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ABSTRACT
Linear Classification has achieved complexity linear to the
data size. However, in many applications, data contain large
amount of samples that does not help improve the quality
of model, but still cost much I/O and memory to process.
In this paper, we show how a Block Coordinate Descent
method based on Nearest-Neighbor Index can significantly
reduce such cost when learning a dual-sparse model. In par-
ticular, we employ truncated loss function to induce a series
of convex programs with superior dual sparsity, and solve
each dual using Indexed Block Coordinate Descent, which
makes use of Approximate Nearest Neighbor (ANN) search
to select active dual variables without I/O cost on irrelevant
samples. We prove that, despite the bias and weak guar-
antee from ANN query, the proposed algorithm has global
convergence to the solution defined on entire dataset, with
sublinear complexity each iteration. Experiments in both
sufficient and limited memory conditions show that the pro-
posed approach learns many times faster than other state-
of-the-art solvers without sacrificing accuracy.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology — Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Linear classification has become one of the standard ap-

proaches dealing with large-scale analysis in pattern recog-
nition and data mining. Recent advances in training lin-
ear model has achieved complexity linear to the data size
[10, 17, 8], where problem with several gigabytes of data
can be solved in reasonable time. With the development
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of more and more efficient algorithms, the learning bottle-
neck has shifted from computation to the I/O between disk
and memory [24]. The situation becomes especially critical
when data cannot fit into memory, where repeated data ac-
cess through comparatively expensive I/O could encumber
the performance of any efficient algorithm. How to reduce
such I/O cost becomes a focus in recent research on large-
scale linear classification.

One popular approach that addresses the memory limi-
tation is solving optimization in an online fashion, where
samples are removed from memory after each parameter up-
date. However, recent studies [24, 2] have shown that online
methods (e.g. [16, 17]) need large number of iterations to ob-
tain reasonable accuracy, and since the sample are reloaded
for each single update, the training time of online solver is
dominated by disk I/O. To balance the time spent on I/O
and computation, Yu et al. proposed a Block Minimization
framework that better utilizes data in memory by splitting
data into several blocks and solving one block at a time. The
algorithm yields better trade-off between I/O and computa-
tion, but still needs tens of rounds of data loading before
converges to a reasonable model. In [2], Kai et al. point
out that, when taking Block Minimization as Block Coordi-
nate Descent on the dual problem, some dual variables are
more important than others. Therefore, caching informative
samples in memory based on gradient information can result
in faster convergence. However, the caching technique only
applies to samples already read into memory, so a Block Co-
ordinate Descent with cache still needs to traverse the whole
dataset several times before convergence. For a dual-sparse
model, this appears to be not cost-effective since only a few
informative samples are relevant to improve model, while
most I/O time are spent on useless ones. This motivates us
to think that if one can organize data beforehand so learning
only needs to read relevant samples into memory.

This paper aims to demonstrate how a Nearest-Neighbor
index can improve the I/O efficiency in large-scale learning,
especially when memory is limited. In practice, this is ben-
eficial since many state-of-the-art indexing methods for Ap-
proximate Nearest Neighbor (ANN) search (e.g. Locality-
Sensitive Hashing, Metric Tree etc.) do not require repeated
data access, and thus only need small memory and one pass
of data loading to be built. Furthermore, an index can often
be reused for models trained on the same data. Scenarios
such as parameter tuning, cross-validation, multi-class clas-
sification, feature selection, and data incremental learning
all require executing the training algorithm multiple times.
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In [6], Dhillon et al. are the first to apply Nearest-Neighbor
search on sparse optimization problem. They show using
ANN search to replace brute-force selection can significantly
improve the efficiency of Greedy Coordinate Descent. How-
ever, their experiments also indicate that, when minimiza-
tion over single coordinate can be solved cheaply, ANN search
becomes the bottleneck of learning, and a simple cyclic co-
ordinate descent can be more efficient than greedy approach
due to the saved search cost. In this paper, we address
this issue by proposing Indexed Block Coordinate Descent,
a Nearest-Neighbor-based Block Coordinate Descent algo-
rithm that balances the cost of search and minimization. In
our experiment that considers both I/O and CPU time, even
for problem with cheap coordinate minimization step, the
proposed algorithm can be orders of magnitude faster than
cyclic method. In addition, Indexed Block Coordinate De-
scent has global convergence that does not require guaran-
tees from ANN search. This milder condition of convergence
is crucial, since most ANN search algorithms are not de-
signed for learning, and only answer maximum normalized-
inner-product query [15] or nearest-to-hyperplane query [9],
that does not aim to find samples with largest gradient as
required by greedy approaches in [6].

The sparsity of underlying problem is also crucial to the
efficiency of Nearest-Neighbor-based approaches. Although
the solution of SVM is known to be dual sparse, when data
are non-separable, the number of support vectors under stan-
dard L1 (hinge) or L2-loss is actually linear to the size of
data [19]. In [5], Collobert et al. propose using ramp-loss to
achieve better dual-sparsity, which is also known to be more
robust than L1/L2-loss in noisy setting [22][21]. Although
learning ramp-loss SVM is a non-convex problem, Collobert
et al. point out the computational advantage of trading con-
vexity for sparsity. They decompose the non-convex problem
into a series of convex ones using Concave-Convex Procedure
(CCCP) [25], where one can learn a non-linear SVM much
more efficiently due to the superior dual-sparsity.

While CCCP can also solve linear SVM with ramp-loss
by integrating with state-of-the-art linear solvers such as
LIBLINEAR [7], Pegasos [17] or SVMperf [10], there is
little efficiency gain like that in nonlinear case, since the
complexity of linear solver has little dependency on sparsity.
However, in this paper, combining the sparsity induced by
ramp-loss with Nearest-Neighbor-based coordinate descent,
we obtain a practical algorithm that can solve large-scale
problem in sublinear time.

The paper is organized as follows. In Section 2, we pro-
pose a new relaxation method that solves not only ramp-loss,
but general truncated-loss problem by a series of convex pro-
grams with superior sparsity. In Section 3, we introduce In-
dexed Block Coordinate Descent to solve each dual-sparse
convex program, and present how this framework can be
combined with state-of-the-art primal or dual solvers. Sec-
tion 4 gives some implementation details including the In-
dexing method used in our implementation. Section 5 con-
duct experiments on four large-scale data sets under suffi-
cient and limited memory conditions. In both conditions,
our algorithm learns times faster than other state-of-the-art
solvers without sacrificing accuracy.

2. TRUNCATED LOSS AND RELAXATION
The general truncated-loss function is defined as:

Rs(z) = min(L(z), 1 + s)L (1)

where L(z) can be L1-loss max(1− z, 0), L2-loss max(1−
z, 0)2, or other convex loss function. When L(z)=max(1 −
z, 0), (1) is also called ramp-loss. Unlike standard convex
loss functions that give outlier loss that can potentially grow
to infinity, (1) take sample with error more than s as outliers,
and assign at most 1 + s loss to them. The truncated loss
function (1) is more like 0/1-loss as in accuracy, and thus
is more robust to noise [3]. More importantly, none of the
outliers under (1) will become support vectors. Thus the
number of support vectors does not grow linearly with data
size [5]. However, the learning problem

min
w

1

2
‖w‖2 + C

∑
l∈D

Rs(ylw
Txl) (2)

is non-convex. When L(z)=max(1−z, 0), (2) can be divided
into a convex part Jvex(w) and a concave part Jcav(w)

J(w) = Jvex(w) + Jcav(w)

=

{
1

2
‖w‖2 + C

∑
l∈D

max(1− ylw
Txl, 0)

}

+

{
−C

∑
l∈D

max(−s− ylw
Txl, 0)

} (3)

and solved with Concave-Convex Procedure (CCCP) [25] by
a series of convex programs

wt+1 = argmin
w

{
Jvex(w) +∇Jcav(w

t)Tw
}

(4)

[25] shows that this algorithm strictly decrease the original
objective J(w), and more recently, [18] shows this algorithm
globally converges to a stationary point of J(w). However,
the formulation (3) is specific to hinge-loss. For other loss
functions, it is not obvious how to derive the convex part and
concave part. Another concern is, outliers are not excluded
from the formulation (4), and thus cannot be filtered during
training.

Here we propose a new convex relaxation method for gen-
eral truncated-loss (1) that excludes outliers from each sub-
problems. First, we define the sets of outliers and non-
outliers as OUT (w) =

{
l|L(ylwTxl) > 1 + s

}
and IN(w) ={

l|L(ylwTxl) ≤ 1 + s
}
. In each iteration, this method solves

wt+1 = argmin
w

1

2
‖w‖2 +C

∑
IN(wt)

L(ylw
Txl)

+C
∑

OUT (wt)

1 + s
(5)

which is very intuitive: solve convex problem of the original
loss L(z) for only non-outliers, and fix loss of outliers to
1+s. The formulation is motivated by the observation that
truncated loss Rs(z) is upper-bounded both by L(z) and

249



1 + s, so

1

2
‖w(t)‖2 + C

∑
l∈D

R(ylw
(t)Txl)

=
1

2
‖w(t)‖2 + C

∑
IN(w(t))

L(ylw
(t)Txl) + C

∑
OUT (w(t))

1 + s

≥1

2
‖w(t+1)‖2 + C

∑
IN(w(t))

L(ylw
(t+1)Txl) + C

∑
OUT (w(t))

1 + s

≥1

2
‖w(t+1)‖2 + C

∑
l∈D

R(ylw
(t+1)Txl)

where D = INw + OUTw. In other words, (5) mini-
mizes an upper bound of (2), which strictly decrease (2)
when IN(wt+1) �= IN(wt) (or, equivalently, OUT (wt+1) �=
OUT (wt)) 1. When IN(wt+1) = IN(wt), (2) equals to (5),
and thus we get a minimum of (2). Since IN(wt) would not
be the same as IN(w0)...IN(wt−1), (5) converges in finite
iterations as CCCP.

For L(z) being hinge-loss, we can further show that the
sequence {wt}∞t=0 produced by (5) has linear convergence
rate by following theorem. The reasoning is similar to the
CCCP convergence rate proof in [23].

Theorem 2.1. The sequence {wt}∞t=0 produced by (5) con-
verges to a stationary point of (2) with at least linear con-
vergence rate.

Proof Sketch. Since the objective in (5) is an upper
bound for (2), a sample changing from IN(wt) to OUT (wt+1)
or OUT (wt) to IN(wt+1) can be seen as a process of de-
scent. Therefore, we interpret (5) as an alternating mini-
mization (block coordinate descent) between d ∈ R

m and
(w, ξ) ∈ (Rn,Rm) on the problem

min
w,ξ,d

1

2
‖w‖2 + C

∑
l∈D

dlξl + (1− dl)(1 + s)

s.t. ylw
Txl ≤ 1− ξl

ξl ≥ 0

0 ≤ dl ≤ 1, l = 1..m

(6)

which satisfies the form of non-smooth, separable problem
studied in [20]. Thus we can find an equivalent Coordi-
nate Gradient Descent procedure introduced in [20], which
produces the same sequence as that produced by block co-
ordinate descent on (6). By theorem 1,2 and 4 of [20], the
sequence converges to a stationary point of (6) with at least
linear convergence rate. A detailed version of this proof is
in appendix. 2

One advantage of (5) is it ignores outliers and solves the
original problem of L(z) on non-outliers. Therefore, any
solver for the original loss can be utilized to solve (5). Fur-
thermore, the relaxation has no assumption on L(z). Thus
it is a general approach for solving the truncated version of
any convex loss function. Even in problems such as regres-
sion or clustering, one can use a truncated-version of loss
function to obtain a sparser, outlier-free model for indexed
learning.

1The decrease is strict since R(ylw
Txl) < 1 + s for l /∈

OUT (w), and R(ylw
Txl) < L(ylw

Txl) for l /∈ IN(w).
2 http://www.csie.ntu.edu.tw/ r00922017/kdd2013appendix

The problem (2) is non-convex, so initialization w0 of (5)
will affect convergence result. A good choice is solving the
original convex loss problem to get w∗

L and set w0 = w∗
L.

Then since (5) guarantees to decrease the objective function
(2) with loss function more similar to 0/1 loss, we are likely
to get a solution w∗ with higher accuracy. However, this
kind of initialization cannot gain learning efficiency since it
needs to solve the original problem. A practical choice for
indexed learning is to solve the convex loss problem on ran-
dom samples to give an initial w0 with reasonable accuracy.

3. INDEXED LEARNING
Without outliers, we obtain convex problem (5) with su-

perior dual-sparsity. In this section, we first introduce the
framework of Indexed Block Coordinate Descent. Then in
Sec.3.2, we introduce the ANN search technique to find in-
formative samples for the learning algorithm. In Sec.3.3 and
3.4, we demonstrate how to integrate our framework with
state-of-the-art primal and dual solvers.

3.1 Indexed Block Coordinate Descent
The Indexed Block Coordinate Descent algorithm 1 solves

dual form of the convex program (5)

min
α∈RN

f(α) =
1

2
αT Q̄α− eTα

s.t. 0 ≤ αl ≤ U, l ∈ IN(wt)

αl = 0, l ∈ OUT (wt)

(7)

where Q̄ = Q+D, Q isN byN matrix with Qij = yiyjx
T
i xj ,

D is diagonal matrix. For L1-loss SVM, Dii = 0 and U = C.
For L2-loss SVM, Dii = 1/(2C) and U = ∞. e is N by 1
vector [1, 1..., 1]T .

In the linear case, we can maintain a relation between
primal and dual variables

w =
n∑

l=1

ylαlxl (8)

so the gradient of each dual variable can be computed effi-
ciently as

∇lf(α) = (Qα)l − 1 +Diiαl = ylw
Txl − 1 +Diiαl (9)

The active dual variables are defined by coordinates with
non-zero projected gradient:

∇P
l f(α) =

⎧⎪⎨
⎪⎩
∇lf(α) if 0 < αl < U

min(0,∇lf(α)) if αl = 0

max(0,∇lf(α)) if αl = U

In Algorithm 1, we maintain a set S that aims to include
all active dual variables, and any sample l with αl > 0 are
put in S. Instead of loading all samples in IN(wt) into

memory, we request active variables by queryIndex(w(t,k);

wt, s, n), which searches for n samples /∈ S(k) satisfying

ylw
txl ≥ L−1(1 + s) AND ylw

(t,k)xl < 1 (10)

3It guarantees sample to be non-outlier with non-zero pro-
jected gradient, since αl=0 for all αl /∈ S and ∇lf(α) =
ylw

Txl−1+Diiαl < 0 for ylw
Txl < 1. All samples returned

by queryIndex(.) are put into S. Note queryIndex(.) does
not specify which search method to use. Any search method
that can find n samples satisfying (10), when there exist,
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Algorithm 1 Indexed Block Coordinate Descent

Input: w(t,0) = wt, S(0) = St \OUT (wt)

Output: wt+1 = w(t,k), St+1 = S(k)

repeat
(N, ne) ← queryIndex( w(k); wt, s, n )

B ← [ N, S(k)[ r : r + ne − |N| ] ]
Solve block minimization problem (11) over B.

S(k+1) ← [ S(k), N ]

k ← k + 1; r ← (r + ne + 1) mod |S(k)|
until problem (13) defined on S(k) reach εS and |N| < nε

yields convergence. However, search method with more ef-
ficiency and less bias can result in faster convergence. We
will introduce an ANN search method in Sec.3.2 that tries
to find wTxl close 0, in which case, the query result tends
to have large gradient no matter labels yl are 1 or -1.

In algorithm 1, we denote fresh samples returned by queryIn-
dex(.) as N, where ne is the number of traversed instances
for finding |N| ≤ n samples satisfying (10). Though samples
from N have larger gradient, they come from cost of search.
To balance cost between search and optimization, we com-
pose a blockB withN and the othermin(ne−|N|, |S(k)|,M)

samples from reader r that cyclically traverses S(k), where
M is the sample size limited by memory. Then we solve the
block minimization problem defined by B with B̄ = D\B

min
αB

f(αB;α
(t,k)

B̄
)

s.t. 0 ≤ αl ≤ U, l ∈ B

αl = α
(t,k)
l , l ∈ B̄

(11)

Then the cost for each iteration is

Tsearch(ne) + Topt(|B|), ne =
n

prec[n]
≥ |B| (12)

where Tsearch(ne) is the time for search method to traverse
ne examples. Topt(|B|) is the time for solving (11). For
a ANN search method with precision prec[n] = n/ne, ne

and |B| are sublinear to the data size. The hope is that
neither Tsearch(ne) nor Topt(|B|) becomes the bottleneck.
Practically, both Tsearch and Topt may involve disk I/O when
samples used are not cached in memory. We will discuss
details of memory management in Sec.4.2.

The Indexed Block Coordinate Descent algorithm 1 can
be viewed as a reverse process of the well-known Shrinking
strategy. In Shrinking strategy, the problem size is shrunk
in each iteration by removing inactive variables that tends
to be unchanged. However, since the strategy often needs
to traverse data many times before shrinking problem to a
smaller size, it is not suitable to be applied when data cannot
fit into memory. On the other hand, the Indexed Block
Coordinate Descent algorithm tries to maintain a set of most
active dual variables S, and increases S until it contains all
variables with non-zero projected gradient. When combined
with Nearest-Neighbor index, this strategy can avoid much
I/O, especially when memory is limited.

Although the block minimization (11) decreases objective
in (7) each iteration, it does not imply global convergence. In

3Here we assume L(z) is monotonically decreasing for
L(z) > 0 so L−1(1 + s) exists.

the following, we give the convergence theorem for algorithm
1, beginning with a lemma.

Lemma 3.1. Let α∗ be the optimal solution of (7). Let
V = {l|α∗

l > 0} ⊆ S ⊆ IN(wt) and S̄ = D\S. Then the
optimal solution of following problem

argmin
α

f(α)

s.t. 0 ≤ αl ≤ U, l ∈ S

αl = 0, l ∈ S̄

(13)

is also the optimal solution of (7).

The proof for above lemma is simple and thus omitted due
to space limitation.4The next theorem gives the convergence
of algorithm 1.

Theorem 3.2. The sequence {α(t,j)}∞j=k produced by al-
gorithm 1 linearly converges to the problem (13) with S =

S(k), and the sequence S(1), S(2), ...S(k) converges to S∗ in

no more than Tn + Tε iterations, where Tn ≤ |S∗|
n

, Tε ≤
|S∗|−nTn

nε
, and there are at most nε − 1 active dual variables

not in S∗.

Proof. As shown in [8], the formulation (13) satisfies the
form of convex, smooth problem studied in [13]. Since each

iteration after k, all variables in S(k) are cyclically traversed,
so the sequence {α(t,j)}∞j=k satisfies Gauss-Seidal update
rule of Block Coordinate Descent. By the extended version
of theorem 2.1 in [13], the sequence {α(t,j)}∞j=k has linear
convergence rate to the optimal solution of (13) defined by

S = S(k). And since |S(k)| monotonically increases by |N|
each iteration, we have

|S∗| = nTn +

Tε∑
i=1

ni ≥ nTn + nεTε (14)

where ni = |N| for iterations that have |N| < n, and ni ≥ nε

for i = 1..Tε since the algorithm stops when |N| < nε. By

(14), we have Tn ≤ |S∗|
n

, Tε ≤ |S∗|−nTn

nε
.

The size of final set of active variables |S∗| is at most
|D|. However, we observed |S∗| � |D| for a dual-sparse
problem. Setting nε = 1, Theorem 3.2 proves our algo-
rithm converges to the optimal solution of (7). However, in
practice, including nε more active dual variables only de-
crease the objective (2) by at most nεC(1 + s), which ap-
proximately increase training accuracy only by nε

|D| . To get

within ε tolerance of the best training accuracy Acc, we can
set nε = ε(1−Acc)|D|. For example, to reach ε = 1% toler-
ance for a model with 99% training accuracy on a data with
1, 000, 000 samples, nε can be set as 100. A more practi-
cal stopping condition uses sampling to replace the stopping
condition in algorithm 1, in which the algorithm stops when
|N|/ne < nε/|D|. The sampling-based stopping condition
is practical since it avoids algorithm 1 from traversing the
whole index through expensive I/O. In the next section, we
will introduce the ANN search method for the queryIndex(.)
(10), and in Sec.3.3 and Sec.3.4, we describe the dual and
primal optimization methods we use for the block minimiza-
tion (11).

4http://www.csie.ntu.edu.tw/ r00922017/kdd2013appendix
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3.2 Informative Sample as Nearest-Neighbor
Here we consider how informative samples can be ob-

tained via ANN search. The queryIndex(.) function searches
for samples satisfying

{
l|L−1(1 + s) ≤ ylw

Txl ≤ 1
}
, that is,

samples near to the decision boundary. In [9], a Local-
ity Sensitive Hashing (LSH) method EH-Hash was proposed
to handle the nearest-to-hyperplane query occurs in Active
Learning, where their goal is to minimize the search time for
obtaining a new informative sample in active learning. Here,
we apply a similar technique that transforms the nearest-to-
hyperplane problem into standard ANN query. The tech-
nique costs cheaper than EH-Hash when combined with the
Tree-based index in our implementation.

Given a query vector q, the nearest neighbor is defined as
the vector xl most similar to q, that is,

argmax
l

q̂T x̂l

where v̂ means normalized v. However, sample closest to a
hyperplane of normal vector w is defined as

argmin
l

|ŵTxl|
We connect these two problems using kernel of degree-2
polynomial feature expansion V (x)=[x2

1,
√
2x1x2, ...,

√
2x1xd,

x2
2,
√
2x2x3, ..., x

2
d] such that the nearest-to-hyperplane prob-

lem in original space can be reduced to ANN problem in
embedded space. We first considers the case when data are
normalized:

argmin
l

|ŵT x̂l| = argmin
l

(ŵT x̂l)
2

= argmin
l

V (ŵ)TV (x̂l)

= argmax
l

(−V (ŵ))TV (x̂l)

Where −V (ŵ) is the transformed nearest-neighbor query,
and (-V (ŵ))TV (x̂l) can be computed efficiently by−(ŵT x̂l)

2,
which is not like the case in EH-Hash, where quadratic cost
was required to generate Gaussian-distributed hashing func-
tion in the embedded space. The above transformation guar-
antees −(ŵT x̂l)

2 to be a normalized inner product in some
Hilbert space, and thus, can use indexing structure designed
for nearest-neighbor problem.

For unnormalized sample xl with length ‖xl‖2. Let R =
minl‖xl‖2, since query (10) defined by queryIndex(.) is a
range query, we can search for a larger range{

l|L−1(1 + s)/R ≤ ylŵ
T x̂l ≤ 1/R

}
that includes the target samples required by (10), while the
search algorithm for unnormalized data will be the same as
normalized ones.

3.3 Solving Dual for each Block
In this paper, for both L1-loss and L2-loss cases, we use

coordinate descent solver proposed by [8] to solve the dual
of block minimization problem (11)

min
αB

1

2
αT Q̄α− eTα

s.t. 0 ≤ αl ≤ U, l ∈ B

αl = α
(t,k)
l , l ∈ B̄

(15)

In each inner iterations, the algorithm traverses all variables
in block B in a random permuted order, and solve each co-

ordinate minimization problem via the closed form solution

α∗
l = min

(
max

(
αl − ∇lf(α)

Q̄ll

, 0

)
, C

)

where ∇lf(α) is computed via (9), and maintains primal
vector w by

w ← w + (α∗
l − αl)ylxl

As shown in [8], the algorithm converges linearly to the op-
timal solution of (11). However, for some ill-conditioned
problems, linear convergence can be very slow [7]. For loss
with second-order information, a primal solver like [11] with
super-linear convergence is more suitable. The next section
introduce the primal problem derived from block (11).

3.4 Solving Primal for each Block
To apply primal solver on problem (11), we derive the

Lagrangian dual of (11) with αl ∈ B̄ fixed at α
(t,k)
l , which

results in the primal formulation of (11) 5

min
w

1

2
‖w‖2 +C

∑
l∈B

L(ylw
Txl)−wTvB̄ (16)

where

vB̄ =
∑
l∈B̄

α
(t,k)
l ylxl

. For L2-loss L(z) = max(1 − z, 0)2, we have generalized
Hessian and gradient of (16) as

H(w) = I + 2CXT
I,:XI,:,

g(w) = w + 2CXT
I,:(XI,:w − yI)− vB̄

(17)

where X =
[
x1, ...x|D|

]T
, y =

[
y1, ..., y|D|

]T
, I is identity

matrix and I =
{
l|1− ylw

Txl > 0
}
. With (17), one can

apply any primal solver that uses second-order information
to get faster convergence. In our implementation, we use
the Trust-Region Quasi-Newton Method proposed in [11],
which is also included in the LIBLINEAR package [7].

When setting B = S(k), we have vB̄ = 0 since α
(t,k)
l = 0

for l ∈ S̄(k). In this case, (16) becomes a L2-loss problem

defined on S(k). It means, each time we solve a L2-loss prob-
lem on a subset of data S(k), we get descent in terms of dual
objective, and by Theorem 3.2, after Tn + Tε iterations, we
obtain all samples of non-zero loss and get a global optimum
of (7).

4. IMPLEMENTATION ISSUES
In this section, we address some details of implementing

an indexed optimization algorithm. First, we discuss chal-
lenges of building index for learning problem, as opposed to
other problem like retrieval. Then we discuss the Caching,
Shrinking strategy for learning with less memory and time.

4.1 Indexing for Learning
There are two practical challenges of building index for

selecting informative training samples. First, the index for
ANN search is biased towards the reference points (or hash
functions) selected. While such bias is acceptable for appli-
cations like multimedia retrieval, training on biased samples

5http://www.csie.ntu.edu.tw/ r00922017/kdd2013appendix
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Figure 1: Metric Tree with k = 3.

will seriously slow down the convergence of algorithm (1).
Second, to be reused for different models, the index should
be built on disk. However, not all indexing methods are
cost-effective to be built on disk. For example, Locality-
sensitive hashing (LSH), one of the most popular methods
recent years, requires a sample to be stored in different hash
tables, which can significantly increase the storage cost [14].

Here we propose Metric Forest that addresses these is-
sues. Unlike LSH, a tree-structured index has size com-
parable to the original data. In [12], a tree-based index-
ing, called Metric Tree, is modified to solve ANN problem,
and is shown to be more efficient than LSH. A Metric Tree
organizes points as a binary tree, in which each subtree
N(v) rooted on a node v partitioned into points closer to
v.lpv and those closer to v.rpv, where v.lpv and v.rpv
are pivot points selected from data, and the metric is de-
fined by angle distance in the embedded space: d(x̂1, x̂2) =

cos−1(V (x̂1)
TV (x̂2)) = cos−1((x̂1

T x̂2)
2). Here we pro-

pose Metric Forest, which shares the basic idea of Metric
tree, but is different in three ways:

Bias Reduction.
Since reference points closer to the root of a Metric Tree

are used more frequently, query results are often biased to-
ward those points. [12] propose a variant called Spill-Tree to
allow overlap between different partitions, thus alleviate the
bias problem. However, the overlap between partitions sig-
nificantly increases storage, and under limited memory, even
building a tree is time-consuming. In our design, data are
split into R random blocks which can be put into memory,
and a Metric Tree is built for each block. When performing
search, all trees are traversed in an order determined ran-
domly. Such design warrants the query results not biased to
a small number of reference points.

Partitioning.
While binary tree works well in memory, it is inefficient

on disk because the seeking time on disk is more expensive.
Here we use, instead, K-way partitioning such that the tree
depth is smaller and each tree node contains more points.
For each subtree N(v) rooted on node v, points are parti-
tioned into N(v.pv1)...N(v.pvK) s.t. v.pvk is nearest to
the points in N(v.pvk) among v.pv1...v.pvK .

Searching.
In [12], Defeatist Search is used to obtain efficient approxi-

mate search, in which only the nearest partition N(v.pvk) to
a query point is visited. However, in our algorithm, we need
to increase, or decrease, search range according to the cur-
rent margin 1/‖w‖2. Therefore, we exploit Best-Bin-First
search strategy, as proposed in [1], in which each partition

N(v.pvk) is put in a priority queue, and ranked by their
distance to the query, where the distance is measured by
their nearest boundary to the query point, as shown in Fig-
ure 1. Let v.pvq be the closest pivot point to the query, the
nearest boundary of partition N(v.pvk) is defined by the
hyperplane passing (v.pvk + v.pvq)/2 with normal vector
v.pvk − v.pvq.

4.2 Memory Management
In our implementation, we use Least-Recently-Used (LRU)

cache for frequently-used tree nodes to minimize I/O be-
tween memory and index. This is effective since, in queryIn-
dex(.), we only traverse branches of Metric Tree near deci-
sion boundary. As model changes over time, samples away
from the boundary will not be traversed again, and thus,
are removed when cache is full. Since we keep samples
with larger projected gradient in memory, I/O of unneces-
sary data is minimized. When sample are added into active
set S, we moved the memory quota from cache to S, until
LRU cache has memory quota less than a threshold mLRU ,
when we will write some samples in S into disk in a sliding
window fashion, and read those samples back when they are
traversed.

4.3 Shrinking on Index
In search of queryIndex(.), samples not satisfying (9) for

w(t,k) are likely not satisfying (9) forw(t,k+1),w(t,k+2),...either.
This is like the case in most SVM solver, where many bounded
variables, that is, αl = 0 or αl = C, tends to be un-
changed if their gradients are large to the bounded direc-
tion. Here we apply a similar technique to shrink vari-
ables that are not likely to satisfy (10) in later iterations,

which includes variables with (i) ylw
(t,k)Txl > 1 + T , (ii)

ylw
(t)Txl < L−1(1 + s), (iii) l ∈ S(k), where T is a thresh-

old. The shrunk variables would not be traversed in a Metric
Tree, and a tree node is not traversed if all of its descendants
are shrunk. When the shrunken problem converges, we re-
cover all of shrunken variables and solve the non-shrunk
problem to check convergence. This is repeated until the
original non-shrunk problem is solved.

5. EXPERIMENT
In this section, we conduct experiments that compare

our algorithm (Index-L1-Dual, Index-L2-Dual, and Index-
L2-Primal) with state-of-the-art linear SVM solvers LIB-
LINEAR (L1-Dual, L2-Dual, and L2-Primal), online Pegasos
(Online-L1 and Online-L2), and truncated-loss batch solver
(Trunc-L1-Dual, Trunc-L2-Dual, and Trunc-L2-Primal) that
uses the same truncated-loss function (1) as our method, but
employs LIBLINEAR as inner procedure for each convex
relaxation (5). There are, of course, other state-of-the-art
solvers. However, as our contribution is an indexed learning
framework, a comparison between methods with/without
our technique is more essential than that between differ-
ent solvers. In limited memory condition, we compare In-
dexed Block Coordinate Descent with online Pegasos and
LIBLINEAR-CDBLOCK (Block-L1-Dual, Block-L2-Dual),
a limited-memory version of LIBLINEAR proposed in [24],
and refined in [2]. The initialization for both truncated-
loss solvers uses 10,000 random samples solved by the corre-
sponding convex loss solver in LIBLINEAR. In our experi-
ments, both I/O and Initialization are included into training
time.
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Table 1: Statistics of Data.

Dataset #samples #features Storage

(KB)

Covtype 581,012 54 69,516

Kddcup1999 4,898,431 126 725,180

PAMAP 3,850,505 104 2,198,880

Mnist8m 8,100,000 784 19,042,640

Table 2: Statistics of Index.

Dataset Storage Tree Tree Build

(KB) Size Width Time (s)

Covtype 446,444 2,000 10 11

Kddcup1999 1,476,580 100,000 100 163

PAMAP 4,554,208 100,000 10 301

Mnist8m 20,704,784 10,000 10 1,539

Our experiments conducted on 4 large-scale public datasets6of
increasing size: Covtype, Kddcup1999, PAMAP and Mnist8m.
Their statistics are summarized in Table 1.

Table 2 shows the statistics of index built. The construc-
tion time and storage size are generally linear to the data
size. In our experiment, we found that the parameter tree
size (e.g. #samples / tree) and tree width (e.g. #pivot-
points) do not affect result significantly. However, tree size
should be large enough s.t. each tree contains useful sam-
ples, and small enough s.t. each tree can be built in mem-
ory. Tree width should be large enough s.t. the average
depth=logwidth(Size) is reasonably small (3 to 5 in our ex-
periment). Since KDDCUP1999 and PAMAP have more
irrelevant samples than other datasets, their tree size are
set to be larger than that of others.

We scale features in all dataset to between 0 and 1. For
Covtype and KDDCUP1999, we randomly selected 1/3 of
samples for testing and the remaining 2/3 samples for train-
ing. For PAMAP and Mnist8m, to test on limited memory,
we only used 1/10 for testing and left 9/10 for training. All
of these data have multi-classes, and thus the index built
can be reused for different models. Due to space limitation,
we only show figures for one of those 1-against-all models
for each dataset. For Covtype, the given result is on the
model of class 2 against the other 6 classes, which follows
the choice in [4]. For KDDCUP1999, we show result of the
class normal against all the other 22 abnormal classes. For
PAMAP, we classify action ”sitting” from the other 23 ac-
tions. For mnist8m, we show result of class digit-1 against
all the other 9 digits. Throughout the experiments, we set
parameters n = 1000 for Indexed Block Coordinate Descent,
s = 1 for truncated-loss, and c = 1 for SVM model.

Figure 2, 3, 4 show the testing error of L1-Dual, L2-Dual,
and L2-Primal solvers under sufficient memory, where In-
dexed Block Coordinate Descent saves much I/O time by
selecting only relevant samples into memory. Unlike on-
line solver, it converges to much more accurate solution
as that produced by truncated-loss batch solver. Though
truncated-loss learning problem is non-convex, where dif-
ferent solvers may converges to different solutions, the in-
dexed solver achieves similar accuracy as the truncated-loss

6Covtype, Kddcup1999, PAMAP can be found at UCI Ma-
chine Learning Repository, while Mnist8m can be found in
LIBSVM Datasets.

Figure 2: L1-loss Dual Solvers
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Figure 3: L2-loss Dual Solvers
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Figure 4: L2-loss Primal Solvers
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batch solver in most of cases, but indexed solver was orders
of magnitude faster than the batch one. In Figure 6, we
shows result of our algorithm for a spectrum of parameter
c = 0.01, 0.1, 10, 100 on KDDCUP1999 dataset.

Figure (5) shows the limited-memory experiments con-
ducted on PAMAP and Mnist8m. We compare Indexed
Block Coordinate Descent with Online Pegasos and LIBLINEAR-
CDBLOCK, where data size is 10 times larger than mem-
ory space, under which the batch version of LIBLINEAR
and truncated-loss solvers suffer from severe swaps and can
hardly progress. For Mnist8m, we limit memory size to
2GB, and uses 20 blocks with 1GB cache for LIBLINEAR-
CDBLOCK. For PAMAP, we limit memory size to 400MB,
and uses 10 blocks with 200MB cache for LIBLINEAR-
CDBLOCK. In Figure (5), the Indexed Block Coordinate
Descent has almost the same performance as in sufficient-
memory condition, where it achieves higher accuracy by se-
lecting informative samples under truncated-loss into mem-
ory. Though datasize was 10 times larger than the mem-
ory size, the indexed solver is not affected much since the
memory is still large enough for maintaining only relevant
samples.

Finally, in Figure 7, we show the number of support vec-
tors, and corresponding testing error of our algorithm and
LIBLINEAR for a spectrum of s, which shows the signifi-
cant effect of truncated-loss on increasing the dual-sparsity
of SVM. When s = 1, it means outlier should have error
more than the current margin. This choice yields great per-
formance for most data. However, in Mnist8m dataset, s = 2
is a better choice, and for PAMAP dataset, s = 0.5 was bet-
ter.

6. DISCUSSION AND CONCLUSION
In many applications, large-scale data contain only some

relevant samples that can effectively improve the accuracy of
model. While random sampling, or online learning can over-
look those rare but crucial samples, batch learners generally
cost too much memory and I/O time. In this paper, we

Figure 5: Limited-Memory Solvers. For Mnist8m,
we limit memory size to 2GB, and uses 20 blocks
with 1GB cache for LIBLINEAR-CDBLOCK. For
PAMAP, we limit memory size to 400MB, and
uses 10 blocks with 200MB cache for LIBLINEAR-
CDBLOCK.
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Figure 6: L1-Dual Solvers on KDDCUP1999 for c
= 0.01, 0.1, 10, 100.
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Figure 7: Testing Error vs. #SV for a spectrum of
s. (L1-Dual Solver)
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propose Indexed Block Coordinate Descent algorithm that
makes use of Approximate Nearest Neighbor (ANN) search
to select active dual variables without I/O cost on irrele-
vant samples. Though building index takes time linear to
the data size, in practice, this is beneficial since people often
learn several models from the same data. Scenarios such as
parameter tuning, model selection, cross-validation, multi-
class classification, feature selection, and data incremental
learning all require multiple passes of training. In the case
of limited memory, our approach can save much I/O cost
since building index do not require much memory and only
requires a pass of data reading. This indexed learning ap-
proach can be potentially apply to a general class of large-
scale learning problem, through defining new truncated-loss
function for convex-loss problems in classification, regression
or clustering.
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