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Abstract—Video sensors are widely used in many applications
such as security monitoring and home care. However, the growth
of the number of sensors makes it impractical to stream all
videos back to a central server for further processing, due to
communication bandwidth and server storage constraints. Multi-
view video summarization allows us to discard redundant data
in the video streams taken by a group of sensors. All prior
multi-view summarization methods, however, process video data
in an off-line and centralized manner, which means that all
videos are still required to be streamed back to the server before
conducting the summarization. This paper proposes an on-line,
distributed multi-view summarization system, which integrates the
ideas of Maximal Marginal Relevance (MMR) and MS-Wave, a
bandwidth-efficient distributed algorithm for finding k-nearest-
neighbors and k-farthest-neighbors. Empirical studies show that
our proposed system can discard redundant videos and keep
important keyframes as effectively as centralized approaches,
while transmitting only 1/6 to 1/3 as much data.

I. INTRODUCTION

With the rapid development of communication and video
sensing technologies, video sensors have been widely used in
many applications, such as security monitoring, home care,
and large-scale environment analysis. Nevertheless, as the
number of sensors grows, it is becoming impractical to stream
all videos back to the central server for computation due to the
limited communication bandwidth and server storage. Some
approaches store the video data in local storage aside the
sensor. However, they usually just keep the most recent data,
which may lead to severe information loss.

To enable large-scale video indexing, techniques of auto-
matic video summarization, [1], [2], [3], [4], [5], are proposed
to generate short representations of original videos. Recently,
multi-view video summarization, [6], [7], [8], [9], which fur-
ther focuses on reducing redundancy across multiple cameras
with overlapped field-of-view, has attracted more and more
attention. Such techniques can thus be applied to a group of
video sensors to discard the redundant video data. However,
most prior multi-view summarization methods process videos
in a centralized and off-line manner, which means all videos
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have to be streamed back to the central server. In such systems,
the bandwidth and the server storage requirement is still large,
making it impractical when the number of video sensors grows
larger.

In this paper, we propose an on-line and distributed multi-
view video summarization system. Our system is based on the
previous multi-video summarization work that applied Video
Maximal Marginal Relevance (Video-MMR) [8]. The original
version of Video-MMR is centralized and off-line, which re-
quires features of all frames to be streamed back to the server.
Searching for a better solution, we found MSWAVE [10],
which is originally a communication efficient method to search
k nearest and farthest neighbors (KNNs and kFNs) of a set of
reference patterns in a distributed environment, suitable for our
purpose. We modified Video-MMR to fit in the framework of
MSWAVE to enable on-line and distributed summarization.

As shown in our experiments, the performance of the
proposed system is comparable with other centralized or off-
line summarization approaches, while large communication
overhead can be reduced.

II. RELATED WORK

Generally, video summarization can be divided into two
categories: keyframe selection and video skimming. The
keyframe selection algorithms [11], [3], [4], [7], [8], [5] select
the best representative frames of the original video while
the video skimming algorithms [6], [4], [S] generate a short
highlight of the original video. Interested readers may find
more detailed reviews in [1], [2], [11].

In this paper, we focus on the problem of multi-view video
summarization, where redundancy across several cameras are
further reduced. The representations of multi-view video sum-
marization can also be divided into keyframes and video
skimming. Fu et al. [6] proposed a graph-based multi-view
video skimming algorithms. All input videos are divided into
small shots first, and a graph is built and cut into small groups.
The skimming results are generated by the representative shot
of each group. Leo and Manjunath [9] proposed a multi-
view summarization algorithm by learning an occurrence
model from the correspondence between different areas of



different views. Summarization is generated by choosing those
segments that can best reconstruct the original videos.

In contrast to the above two reports that based on video
skimming, Li et al. [7] focused on the multi-view keyframe
selection problem. By clustering all interesting frames, the
keyframes are determined by choosing the representative
frames of each cluster. Last but not least, Li and Merialdo
[8] formulated the multi-view keyframe selection problem as
a text summarization problem and utilized the idea of Maximal
Marginal Relevance (MMR) [12].

Although the aforementioned works successfully generate
summarization from multiple videos, they can only process
the videos in a centralized manner. In this paper, we focus
on the multi-view keyframe selection problem and propose an
algorithm that can generate the summarization in a distributed
manner by exchanging only small data between multiple video
sensors and the server. Significant storage and bandwidth can
then be saved with the proposed system.

III. PROPOSED SYSTEM

Our multi-view keyframe selection algorithm is inspired
by the work of Li and Merialdo [8], where the multi-view
keyframe selection problem is formulated the same as the
text summarization problem and is solved using the idea of
Maximal Marginal Relevance (MMR) [12] in a centralized
and off-line manner. We propose to on-line generate the
keyframes distributedly by exchanging small data between
multiple sensors and the server. The MMR problem is solved
with the help of MSWAVE [10] to generate the keyframes.

A. Problem Formulation

1) Video Maximal Marginal Relevance: In [8], the multi-
video summarization problem is solved by iteratively selecting
keyframes in a centralized manner. In the kth iteration, the
Video Marginal Relevance (Video-MR) of all frames are
computed as

Video—MR(ﬁ-) = )\Slml(f“ V\Sk) — (1—)\) I’Ié%x Slmg(fz, g), (1)
g k

where f; is the ith frame, V is the set of all video frames, Sy
is the set of selected keyframes before the kth iteration, and
\ is the set minus operation. Sim; is the average similarity
measure between a frame to a set of frames, Simy is the
similarity measure between two frames, and )\ is a parameter
that controls the weighting between the two terms.

The first term of Video-MR in (1), Simy(f;,V \ Sk),
measures the similarity of f; with all the unselected frames,
V' \ Sk. This measures the ability of frame f; to represent
the remaining frames. A frame more similar to all the re-
maining frames is a better keyframe candidate. The second
term of Video-MR in (1), maxgeg, Sima(f;, g), measures the
similarity between frame f; and the most similar one in the
already selected keyframes. High similarity means the frame
fi is redundant and should not be selected. Video-MR (1)
combines the two terms into a score for each frame, frames
with higher Video-MR are better choices for keyframes.
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In the kth iteration, the frame with the highest Video-MR,
i.e., Video Maximal Marginal Relevance (Video-MMR), is
selected into the summary,

Sk41 = Sk U arg [ max (Video-MR(f;)).

(@3]

The algorithm ends when the number of keyframes meets the
predefined number.

2) Feature Extraction: To reduce the computation and com-
munication when computing Video-MR, we extract a repre-
sentative feature for each frame, and perform the computation
in the feature space. Any kind of features that can represent
a frame can be applied. In our experiment, we simply use a

256-bin color histogram in HSV color space as our features.
For the sequences captured by fixed cameras, such as videos
taken by surveillance systems, we further apply background
subtraction [13], and compute the histogram only in the
foreground region, since only foreground regions are the in-
formative part of such videos. If the number of the foreground
pixels is smaller than a given threshold, the frame is skipped
directly. Eq. (1) is then modified using the distance between
features instead of frame similarity, as shown below:

Video-MR(f;)
— ADiffy (fi, V'\ Sk) + (1 = X) gnellsn Diff2(fi,g), (3)

where the difference function is defined using L2 dis-
tance between the frame features, i.e., Diffi(f;, V)
sy p ev 1fi = fill2. Diff2(fi, 9) = [1fi = gll2-

3) On-line and Distributed Keyframe Selection: The itera-
tions of Video-MMR in Eq. (2) are performed off-line and
centralized. To modify the process into an on-line system,
we perform keyframe selection iteration for every fixed time
period T'. In the iteration at time ¢ + 7, the set of frames
captured in the time period from ¢ to ¢t+7, which is denoted as
V%, is used instead of V'\ S, to avoid buffering all frames. The
first term of Video-MR in Eq. (3) is modified as Diff; (f;, V;).
All the frames with Video-MR larger than a given threshold
Dypreshota in each iteration are chosen as the keyframes
instead of the maximal one, i.e.,

St+T = St @] {vfz ‘ VldeO-MR(fl) > Dth'reshold}7

(C))

where S; is the set of already selected keyframes at time t.
To select keyframes from multiple sensors, it is required to
preform (4) distributedly from all sensors. Assuming there are
M cameras, V; can be expressed as V; = V, 1UV; 2U...UV, pr,
where V, ,,, is the set of frames belonging to the mth camera
taken from time ¢ to ¢ + 7. To reduce the communication
burden, we compute the first term of Video-MR locally. For a
frame f; ,,, from the mth camera, we compute Video-MR as

Video-MR(fi.m) =
— ADIffy (fim, Vim) + (1= X) min Diffy( fi,m,9), (5)
g t

where the first term can be computed locally in each sensor
for each iteration.

To compute the second term of (5), we store all features
of already selected keyframes, Sy, in the server, and perform
nearest neighbor search between the server to each sensor.



This can be done naively by streaming all features from the
sensors to server. However, such approach introduces large
communication overhead. As a result, the second term is
computed with the help of MSWAVE, where much smaller
data compared to the features are sent. After the computation
of Eq. (5), the features of the selected keyframes are streamed
to the server for next iteration.

B. MSWAVE

In this section, we introduce how to leverage the MSWAVE
[10] approach to efficiently calculate the second term in the Eq.
(5) in each iteration. MSWAVE is a general communication-
efficient framework to identify kNN instances given multi-
ple time-series-based reference patterns in a distributed en-
vironment. By leveraging the similarity ranges provided by
MSWAVE and regarding each frame feature as a time series,
we can find efficiently all frames with Video-MR larger than
a given threshold Dypesnorq in €ach iteration.

At the iteration for Sy, given the features of S; in the
server and a frame f taken in the period from ¢ to ¢+ 7 in the
mth camera, we want to calculate mingeg,Diffo(f, g)Vf €
Vin. By the Haar Wavelet decomposition [14], each feature
is decomposed into an error tree of multiple resolutions.
Then, instead of simultaneously distributing all the relevant
coefficients of S; to the mth camera, the server only sends
the coefficients one level at a time, starting from the top (the
coarsest) level. By these meta-data, the mth camera calculates

the following lower bounds and upper bounds in each level
LNf €V, Vge S :

LB(f,g) < Diff3(f,9) <UB(f,q9),
LB(f,9) = accDif f*(f.g),

UB(f,9) =
achsz (f,9) +ZZ["E{L) (l,p)]2)><2
=1 p
—1
B3 S TR 3 5
=5 =1 p
where Diff!(f,9) = X 2 [ (lp) - Elg,;)]Q

accDif f*(f, g) ZIL:ZDfo (f,g), ¢ represents the
(f)

current level, L is the height of the error tree, and () ) is

used to represent the coefficient at level [ having offset p of

time series f.
After the m!"

camera calculates these bounds the lower

and upper bounds of mingeg, Diffo(f,g)Vf € V,, are the
following:
LBSin(f:‘St) = mlnLB(fvg)7 (7)
geSt
gESt

Then, the mth camera returns the range of Video-MR(f)Vf €
Vo back to server by these bounds and the first term of Eq.
(5) computed locally. Using such information, the server then
knows that the frame f should be picked into S;, 7, dropped,
or kept to the next round in MSWAVE depending on the
relation between Dipreshoig and this range. This procedure
proceeds by sending each layer of coefficients iteratively until
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Fig. 1. The example images of each dataset: (a) BL-7F, (b) Office 1, and
(c) Lobby.

all frames in V,,, are picked or dropped. By using MSWAVE
for every camera, we can pick all keyframes with Video-MR
larger than Dypreshorg into Syyr without sending the whole
S to each camera, which helps save significant bandwidth.

IV. EXPERIMENTS
A. Dataset

We used two multi-view summarization datasets given in
[6] for our experiments: Office I and Lobby, which consist
of four and three videos respectively taken by cameras with
overlapped field-of-view in an office room and a lobby. We
also installed 19 cameras in the 7th floor of the BarryLam
Building in National Taiwan University to collect our own
dataset, BL-7F. Fig. 1 shows the example images of each
dataset.

In the experiments, T’ 10 frames and A = 0.2 is
selected for our system. Note that the selection of 7' should
be determined by the memory limitation of sensors. Larger
T requires more memory space, but generates more optimal
results.

B. Baseline

Similar to other summarization works [3], [4], [7], we
implemented several baseline algorithms for comparison, in-
cluding three single-view methods: random sampling (RS),
uniform sampling (US), and visual attention (VA)-based [5]
method, and one multi-view method: k-mean clustering (KM).
We also implemented the original Video-MMR (MMR) [8]
using Eq. 5 for comparison. For single-view methods, sum-
marization is performed locally in each sensor, and the multi-
view summary is generated by combining all keyframes from
all single-view results.

The visual attention based [5] algorithm selects keyframes
by computing the attention index of each frame first, and
the frames with large attention index are picked. In our
implementation, we select keyframes by detecting peaks in
the attention curve. As a result, the algorithm runs on-line
and generates single-view summarization.

The k-means clustering method selects keyframes by per-
forming clustering on all frames first, and the frames closest
to each cluster center are picked. To exploit the redundancy
across different views, we perform the clustering on all frames
from all videos. Such method can be seen as an off-line,
centralized approach for multi-view summarization.

C. Result

As suggested by many previous works [7][15], we use
events recall and precision as an objective for evaluation.



TABLE I
THE EXPERIMENTAL RESULTS. Data Sent STANDS FOR THE SIZE OF EXTRA
DATA, E.G. FEATURES, SENT WHEN COMPUTING THE SUMMARIZATION BY
THE PERCENTAGE COMPARED WITH CENTRALIZED SOLUTIONS, IN WHICH
FEATURES OF ALL FRAMES ARE SENT.

Single-view Multi-view

RS usS VA KM MMR  Ours
BL-7F
Keyframe 77 77 82 77 77 77
Recall (%) 22 30 74 74 67 74
Precision (%) 10 15 90 85 68 68
F1 Score 0.14 020 081 0.79 0.67 0.71
Redundant Frame 1 3 64 38 36 32
Data Sent (%) 0 0 0 100 100 33
Office 1
Keyframe 94 94 116 94 94 94
Recall (%) 13 18 52 52 66 63
Precision (%) 6 6 51 64 66 41
F1 Score 0.08 0.09 051 057 0.66 0.50
Redundant Frame 2 0 44 45 38 21
Data Sent (%) 0 0 0 100 100 26
Lobby
Keyframe 70 70 117 70 70 70
Recall (%) 66 63 72 72 64 76
Precision (%) 43 45 79 75 71 64
F1 Score 052 053 075 0.73 0.67 0.69
Redundant Frame 8 11 69 29 28 14
Data Sent (%) 0 0 0 100 100 16

Higher recall implies more important information is preserved.
We also show the number of the keyframes and the re-
dundant keyframes. Good summary should have high recall
with small number of keyframes. Redundant keyframes are
those keyframes that capture the same events thus should be
minimized. The procedure used in [7] was applied, where
ground-truth events are labeled manually for each dataset first.
The evaluation results are shown in Table I.

As expected, the random sampling method and the uniform
sampling method generate the worst summarization results on
all datasets since both of them do not exploit the content of the
videos. Note that since both methods perform summarization
locally in each sensor, there is no need to send any extra data
to the server when performing the summarization.

The visual attention-based [5] algorithm generate acceptable
result for a single video. Since the summarization is performed
locally in each sensor, no extra data is required to be sent
to the server. However, since the method does not exploit
the redundancy between different views, the summarization
of multiple videos may contain many redundant keyframes.
As a result, this approach requires more keyframes than the
k-means approach, as shown in Table .

The k-means clustering method and Video-MMR method
generate multi-view summarization centralized and off-line.
Since they exploit all video frames at different time, both
of them generate more compact summaries compared with
single-view methods. However, to perform summarization,
features of all frames are required to be streamed back to
the server, and all videos are required to be buffered. The
communication and the storage overhead can be very large.
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As shown in Table I, the performance of our method is
similar to k-means and original Video-MMR. However, with
the help of MSWAVE, our method only transmits & ~ % of
the data to perform summarization. Since our method runs on-
line, only a small buffer is required for each sensor comparing
to centralized methods.

~

V. CONCLUSION

In this paper, we have proposed a distributed multi-view
keyframe selection system that can be applied to the video
sensor network to help saving bandwidth and server storage.
In the era of IoT where image or video sensors are likely to be
pervasive, we believe the proposed algorithm can be a good
initial solution for online, distributed summarization.
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