the multiple time series scenario, this strategy
wastes bandwidth.

In this paper, we introduce the MSWAVE framework to
deal with the above limitations.

III. MSWAVE ALGORITHM AND ANALYSIS

In MSWAVE, we also leverage the multi-resolution prop-
erty of the Haar wavelet decomposition of time series. The
server P distributes the reference time series set Q =
{Sq1, . . . , Sqn} in a level-wise manner. That is, P sends the
coefficients of each Sqi ∈ Q to the local machines, one level
at a time starting from the highest level L. At each level,
we further prune the candidates, until the final k answers
are found. While similar to LEEWAVE at this high level,
MSWAVE must overcome the limitations outlined in the prior
section. To do this, first we derive new formulas for computing
the similarity ranges of the three linkage distances between
the reference set and a candidate time series (Section III-A).
These ranges must be effective at pruning yet guarantee no
false dismissals. Second, we devise a correct and bandwidth-
efficient protocol for the data exchanges between the server
and the multiple local machines (Section III-B). We present
two variants: MSWAVE-S, which computes the bounds at
the server, and MSWAVE-L, which computes the bounds at
the local machines. Finally, we provide an analysis of the
bandwidth consumption of both variants, which demonstrates
the effectiveness of MSWAVE at reducing bandwidth (Sec-
tion III-C).

A. Computation of Distance Bounds

We start from the similarity range of the distance between
each individual reference time series Sqi to some candidate

Sx. Similar to Eq. (3), we can derive the upper bound UB
and the lower bound LB of Dst(Sqi, Sx) as soon as all the
coefficients for Sqi from the highest level L to the current level
� have been sent to the local machines, as follows:

LB(qi, x) = accDst�(Sqi, Sx). (4)

UB(qi, x) = accDst�(Sqi, Sx)

+

�−1∑
l=1

∑
p

([n
(qi)

(l,p)]
2 + [n

(x)

(l,p)]
2)× 2l

+ 2×min{
√√√√

�−1∑
l=1

∑
p

[n
(qi)

(l,p) × 2l]2 ×
�−1∑
l=1

∑
p

[n
(x)

(l,p)]
2,

√√√√
�−1∑
l=1

∑
p

[n
(x)

(l,p) × 2l]2 ×
�−1∑
l=1

∑
p

[n
(qi)

(l,p)]
2}. (5)

Note that Eq. (5) is an enhanced version of the upper bound
compared to that in Eq. (3). Because the roles of Sqi and Sx

are interchangeable in the squared terms in Eq. (3), a tighter
upper bound is obtained by choosing the minimum among the
two choices. Our experiments will show that this subtle change
noticeably improves the pruning performance. This new bound
does not violate the non-increasing property proved in [2]
because the smaller bound from two non-increasing bounds
is chosen here.

Now we can derive the similarity range for each linkage
distance defined in Definition 1. For davg(Q,Sx), the average
of Dst(Sqi, Sx) for all Sqi ∈ Q, we note that because the
distance is non-negative, we can simply derive the new bounds
as follows.

LBavg(Q,Sx) =
1

|Q|
|Q|∑
i=1

LB(qi, x) (6)

UBavg(Q,Sx) =
1

|Q|
|Q|∑
i=1

UB(qi, x) (7)

For dsin(Q,Sx), the two bounds are:

LBsin(Q,Sx) = min
1≤i≤|Q|

LB(qi, x) (8)

UBsin(Q,Sx) = min
1≤i≤|Q|

UB(qi, x) (9)

Finally, for dcom(Q,Sx), the two bounds are:

LBcom(Q,Sx) = max
1≤i≤|Q|

LB(qi, x) (10)

UBcom(Q,Sx) = max
1≤i≤|Q|

UB(qi, x) (11)

Fig. 3(a) illustrates the bounds for dsin(Q,Sx). As we
want to choose the closest distance of a candidate time
series to the reference set Q, we can set the lower (up-
per) bounds of dsin(Q, ) using the smallest ones among
all LB(qi, x) (UB(qi, x), respectively), and for dcom(Q,X)
using the largest ones among all LB(qi, x) (UB(qi, x)), as
shown in Fig. 3(b).



Procedure: MSWAVE-S for a kNN/kFN multiple time series query
Input: k, Q = {Sq1, . . . , Sqn}, a linkage distance measure (single, average or complete)
Output: The k most similar/dissimilar time series to Q according to the designated linkage distance
The server P : A local machine Mi:
1. Send coefficients of each Sqi ∈ Q at level L to all M local machines. 2. For each local candidate time series, Sx, compute and

return (DstL(Sqi, Sx) ∀Sqi ∈ Q,
∑L−1

l=1

∑
p[n

(x)
(l,p)

]2,
∑L−1

l=1

∑
p([n

(x)
(l,p)

]2 × 2l),
∑L−1

l=1

∑
p([n

(x)
(l,p)

]2 × 2l)2) to

P .
3. Compute the upper and lower bounds based on Eq. (4)-(5) for each

candidate time series to each reference series. Then compute the
similarity range for each candidate time series to Q according to the
designated linkage distance based on Eq. (6)-(11). Do the first pruning.

4. Repeat steps 5–7 for levels l = L− 1, L− 2, . . . , 1 until done{
5. Send level coefficients of each Sqi ∈ Q and the ids of any pruned

candidate series to the appropriate local machines.
6. Compute and return a 2-tuple (Dstl(Sqi, Sx) ∀Sqi ∈ Q,

∑
p[n

(x)
(l,p)

]2) for each local candidate time series, Sx.

7. Update the upper and lower bounds based on Eq. (4)-(5) for each
candidate time series to each reference series. Then update the bounds
of the linkage distance based on Eq. (6)-(11). Do corresponding pruning
for kNN or kFN. Set done to true if there are k candidate time series
left.

8. }
9. Ask the appropriate machines for the contents of the final k time series. 10. If asked, send back the corresponding full time series contents.

Fig. 4. Protocol for distributed kNN/kFN query processing using MSWAVE-S.

Procedure: MSWAVE-L for a kNN/kFN multiple time series query
Input: k, Q = {Sq1, . . . , Sqn}, a linkage distance measure (single, average or complete)
Output: The k most similar/dissimilar time series to Q according to the designated linkage distance
The server P : A local machine Mi:
1. Send level L coefficients,

∑L−1
l=1

∑
p[n

(qi)
(l,p)

]2,
∑L−1

l=1

∑
p([n

(qi)
(l,p)

]2 × 2l), and
∑L−1

l=1

∑
p([n

(qi)
(l,p)

]2 × 2l)2

of each Sqi ∈ Q to all M local machines.

2. For each local candidate time series, Sx, compute the individual bounds
with each reference time series using Eq. (4)-(5). Then compute and
return the two linkage distances bounds based on Eq. (6)-(11).

3. Do the first pruning by sorting the upper/lower bounds of each candidate
series.

4. Repeat steps 5–7 for levels l = L− 1, L− 2, . . . , 1 until done{
5. Send level coefficients of each Sqi ∈ Q and the ids of any pruned

candidate series to the appropriate local machines.
6. Update the corresponding upper/lower bounds based on the computation

defined in Eq. (6)-(11) and return the two linkage distance bounds for
each local candidate time series.

7. Do corresponding pruning for kNN or kFN according to the updated
bounds of each candidate series sent back from the local machines. Set
done to true if there are k candidate time series left.

8. }
9. Ask the appropriate machines for the contents of the final k time series. 10. If asked, send back the corresponding full time series contents.

Fig. 5. Protocol for distributed kNN/kFN query processing using MSWAVE-L.

(a) The upper and lower bounds for
dsin(Q,Sx).

(b) The upper and lower bounds for
dcom(Q,Sx).

Fig. 3. Upper and lower bound computations for different linkage distance
measures.

Now we prove the similarity ranges bounded by these lower
and upper bounds will shrink as more levels of coefficients are
disseminated to local machines.

Theorem 1: UBavg(Q,Sx) is non-increasing and
LBavg(Q,Sx) is non-decreasing when the coefficients
of Sqi ∈ Q are disseminated from level � to level �− 1

Proof: As argued above, it readily follows from [2]
that Eq. (4) is non-decreasing and Eq. (5) is non-
increasing. Therefore, LBavg(Q,Sx) must be non-decreasing

and UBavg(Q,Sx) must be non-increasing as they are each
just the average of a set of such non-decreasing and non-
increasing bounds. �

Theorem 2: UBsin(Q,Sx) is non-increasing and
LBsin(Q,Sx) is non-decreasing when the coefficients
of Sqi ∈ Q are disseminated from level � to level �− 1

Proof: Let l(�) and u(�) be the reference time series in Q
that have the smallest lower bound and smallest upper bound
of the similarity range to Sx at level �. That is,

l(�) = arg min
1≤i≤|Q|

LB(qi, x)|� and

u(�) = arg min
1≤i≤|Q|

UB(qi, x)|�,

where |� represents the corresponding bound values are derived
at level �. We have

LBsin(Q,Sx)|� = LB(ql(�), x)|� ≤ LB(ql(�−1), x)|�
≤ LB(ql(�−1), x)|�−1 = LBsin(Q,Sx|�−1),



where the first inequality holds because l(�) is the arg min
at level � and the second inequality holds because Eq. (4) is
non-decreasing. Thus, LBsin(Q,Sx) is non-decreasing.

Similarly, because Eq. (5) is non-increasing, a symmetric
argument shows that UBsin(Q,Sx) is non-increasing. �

Finally, the symmetry between the bounds for dsyn and
dcom yields the following.

Theorem 3: UBcom(Q,Sx) is non-increasing and
LBcom(Q,Sx) is non-decreasing when the coefficients of
Sqi ∈ Q are disseminated from level � to level �− 1.

B. The MSWAVE Protocol

We are now ready to describe the details of how MSWAVE

processes a distributed kNN or kFN multiple time series query
in a level-wise manner and how the server P progressively
prunes the candidates. We will present two schemes to solve
this problem: MSWAVE-S and MSWAVE-L.

MSWAVE-S: Server computes the bounds. Fig. 4
presents the MSWAVE-S protocol. At the initial step, the server
P sends the highest level-L coefficients of each Sqi in Q
to all M local machines. Each local machine then extracts
wavelet coefficients of the same level for each time series to be
matched. It then returns the following numbers for each local
candidate time series Sx: the level-L distance, DstL(Sqi, Sx),
for i = 1 to |Q|, and three other numbers that will be used
by P to generate the bounds for pruning:

∑L−1
l=1

∑
p[n

(x)

(l,p)]
2,∑L−1

l=1

∑
p([n

(x)

(l,p)]
2 × 2l) and

∑L−1
l=1

∑
p([n

(x)

(l,p)]
2 × 2l)2. After

receiving these numbers from each candidate time series, P
updates the lower and upper bounds based on Eq. (4) and
Eq. (5) for each candidate time series.

It then does some initial pruning to remove any candidates
that cannot be among the top k neighbors. To prune candidates
for kNN queries, P first sorts the candidate time series in an
ascending order based on the upper bounds. Any candidate
time series whose similarity lower bound is higher than the
upper bound of the kth time series in the sorted list cannot be
in the final answer, and thus is pruned. As the bound is proved
to be monotonically non-increasing from level to level, we can
guarantee that there are no false dismissals under this pruning
strategy. Similarly, for kFN query, any candidate time series
whose similarity upper bound is smaller than the kth largest
lower bound cannot be in the final answer. Then, P moves to
the next level.

For any given level l, P sends the level-l coefficients of
each Sqi ∈ Q and the ids of any pruned time series to the
appropriate local machines. The local machine returns two
level-specific numbers for each (remaining) candidate time

series: Dstl(Sqi, Sx) for i = 1 to |Q| and
∑

p[n
(x)
(l,p)]

2. P
then uses these values to update the upper/lower bounds,
always making them tighter. With the bounds of each candidate
series to each reference time series, P further computes the
similarity range under the prespecified linkage distance of each
series to the reference set Q based on Eq. (6)–(11). With
increasingly tighter ranges, P can better prune the candidate
list. The algorithm ends when there are k candidate time series
remaining.

MSWAVE-L: Local machines compute the bounds. Note
that with MSWAVE-S, the local machines consume bandwidth
to send back the level distances of each time series to multiple
reference time series, i.e., Dstl(Sqi, Sx) for i = 1 to |Q|,
which grows linearly with Q. When |Q| becomes large, the
MSWAVE-S protocol might not be as efficient.

To deal with this issue, we propose another scheme,
MSWAVE-L, which computes the similarity bounds under the
linkage distance at the local machines. By doing so, we need
not send the level distances for each reference time series, but
instead only 2 single bound values for the whole query set,
reducing bandwidth.

Fig. 5 presents the protocol. In the initial step, the server P
sends to the local machines not only the coefficients at level L,
but also three additional numbers for each reference time series
Sqi ∈ Q, which will later enable the local machines to generate

the similarity ranges:
∑L−1

l=1

∑
p[n

(qi)

(l,p)]
2,
∑L−1

l=1

∑
p([n

(qi)

(l,p)]
2×2l)

and
∑L−1

l=1

∑
p([n

(qi)

(l,p)]
2 × 2l)2. After receiving these values,

the local machines can compute the similarity bounds of each
candidate series to Q based on Eq. (6)–(11) according to
different linkage distance measures. Then, each local machine
sends back only the two bound values for each candidate series
to the server. With the bounds of each candidate, the server P
can then do corresponding pruning to tell the local machines
which candidates cannot be in the final k results and can be
discarded. This procedure proceeds iteratively until the final
results are produced. Note that the pruning strategy is the same
as that done in MSWAVE-S.

C. Analysis of Bandwidth Consumption

We will now analyze the bandwidth consumption of
MSWAVE-L relative to MSWAVE-S. Suppose there are a total
of s time series distributed in m local machines, and |Q|
reference time series. Let s� be the number of candidate
time series remaining at level �. We have that the differ-
ence in bandwidth between MSWAVE-S and MSWAVE-L is:
−3|Q|m+ s(4|Q| − 2) +

∑
� 2s�(|Q| − 1), which equals

|Q|(4s− 3m+ 2
∑
�

s�)− 2s− 2
∑
�

s�. (12)

The term −3|Q|m refers to the three more summation values
sent by P to local machines in step 1 in MSWAVE-L. The term
s(4|Q| − 2) is the bandwidth saved by transmitting only the 2
bounds for each {Q,Sx} instead of all pair-wise reference-
candidate level distances and the related summation values
in step 2. The final summation term describes the bandwidth
saved at the following steps when more and more levels of
coefficients are disseminated.

Note that Eq. (12) is always greater than zero. Because in
general cases s ≥ m (otherwise the data do not have to be
distributed to m machines), we have |Q|(4s − 3m) − 2s >
(|Q| − 2)s ≥ 0, because |Q| > 1 for multiple time series, and
the final term 2s(|Q| − 1) is also greater than zero. Moreover,
MSWAVE-L’s bandwidth savings over MSWAVE-S increases
linearly with |Q|.

IV. EXPERIMENTS

The goal for this section is twofold. First, we would like to
compare the bandwidth consumption of MSWAVE with some



baseline and state-of-the-art approaches. Second, we intend
to provide some discussions on a variety of scenarios and
configurations.

A. Data Description and Experiment Setup

We use one real data set and one synthetic data set in our
experiments. For the real data set, we choose a public dataset
recording the daily average temperature of 300 cities around
the world acquired from the temperature data archive of the
University of Dayton. The data from each city is considered
as a time series with 2048 data points. For the synthetic data
set, we use the same random walk data model used in [7].
Each time series is generated by the random walk whose every
step size is a normal distributed random number with mean=0
and standard deviation=1. There are 12,500 time series of
length 12,500 generated. After selecting |Q| time series as
the reference set, the candidate time series are chosen from
the remaining time series and are equally distributed to the m
machines.

We consider five frameworks: (i) CP, which is the Con-
current Processing baseline [1] described in Section I, but
generalized to |Q| > 1 by sending the whole query set at
the beginning; (ii) PRP, which is the Probabilistic Processing
method [1] mentioned in Section I, but again generalized to
|Q| > 1 in a straightforward manner; (iii) LEEWAVE-M, as
discussed in Section II-C; (iv) MSWAVE-S (Fig. 4); and (v)
MSWAVE-L (Fig. 5).

We compare the total bandwidth cost for these five frame-
works in a distributed environment simulated in MATLAB.
We study the influences on the bandwidth cost of the size of
the reference set |Q|, the time series length T , the number of
machines m, and the k for kNN/kFN. The total bandwidth cost
is the summation of all data transmitted between the server and
other local machines. Note that in this simulation framework,
practical issues such as the overheads of message headers,
packet losses, retransmissions, etc. were not considered.

There are two strategies we employ to choose the time
series that comprise the instances in a query set Q. For the
analogous reference set, we choose one time series randomly
and then choose its closest |Q|-1 neighbors to form Q; thus
the queries in Q are highly similar. For the random reference
set), we choose |Q| time series at random; thus the queries in
Q are likely to be dissimilar.

B. Comparison on Real Data

Comparing all five frameworks. Fig. 6 shows a compari-
son of the total bandwidth consumption of all five frameworks,
for both the random reference set (Fig. 6(a)) and the analogous
reference set (Fig. 6(b)). Both plots show that the MSWAVE

frameworks outperform the other frameworks significantly. We
also find the slopes of MSWAVE frameworks are less steep
than the slopes of the others, highlighting the benefits of using
Eq. (6)−(11) for pruning. For analogous reference sets, we
even find that the bandwidth costs of the MSWAVE frameworks
do not increase significantly when |Q| increases. This can
be explained as follows. When the reference time series are
similar, the distance to any one of the reference time series is
very close to the distance to the whole reference set. This holds
regardless of whether davg , dsin, or dcom is chosen. Therefore,

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

x 10
6

|Q|

B
yt

es

 

 
CP

PRP

LeeWave−M

MSwave−S

MSwave−L

(a) random reference set

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

x 10
6

|Q|

B
yt

es

 

 
CP

PRP

LeeWave−M

MSwave−S

MSwave−L

(b) analogous reference set

Fig. 6. Comparison between frameworks given two kinds of query sets,
T=1024, k=10, m=20, dcom, and kFN

in the early levels of the protocol, we already obtain enough
information to estimate the true distance, which leads to more
effective pruning. On the other hand, for the random reference
set, because the distances to each reference vary a lot, it is
generally required to send many levels of coefficients to be
able to accurately estimate the true distance to determine the
kNN/kFN neighbors, thus consuming more bandwidth.

Comparing MSWAVE-L, MSWAVE-S and LEEWAVE-
M. Next, Fig. 7 highlights the comparison of MSWAVE-S,
MSWAVE-L, and LEEWAVE-M in total bandwidth consump-
tion. We choose kNN for dsin (Fig. 7(b), 7(d), 7(f)) and kFN
for dcom (Fig. 7(a), 7(c), 7(e)) because, as argued in Section
2.3, these are the only two feasible cases for LEEWAVE-
M. The figure shows that the performance of MSWAVE-L is
clearly better than MSWAVE-S, while both are much better
than LEEWAVE-M in all configurations.

Figs. 7(a) and 7(b) present the results while varying the
number of machines m from 1 to 50. The figures show that
increasing m does not change the performance differences
significantly. Figs. 7(c) and 7(d) study the performance impact
of the size of reference set |Q|, which is varied from 1 to 50.
The figures show that the MSWAVE-L’s bandwidth savings
over LEEWAVE-M increases as |Q| increases. On the other
hand, while MSWAVE-L’s bandwidth savings over MSWAVE-S
also increases as |Q| increases, the increase is less significant.
The savings increases because, the larger the reference set
is, the more values MSWAVE-S has to send from the local
machines to the server, as analyzed in Section III-C. Finally,
Figs. 7(e) and 7(f) examine the impact of k on the perfor-
mance, with k varying from 1 to 20. It is not hard to reason
that the difference between LEEWAVE-M and MSWAVE-L



0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

x 10
5

m

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(a) k=10, |Q|=10, dcom, kFN

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

x 10
6

m

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(b) k=10, |Q|=10, dsin, kNN

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 10

6

|Q|

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(c) k=10, m=20, dcom, kFN

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

x 10
6

|Q|

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(d) k=10, m=20, dsin, kNN

0 5 10 15 20
0

0.5

1

1.5

2

2.5

x 10
6

k

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(e) m=20, |Q|=10, dcom, kFN

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

x 10
6

k

B
yt

es

 

 

LeeWave−M

MSwave−S

MSwave−L

(f) m=20, |Q|=10, dsin, kNN

Fig. 7. Comparison between frameworks given the random reference set, T=1024.

in bandwidth consumption increases as k increases because
LEEWAVE-M’s overhead grows linearly with k. We can also
see that the difference between MSWAVE-L and MSWAVE-S
increases slightly as k becomes larger. The larger k is, the
fewer candidate series are pruned early, and based on our
discussion in Section III-C, the gap becomes larger when there
are more candidate series still remaining.

Comparing the upper bounds in Eq. (3) and Eq. (5).
Table I compares our new upper bound in Eq. (5) to the
upper bound derived in LEEWAVE in Eq. (3). The parameters
in this experiment are davg in kFN, random reference set,
T=1024, k=10, m=150, and |Q|=10. The new bounds are
slightly lower, which makes them better for pruning, although
the improvement is quite small.

C. Sensitivity Analysis of MSWAVE-L on Real Data

The previous results have shown that MSWAVE-L outper-
forms the other frameworks. To gain additional insights into
its performance, we present a further sensitivity analysis for
MSWAVE-L in this section.

Sensitivity to query set size and number of machines.
First, we examine the impact of the size of the reference set |Q|
and the number of machines m on the bandwidth consumption
for finding kNN under davg . In this experiment, we fix k=10
and T=1024, while |Q| is varied from 1 to 20 and m is varied
from 1 to 50, and we consider both the random and analogous
reference sets. Figs. 8(a) (random) and 8(c) (analogous) show
that the bandwidth consumption generally increases as |Q|
increases. An exception occurs for the random reference sets,
where the bandwidth consumption of |Q| = 10 is smaller than
|Q|=5. By looking into Fig. 8(b) we find that the pruning power
of |Q|=10 was also better than that of |Q| = 5. This is because
when the size of the reference set increases from |Q|=5 to

|Q|=10, certain reference time series that are close to many
candidates were included in the set, which enables MSWAVE-
L to quickly prune many candidates. A similar effect can be
seen in Fig. 8(d) for the analogous reference sets. In this case,
the bandwidth consumption of MSWAVE-L does not increase
too much with the growth of |Q|, which matches our discussion
in the previous section.

Sensitivity to distance measure. Finally, we examine
the influence of the different distance measures. We compare
the three distance measures using analogous reference sets
to do kFN queries when T=1024, k = 10, |Q| is varied
from 1 to 20 and m is varied from 1 to 50. As shown in
Fig. 9, we can see little difference between the measures in
terms of bandwidth consumption. The reason is that when the
patterns in the reference set are very similar to each other,
the distances between an arbitrary candidate series and each
reference series is very close. Thus, their davg , dsin, and
dcom should be similar. As a result, the bounds obtained in
every round are similar, and so are the final results. On the
other hand, for random reference sets, we find no consistent
patterns among the three distance measures. The bandwidth
consumption indeed depends on how the reference set is
chosen.

D. Comparison on Large-scale Synthetic Data

We conclude our experimental study with a comparison
of the five frameworks on the large-scale synthetic data set
discussed in Section IV-A. The purpose is to compare their
bandwidth consumption when the number of time series and
the length of each time series are much larger, namely, both
are increased to 12,500. Recall that both MSWAVE and LEE-
WAVE-M can work when the time series pattern length is not
a power of 2. We also increase the total number of machines
to 500.



TABLE I. NEW BOUND (EQ. (5)) VS OLD BOUND (EQ. (3)) , T =1024, k=10, m=150, |Q|=10

step 1 2 3 4 5 6 7 8 9 10 11

new bound 150.0 150.0 148.9 137.3 53.9 32.5 24.8 19.8 15.2 11.5 8.0

old bound 150.0 150.0 150.0 139.1 62.4 33.7 26.0 20.3 15.6 11.5 8.0
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Fig. 8. Results of kNN queries using MSWAVE-L with davg for either random reference sets ((a),(b)) or analogous reference sets ((c),(d)), T=1024, k=10
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Fig. 9. Results for kFN queries with different linkage distances given analogous reference sets, T=1024, k=10

Fig. 10(a) shows the bandwidth consumption of all frame-
works using a logarithmic scale under the parameter settings
T =12,500, k = 30, m = 500, dcom, kFN, and the random
reference set, varying |Q| from 10 to 50. The bandwidth sav-
ings for MSWAVE-L and MSWAVE-S are even more dramatic,
about 1 to 2 orders of magnitude, compared to CP, PRP, and
LEEWAVE-M. MSWAVE’s advantage is fairly consistent across
the range of |Q|. In addition, we also observe the gap between
MSWAVE-L and MSWAVE-S increases as |Q| increases, again
agreeing with the analysis in Eq. (12).

Finally, Fig. 10(b) focuses in on MSWAVE-L, the best
framework, and shows the effectiveness of its candidate prun-
ing at each level for the large-scale data set. The parameter
settings are the same as the prior experiment. The significant
drop in the number of candidate machines when only the
coefficients of the top-half levels are passed is the main reason
for its significant bandwidth savings. The results in this section
demonstrate the added advantage of MSWAVE-L when m is
large and much greater than k.

V. RELATED WORK

Similarity search in time series databases has drawn wide
attention in recent years, due to its importance in many applica-
tions. In particular, k-nearest neighbor search is a well-studied
topic in both fixed and streaming time series environments,
such as the work in [8], [9], [10], [3]. Given an error bound,
Koudas et al. [8] approximated k-nearest neighbors search

among stream snapshots. Liu et al. [9] proposed a new index-
ing technique based on scalar quantization to provide efficient
nearest-neighbor search among multiple streams. Hung and
Chen [10] provided an efficient approach to finding the k-
nearest neighbors under an arbitrary range constraint based
on the Haar wavelet synopses. Kashyap et al. [3] proposed a
scalable kNN search method for vertically stored time series.
Based on a multi-resolution transform on time series, the
kNN search can be done by progressively pruning candidates
efficiently in a stepwise sequential-scan manner. With different
indexing and approximation methods, the general goal is to
get the kNN as efficiently as possible from a large number of
candidate time series. All these works assume that streams are
collected and processed at a central site.

There are a number of works studying issues for time
series stored in a distributed environment, such as aggregation
queries, burst detection, and frequent pattern mining while
preserving privacy [11], [12], [13]. However, only a few
works discuss similarity search or nearest neighbor search
for distributed time series. For example, Papadopolous and
Manolopoulos [1] analyzed four schemes to tackle kNN
queries, and our earlier work proposed LEEWAVE [2]. Both
studies considered only single time series as the reference for
queries and did not address the kFN query problem.

Other work has studied queries containing multiple in-
stances, but in different settings. For example, in multiple
pattern matching in text search or bioinformatics applica-
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Fig. 10. Experiments on synthetic data with random reference set, T=12500,
k=30, m=500, dcom, kFN.

tions [14], [15], the inputs are assumed to be multiple strings
and the algorithms report all occurrences of the input strings.
This is different from our goal of finding kNN/kFN in con-
tinuous time series while limiting bandwidth consumption.
Meanwhile, the typical assumption of centralization in these
settings aims to speed up the processing, in contrast to our
setting where data are assumed to be coming from distributed
sources. Furthermore, our unified framework allows us to
handle both similarity and dissimilarity matching, which have
been treated as two independent problems in most of the
previous works.

To the best of our knowledge, this paper is the first to deal
with both kNN and kFN queries for a reference set of multiple
time series in a distributed environment.

VI. CONCLUSIONS AND FUTURE WORK

Distributed computation is generally believed to be a
reasonable and inevitable solution for M2M applications. It is
not only because huge amounts of data such as sensor readings
are being accumulated fast and distributedly, but also because
of concerns of communication efficiency among thousands
or more devices. MSWAVE provides the first framework for
efficiently and correctly handling ad hoc kNN/kFN queries
with multiple reference patterns over distributed time series
data.

Technically speaking, compared with centralized nearest
neighbor search for time series, distributed time-series match-

ing has been studied by only a few prior works, none of which
considered more complex query patterns such as multiple time
series. Although this paper advances the state-of-the-art by
introducing the multiple-series query, we believe there are still
many unresolved issues to be explored. For example, we would
like to investigate how to improve the response time of such
queries, which is constrained by the current one-level-at-a-time
approach; how to extend the proposed distributed time series
matching mechanism to supervised/semi-supervised learning
in a distributed environment; how to extend MSWAVE to other
types of distance measures such as dynamic time warping; and
how to resolve other types of complex queries such as “find
instances similar to at least k reference instances.” These and
other open questions make for promising directions for future
work.
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