
TripRouter: A Time-Sensitive Route Recommender System
Hsun-Ping Hsieh, Cheng-Te Li, Shou-De Lin

Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan

{d98944006, d98944005, sdlin}@csie.ntu.edu.tw
Abstract—Location-based services allow users to perform

geo-spatial recording actions, which facilitates the mining of the

moving activities of human beings. This paper proposes a system,

TripRouter, to recommend time-sensitive trip routes consisting of

a sequence of locations with associated time stamps based on

knowledge extracted from large-scale location check-in data. We

first propose a statistical route goodness measure considering: (a)

the popularity of places, (b) the visiting order of places, (c) the

proper visiting time of each place, and (d) the proper transit time

from one place to another. Then we construct the time-sensitive

route recommender with two major functions: (1) constructing

the route based on the user-specified source location with the

starting time, (2) composing the route between the specified

source location and the destination location given a starting time.

We devise a search method, Guidance Search, to derive the routes

efficiently and effectively. Experiments on Gowalla check-in

datasets with user study show the promising performance of our

TripRouter system.

Keywords—trip route; time-sensitive; check-in data; location-

based services.;

I. INTRODUCTION

Location-based Services (LBS), such as Foursquare and
Gowalla, allow users to perform the action of location
recording that pins the geographical information of current
locations and time stamps onto their personal pages. By
continuously recording such actions by users, a location
sequences dataset can be generated. The rapid accumulation of
location sequence data can not only collectively represent the
real-world human activities, but also serve as a handy resource
for constructing location-based recommendation systems.
Since the user-moving records implicitly reveal how people
travel around in an area with rich spatial and temporal
information, including longitude, latitude, and recording
timestamp, one reasonable application leveraging such user-
generated location sequence data is to construct and
recommend travel routes. Indeed, many of existing works had
recommended routes using GPS trajectories (e.g. [1][2][10]).
Furthermore, using geo-tagged photos and check-in data can
reveal how people sequentially visit places in an area. Using
geo-tagged photos, Y. Arase et al. [3] mine frequent route
patterns for recommendation. A.-J. Cheng et al. [4] propose
personalized travel recommendation using geo-tagged photos.
X. Lu et al. [5] construct routes based on user preference
querying locations. Zheng et al. [6] present the activity
trajectory similarity search which returns k check-in
trajectories that cover the activity labels. Lu et al. [7] develop a
personalized trip recommendation that scores attractions by
social links and temporal properties. L.-Y. Wei et al. [1] infer
the top-k detailed routes traveling a given location sequence
within a specified travel time. Different from these works, we
aim to perform knowledge discovery to construct the time-
sensitive routes.

We use Table I to summarize the differences between our

work and other relevant trip recommendation system. Here we

list some important issues about route planning, including:

whether it allows the Query of certain Locations (QL), and

whether it considers the following ideas: Popularity (PO),

Visiting Order (VO), Visiting Time (VT), Transit Time (TT),

User Preference (UP), Distance (DI), Travel Duration (TD),

and Top-k retrieval (TK).

TABLE I. SUMMARIZATION OF DIFFERENCES BETWEEN THIS PAPER AND

OTHER RELATED WORKS.

 QL PO VO VT TT UP DI TD TK

[10]

[2]

[3]

[4]

[5]

[6]

[7]

[1]

This work

In this paper, instead of relying on past trajectories to
recommend trip routes, we propose a novel time-sensitive route
recommender system, TripRouter, using location check-in data.
We argue that a good route should consider four factors. (a)
The popularity of a place: popular landmarks will likely attract
more visitors. (b) The proper time to visit a place: the pleasure
of visiting a place can be significantly diminished if arriving at
the wrong time. Some places have a wider range of preferred
visiting time while others are constrained to certain particular
time slots. For example, most people do not want to visit a
beach during boiling hot noon, but rather arrive in the late
afternoon to enjoy the sunset scene. Sports game events usually
take place at particular time period. (c) The amount of time
transiting from one place to another: for example, if one has
bought tickets to a football game at a stadium 2 hours away,
then he or she shall logically choose to start traveling toward
the stadium 2 hours ahead of the official kick off time instead
of going to a nearby museum 30 minutes away then. (d) The
visiting order of places: for example, going to the gym first
then going to restaurant for dinner might be a better plan than
the other way around since it is not healthy to exercise right
after a meal.

We use check-in data to acquire the time-stamped
geographical information in TripRouter. Check-in data
provides explicit or implicit information that allows us to fulfill
the abovementioned requirements for the sake of planning a
proper trip route. First, we can distill from the check-in data the
number of people who have visited a certain place, and thus
derive the popularity of places. Second, users in LBS tend to
perform check-in actions to keep track of their trips. As a result,
we can obtain and consider the visiting order of places. Third,
the check-in records contain the visiting time stamps of
locations. Users in LBS are able to collectively reveal the
proper visiting time of places. Fourth, followed by the check-in
time stamps from existing routes, we are able to hypothesize
the transit time between places. Equipped with such elements,
we utilize the check-in data to recommend trip routes and
construct our TripRouter system.

Formally, the goal of this work is to recommend time-
sensitive routes using time-stamped location sequence data
according to user requirements. We propose to tackle two real-
world demands of recommending time-sensitive routes, which
corresponds to the two main functions in our TripRouter
system. The first is to construct a time-sensitive route given a
source location, and the second is to create a time-sensitive
route given the source-destination pair of locations. Both
queries consider the starting time of the trip. Given a source or
source-destination query, our system will return a sequence of
recommended places as the final route, in which each location
can be visited at a proper time with a reasonable transit time
from one place to another in the route. In addition, in the query,
we also allow users to determine the extent of time-sensitivity
of locations through specifying a time-sensitivity parameter.
Time-sensitive routes are supposed to be more effective than a
simple route without time stamp as it allows the users to better
manage their time during the trip. Both queries are very
common for real-world trip planning.

In TripRouter, we propose a statistical approach to model
the time-sensitivity of location, and a novel search algorithm to
recommend time-sensitive routes with respect to the queries. In
general, our work consists of two important issues. First, we
aim to design a goodness function, which integrates the
abovementioned four requirements about a good trip route to
measure the quality of a route. Second, given a query, we
devise an effective and efficient search method, Guidance
Search, to identify the places to be visited by optimizing the
route goodness function.

II. TripRouter SYSTEM

Notations. A location li is a tuple, li = (xi,yi), where xi is the
longitude, yi is the latitude. A route is a sequence of locations
with the corresponding time stamps, denoted by
s=<(l1,t1),(l2,t2),..., (ln,tn)>, where n is the number of locations.
The source query Qs=(ls,ts) contains a starting location ls with
time stamp ts, and the source-destination query Qd=(ls,ts,ld)
further contains a destination location ld, where k is the number
of locations in the final route (either specified by users or
determined automatically). A time-sensitive route is sr =
<(l1,t1),...,(lk,tk)>, where l1 = lq, t1 = tq, and/or lk=ld.

Time-sensitive Route Construction problem. Given (a)
routes derived from location check-in data, and (b) either the
source query Qs=(ls,ts) or the source-destination query
Qd=(ls,ts,ld), the goal is to construct a route
sr=<(l1=ls,t1=ts),...,(lk,tk)> to optimize the time-sensitive route
goodness function f(sr). A route with maximum route goodness
score tends to be a preferred one. Note that lk is required to be ld
for the source-destination query.

A. Measuring Route Goodness

We propose that a good trip route should consider the
following four factors: (a) the popularity of a place, (b) the
proper visiting time of a location, (c) the proper transit time
traveling from one location to another, and (d) the visiting
order of places in the route. We attempt to model these factors
into the goodness function, and utilize such function to
greedily selecting locations for the construction of the final trip
route.

1) Route Popularity: If a route contains more popular

places, it has higher potential to satisfy a user. The popularity

of a place can be represented by the number of recording

actions performed at that place. Given a route

s=<(l1,t1),(l2,t2),...,(ln,tn)>, we define the popularity-based

goodness function () (∏ ()

) , where

 () () , () is the number of recording

actions performed on location , and is the total number

of recording actions among all locations.

2) Proper Visiting Time: We define a Temporal Visiting

Distribution for a location l, TVDl (ti), as the probability

distribution of a randomly picked recording action of location

l occurs at time ti. Then we can determine whether it is proper

to visit a place at a given time. We generate a thin Gaussian

distribution () whose mean value is 8 with a small

variance (e.g. standard deviation is 1), and measure the

difference between the Gaussian distribution with the learnt

TVD of such location by symmetric Kullback-Leibler (KL)

Divergence. Consequently, the temporal visiting goodness

function () of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)> is

defined as a combination of the popularity of places together

with the fitness of each location over time:

 () (∏ ((
)

())

 ()

)

If the places in a route s are visited during the proper time

period, the () value would become higher.

3) Proper Transit Time: We treat the duration between

two checked-in places as the summation of the visiting time of

the first place plus the transportation time from one place to

another. To model such ‘visiting plus transit time’ between

places, we propose the Duration Distribution (DD) between

locations li and lj, which is defined as the probability

distribution over time duration t,
() , and can be

obtained from the following random experiment: randomly

pick two consecutive location recording actions (li,ti), (lj,tj) of

a person, and calculate the probability that tj-ti=t. We consider

only one-day trip, and therefore treat the outcome space of DD

between hours 0 through 24. Given a pair of locations li and lj

together with an assignment of a given duration among them,

we model as a thin Gaussian distribution and compare it

with
() by symmetric KL divergence. Given a route s,

the goodness function of durations is defined by:

 () (∏ ((
) ())

)

4) Visiting Order: We exploit n-gram language model to

measure the goodness of the order of visits in a trip route from

the location sequence corpus. Technically, we use the average

value of the probabilities of uni-gram, bi-gram, and tri-gram to

estimate the goodness of orders: () (()
 () ()) . Higher forder(s) value represents better

quality of route. Note that we utilize the add-one technique for

smoothing.

B. Final Goodness Function

We divide the final goodness function into two parts and
provide a weighting parameter for users to determine
the significance and balance of such two parts. The first part is
the average temporal visiting goodness () and the
location transition goodness (). The second part is
visiting order goodness (). The final goodness function
 () is defined as

 () (
 () ()

) () ()

A route with higher value of () is considered as a
better route. Note that the parameter provides users the
flexibility to specify whether they prefer the time-sensitive
routes.

C. Route Construction Algorithm

We develop the Guidance Search algorithm to recommend
time-sensitive routes for the source and source-destination
queries. Guidance Search, consisting of two parts, is a kind of
best-first search that finds a least-cost path from a given initial
node to the goal. The first is the heuristic satisfaction function,
which is in charge of the guidance to determine the next most
promising location towards the destination. The second is the
backward checking mechanism that keeps the search tree (i.e.,
all the expanded routes starting from the source location) for
reconstructing the route with higher satisfaction score.

We consider the route goodness function () to design the
heuristic satisfaction function (), which is to measure the
satisfaction of selecting location as the next visiting location
considering the sub-route from source location to location
(i.e.,) and from location to destination location (i.e.,
). Therefore, we design () to have two parts: (1)
time-sensitive route goodness function () (), and
(2) heuristic function () that considers both the time-
sensitive goodness () and the geographical distance
 () of a sub-route from location to destination . We
use the geographical distance between and as the steering
force to direct the search process to move towards the
destination location. When selecting next visiting location
during the route construction, those locations with shorter
distance to the destination has higher chance to be picked, if
the rest of the criteria are equally satisfied. Moreover, because
there could be many sub-routes from to in the route
database, we will compute all the scores and take the best one
as the final () value. Consequently, the heuristic function is
formally written as:

 () () () √ () (())

where () is the set of sub-routes starting from to
 . Eventually, the final heuristic satisfaction function is
defined as:

 () () () (),

where is the parameter to control the strength of
the guidance to the destination. Higher indicates stronger
guidance. When , () is simply a greedy search with
the backward checking mechanism, and can be used to tackle
the source query (because in () function, no destination

information is needed). Note that is the most important
parameter in our system, which allows users to determine the
time-sensitivity of locations in the final routes, according to
user needs and scenarios.

The backward checking mechanism is the key to the best-
first search in our algorithm. When exploiting the heuristic
satisfaction function to choose the next location to visit, it is
necessary to expand all neighbor locations to generate the
satisfaction scores. We keep track of such scores in the search
tree. When it is needed to select the next visiting location, not
only the expanded locations from the current location, but also
those had ever been expanded during the previous rounds can
be considered. In other words, in addition to continue
expanding the current location, the algorithm can possibly go
backward to consider the previously expanded nodes for
finding the ones with the highest satisfaction score.

We elaborate the details of Guidance Search algorithm as
follows. We first construct the initial route by including the
source location . A priority queue is employed for the
purpose of the backward checking mechanism. Each element
in the priority queue consists of a route and the
corresponding heuristic satisfaction score. The priority queue
automatically sorts its elements according to their satisfaction
scores. We add to initialize the priority queue. After setting
the final route as the initial one , we perform the iterative
expansion search process until the route is constructed up to
length . For each iteration, the last location in the route
 with the highest satisfaction score is identified and each
possible next visiting location is put into a candidate set .
Then for each candidate of the next location , we can derive
the heuristic satisfaction score () (if , we set the
weighting parameter for the function ; otherwise
). We put () together with the corresponding
route into the priority queue. The priority queue will then

pick the next best route and location to conduct the further
expansions. Finally, the route is reported as the final route.

III. EVALUATION
We use Gowalla dataset [9] to construct our TripRouter

system. Such dataset contains 6,442,890 check-in records from
Feb. 2009 to Oct. 2010 on 1,280,969 locations. By regarding a
route as a sequence of check-in locations of a user within a day,
we have the route database containing 1,136,737 routes whose
lengths are more than one (the average length of them is 4.09).
We extract three subsets for the experiments, which
corresponds to cities of New York (NY), San Francisco (SF),
and Paris (PR). We test the effectiveness of our goodness
model and demonstrate the performance of the proposed search
methods by a time-sensitive location cloze test. Given some
real trip routes with time stamp in each location, by removing
some middle locations, the goal of cloze experiment is to test
whether a method can successfully identify the removed
locations. We use Hit Rate as the accuracy measure. Given N
removals of locations over all routes, and assumed M places
out of N is successfully predicted, the hit rate is defined as M/N.
Higher hit rate indicates better quality. We compare our
method with a strong greedy algorithm [8] and a series of
baseline methods: (1) Distance-based approach: choose the
closest location to the current spot as the next one. (2) Popular-
based approach: choose the most popular spot of a given time

in that city as the next one. It rates the path using the goodness
function () . (3) Forward heuristic: choose the location

possessing the largest bi-gram probability with the previous
location () as the next location. (4) Backward heuristic:
choose the location possessing the largest bi-gram probability
with the next location () as the next one.

In the cloze experiment, we vary the number of guessing
instance per route and report the hit rate in three cities. Here we
set (i.e., () and () are considered as equally
important). The results are shown in Fig. 1. In general, the hit
rate of each method is decreasing while the number of guessing
instance increases. Nevertheless, our method significantly
outperforms the greedy search method [8] and other baselines.

Fig. 1. Hit rates by varying the number of guessing instance per route (i.e., 1,

2, 3, 4, and 5) on SF, NY, PR (left to right).

Fig. 2. The system snapshot of TripRouter.

IV. SYSTEM FUNCTIONS AND DEMONSTRATION

The snapshot of TripRouter is shown in Fig. 2. The main
function of TripRouter allow users to specify the city they
intent to travel, select one location with starting time as the
source, and/or the destination location, and/or the desired
number of places during a trip. In, addition, users can
determine the extent of location time-sensitivity by specifying
the parameter. We list four additional functions: (a) show the
pictures of locations obtained from Flickr, (b) recommend the
proper stay time on locations, (c) provide the transportation
according to the mined transit time duration, and (d) display
contextual location information, including popularity, category,
nearby events and restaurants, and weather.

Below we demonstrate an example by varying as 0, 0.5
and 1 to show three recommended routes querying from
Central Park to Time Square starting at 10AM, in which the
route length k=4. The results are highlighted in blue and shown
in Fig.3.

Route 1. (): Central Park (10AM) → Metropolitan
Museum of Art (1PM) → American Museum of Natural
History (4PM) → Time Square (9PM).

Route 2. (): Central Park (10AM) → 5th Ave (1PM)
→ New York Public Library (5PM) → Time Square (7PM).

Route 3. () : Central Park (10AM) → New York
Public Library (2PM) → Bryant Park (7PM) → Time Square
(9PM).

Fig. 3. Recommended routes for , , and 1 from left to right.

For , since it pays attention to fit the time-sensitive
score, () , it produce longer transit time to the final
destination. Thus, we think that provides routes for users
who have much traveling time, and really care about time-
sensitivity of locations. On the contrary, finds shorter
route to the destination, and thus it is suitable for travelers who
prefer to visit more places with a short period. Moreover,
 is suitable for general travelers because it tries to
strike a balance between () and ().

V. CONCLUSION

We develop the TripRouter system that measure and

recommend time-sensitive trip routes based on user needs on

source, destination, current time, and time-sensitivity.

Experimental results and user study encourage the promising

performance and practicability of TripRouter. TripRouter is

mostly data-driven, which assures diverse results can be

learned from different cities in which visiting patterns may

vary with different culture and characteristics of the city.

Moreover, despite that we emphasized on the check-in data, in

fact any kinds of route data (e.g. GPS trajectory data) can be

exploited in our framework.

REFERENCES

[1] L.-Y. Wei, Y. Zheng, and W.-C. Peng, Constructing Popular Routes
from Uncertain Trajectories. ACM KDD 2012.

[2] H. Yoon, Y. Zheng, X. Xie., and W. Woo. Social Itinerary
Recommendation from User-generated Digital Trails. Personal and
Ubiquitous Computing, 2011.

[3] Y. Arase, X, Xie, T. Hara, and S. Nishio. Mining People’s Trips from
Large Scale Geo-tagged Photos. ACM MM 2010.

[4] A.-J. Cheng, Y.-Y. Chen, Y.-T. Huang, W. H. Hsu, and H.-Y. M. Liao.
Personalized Travel Recommendation by Mining People Attributes from
Community-Contributed Photos. ACM MM 2011.

[5] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zang. Photo2trip:
Generating Travel Routes from Geo-tagged Photos for Trip Planning.
ACM MM 2010.

[6] K. Zheng, S. Shang, J. Yuan, and Y. Yang. Towards Efficient Search for
Activity Trajectories. IEEE ICDE 2013.

[7] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng. Personalized Trip
Recommendation with Multiple Constraints by Mining User Check-in
Behaviors. ACM GIS 2012.

[8] H.-P. Hsieh, C.-T. Li and S.-D. Lin, Recommending Time-Sensitive
Routes by Exploiting Large-Scale Check-in Data. ACM UrbComp 2012.

[9] E. Cho, S. A. Myers, and J. Leskovec. Friendship and Mobility: User
Movement in Location-based Social Networks. In ACM KDD 2011.

[10] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with Knowledge from
the Physical World. ACM KDD 2011.

