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Abstract—Location-based services allow users to perform 

geo-spatial recording actions, which facilitates the mining of the 

moving activities of human beings. This paper proposes a system, 

TripRouter, to recommend time-sensitive trip routes consisting of 

a sequence of locations with associated time stamps based on 

knowledge extracted from large-scale location check-in data. We 

first propose a statistical route goodness measure considering: (a) 

the popularity of places, (b) the visiting order of places, (c) the 

proper visiting time of each place, and (d) the proper transit time 

from one place to another. Then we construct the time-sensitive 

route recommender with two major functions: (1) constructing 

the route based on the user-specified source location with the 

starting time, (2) composing the route between the specified 

source location and the destination location given a starting time. 

We devise a search method, Guidance Search, to derive the routes 

efficiently and effectively. Experiments on Gowalla check-in 

datasets with user study show the promising performance of our 

TripRouter system. 

Keywords—trip route; time-sensitive; check-in data; location-

based services.;  

I. INTRODUCTION 

Location-based Services (LBS), such as Foursquare and 
Gowalla, allow users to perform the action of location 
recording that pins the geographical information of current 
locations and time stamps onto their personal pages. By 
continuously recording such actions by users, a location 
sequences dataset can be generated. The rapid accumulation of 
location sequence data can not only collectively represent the 
real-world human activities, but also serve as a handy resource 
for constructing location-based recommendation systems. 
Since the user-moving records implicitly reveal how people 
travel around in an area with rich spatial and temporal 
information, including longitude, latitude, and recording 
timestamp, one reasonable application leveraging such user-
generated location sequence data is to construct and 
recommend travel routes. Indeed, many of existing works had 
recommended routes using GPS trajectories (e.g. [1][2][10]). 
Furthermore, using geo-tagged photos and check-in data can 
reveal how people sequentially visit places in an area. Using 
geo-tagged photos, Y. Arase et al. [3] mine frequent route 
patterns for recommendation. A.-J. Cheng et al. [4] propose 
personalized travel recommendation using geo-tagged photos. 
X. Lu et al. [5] construct routes based on user preference 
querying locations. Zheng et al. [6] present the activity 
trajectory similarity search which returns k check-in 
trajectories that cover the activity labels. Lu et al. [7] develop a 
personalized trip recommendation that scores attractions by 
social links and temporal properties. L.-Y. Wei et al. [1] infer 
the top-k detailed routes traveling a given location sequence 
within a specified travel time. Different from these works, we 
aim to perform knowledge discovery to construct the time-
sensitive routes. 

We use Table I to summarize the differences between our 

work and other relevant trip recommendation system. Here we 

list some important issues about route planning, including: 

whether it allows the Query of certain Locations (QL), and 

whether it considers the following ideas: Popularity (PO), 

Visiting Order (VO), Visiting Time (VT), Transit Time (TT), 

User Preference (UP), Distance (DI), Travel Duration (TD), 

and Top-k retrieval (TK). 
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In this paper, instead of relying on past trajectories to 
recommend trip routes, we propose a novel time-sensitive route 
recommender system, TripRouter, using location check-in data. 
We argue that a good route should consider four factors. (a) 
The popularity of a place: popular landmarks will likely attract 
more visitors. (b) The proper time to visit a place: the pleasure 
of visiting a place can be significantly diminished if arriving at 
the wrong time. Some places have a wider range of preferred 
visiting time while others are constrained to certain particular 
time slots. For example, most people do not want to visit a 
beach during boiling hot noon, but rather arrive in the late 
afternoon to enjoy the sunset scene. Sports game events usually 
take place at particular time period. (c) The amount of time 
transiting from one place to another: for example, if one has 
bought tickets to a football game at a stadium 2 hours away, 
then he or she shall logically choose to start traveling toward 
the stadium 2 hours ahead of the official kick off time instead 
of going to a nearby museum 30 minutes away then. (d) The 
visiting order of places: for example, going to the gym first 
then going to restaurant for dinner might be a better plan than 
the other way around since it is not healthy to exercise right 
after a meal. 

We use check-in data to acquire the time-stamped 
geographical information in TripRouter. Check-in data 
provides explicit or implicit information that allows us to fulfill 
the abovementioned requirements for the sake of planning a 
proper trip route. First, we can distill from the check-in data the 
number of people who have visited a certain place, and thus 
derive the popularity of places. Second, users in LBS tend to 
perform check-in actions to keep track of their trips. As a result, 
we can obtain and consider the visiting order of places. Third, 
the check-in records contain the visiting time stamps of 
locations. Users in LBS are able to collectively reveal the 
proper visiting time of places. Fourth, followed by the check-in 
time stamps from existing routes, we are able to hypothesize 
the transit time between places. Equipped with such elements, 
we utilize the check-in data to recommend trip routes and 
construct our TripRouter system. 



Formally, the goal of this work is to recommend time-
sensitive routes using time-stamped location sequence data 
according to user requirements. We propose to tackle two real-
world demands of recommending time-sensitive routes, which 
corresponds to the two main functions in our TripRouter 
system. The first is to construct a time-sensitive route given a 
source location, and the second is to create a time-sensitive 
route given the source-destination pair of locations. Both 
queries consider the starting time of the trip. Given a source or 
source-destination query, our system will return a sequence of 
recommended places as the final route, in which each location 
can be visited at a proper time with a reasonable transit time 
from one place to another in the route. In addition, in the query, 
we also allow users to determine the extent of time-sensitivity 
of locations through specifying a time-sensitivity parameter. 
Time-sensitive routes are supposed to be more effective than a 
simple route without time stamp as it allows the users to better 
manage their time during the trip. Both queries are very 
common for real-world trip planning. 

In TripRouter, we propose a statistical approach to model 
the time-sensitivity of location, and a novel search algorithm to 
recommend time-sensitive routes with respect to the queries. In 
general, our work consists of two important issues. First, we 
aim to design a goodness function, which integrates the 
abovementioned four requirements about a good trip route to 
measure the quality of a route. Second, given a query, we 
devise an effective and efficient search method, Guidance 
Search, to identify the places to be visited by optimizing the 
route goodness function. 

II. TripRouter SYSTEM 

Notations. A location li is a tuple, li = (xi,yi), where xi is the 
longitude, yi is the latitude. A route is a sequence of locations 
with the corresponding time stamps, denoted by 
s=<(l1,t1),(l2,t2),..., (ln,tn)>, where n is the number of locations. 
The source query Qs=(ls,ts) contains a starting location ls with 
time stamp ts, and the source-destination query Qd=(ls,ts,ld) 
further contains a destination location ld, where k is the number 
of locations in the final route (either specified  by  users or 
determined automatically). A time-sensitive route is sr = 
<(l1,t1),...,(lk,tk)>, where l1 = lq, t1 = tq, and/or lk=ld. 

Time-sensitive Route Construction problem. Given (a) 
routes derived from location check-in data, and (b) either the 
source query Qs=(ls,ts) or the source-destination query 
Qd=(ls,ts,ld), the goal is to construct a route 
sr=<(l1=ls,t1=ts),...,(lk,tk)> to optimize the time-sensitive route 
goodness function f(sr). A route with maximum route goodness 
score tends to be a preferred one. Note that lk is required to be ld 
for the source-destination query. 

A. Measuring Route Goodness 

We propose that a good trip route should consider the 
following four factors: (a) the popularity of a place, (b) the 
proper visiting time of a location, (c) the proper transit time 
traveling from one location to another, and (d) the visiting 
order of places in the route. We attempt to model these factors 
into the goodness function, and utilize such function to 
greedily selecting locations for the construction of the final trip 
route. 

1) Route Popularity: If a route contains more popular 

places, it has higher potential to satisfy a user. The popularity 

of a place can be represented by the number of recording 

actions performed at that place. Given a route 

s=<(l1,t1),(l2,t2),...,(ln,tn)>, we define the popularity-based 

goodness function     ( )  (∏    (  )
 
   )  , where 

   (  )   (  )     ,  (  )  is the number of recording 

actions performed on location   , and      is the total number 

of recording actions among all locations. 

2) Proper Visiting Time: We define a Temporal Visiting 

Distribution for a location l, TVDl (ti), as the probability 

distribution of a randomly picked recording action of location 

l occurs at time ti. Then we can determine whether it is proper 

to visit a place at a given time. We generate a thin Gaussian 

distribution  (      ) whose mean value   is 8 with a small 

variance    (e.g. standard deviation is 1), and measure the 

difference between the Gaussian distribution with the learnt 

TVD of such location by symmetric Kullback-Leibler (KL) 

Divergence. Consequently, the temporal visiting goodness 

function       ( )  of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)> is 

defined as a combination of the popularity of places together 

with the fitness of each location over time: 
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If the places in a route s are visited during the proper time 

period, the       ( ) value would become higher. 

3) Proper Transit Time: We treat the duration between 

two checked-in places as the summation of the visiting time of 

the first place plus the transportation time from one place to 

another. To model such ‘visiting plus transit time’ between 

places, we propose the Duration Distribution (DD) between 

locations li and lj, which is defined as the probability 

distribution over time duration t,       
( ) , and can be 

obtained from the following random experiment: randomly 

pick two consecutive location recording actions (li,ti), (lj,tj) of 

a person, and calculate the probability that tj-ti=t. We consider 

only one-day trip, and therefore treat the outcome space of DD 

between hours 0 through 24. Given a pair of locations li and lj 

together with an assignment of a given duration   among them, 

we model   as a thin Gaussian distribution and compare it 

with       
( ) by symmetric KL divergence. Given a route s, 

the goodness function of durations is defined by: 
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4) Visiting Order: We exploit n-gram language model to 

measure the goodness of the order of visits in a trip route from 

the location sequence corpus. Technically, we use the average 

value of the probabilities of uni-gram, bi-gram, and tri-gram to 

estimate the goodness of orders:       ( )  (    ( )  
   ( )      ( ))  . Higher forder(s) value represents better 

quality of route. Note that we utilize the add-one technique for 

smoothing.  



B. Final Goodness Function 

We divide the final goodness function into two parts and 
provide a weighting parameter         for users to determine 
the significance and balance of such two parts. The first part is 
the average temporal visiting goodness       ( )  and the 
location transition goodness          ( ). The second part is 
visiting order goodness       ( ). The final goodness function 
 ( ) is defined as 

 ( )    (
      ( )           ( )

 
)  (   )        ( ) 

A route   with higher value of  ( )  is considered as a 
better route. Note that the parameter   provides users the 
flexibility to specify whether they prefer the time-sensitive 
routes.  

C. Route Construction Algorithm 

We develop the Guidance Search algorithm to recommend 
time-sensitive routes for the source and source-destination 
queries. Guidance Search, consisting of two parts, is a kind of 
best-first search that finds a least-cost path from a given initial 
node to the goal. The first is the heuristic satisfaction function, 
which is in charge of the guidance to determine the next most 
promising location towards the destination. The second is the 
backward checking mechanism that keeps the search tree (i.e., 
all the expanded routes starting from the source location) for 
reconstructing the route with higher satisfaction score. 

We consider the route goodness function  ( ) to design the 
heuristic satisfaction function   ( ), which is to measure the 
satisfaction of selecting location   as the next visiting location 
considering the sub-route from source location    to location   
(i.e.,     ) and from location   to destination location    (i.e., 
    ). Therefore, we design   ( )  to have two parts: (1) 
time-sensitive route goodness function  ( )    (    ), and 
(2) heuristic function  ( )  that considers both the time-
sensitive goodness  (    )  and the geographical distance 
 (    ) of a sub-route from location   to destination   . We 
use the geographical distance between   and    as the steering 
force to direct the search process to move towards the 
destination location. When selecting next visiting location 
during the route construction, those locations with shorter 
distance to the destination has higher chance to be picked, if 
the rest of the criteria are equally satisfied. Moreover, because 
there could be many sub-routes from   to    in the route 
database, we will compute all the scores and take the best one 
as the final  ( ) value. Consequently, the heuristic function is 
formally written as: 

 ( )     (    )  (    ) √ (    )  (   (    ))  

where  (    ) is the set of sub-routes starting from   to 
  . Eventually, the final heuristic satisfaction function is 
defined as: 

  ( )  (   )   ( )     ( ), 

where         is the parameter to control the strength of 
the guidance to the destination. Higher   indicates stronger 
guidance. When    ,   ( ) is simply a greedy search with 
the backward checking mechanism, and can be used to tackle 
the source query (because in  ( )  function, no destination 

information is needed). Note that   is the most important 
parameter in our system, which allows users to determine the 
time-sensitivity of locations in the final routes, according to 
user needs and scenarios. 

The backward checking mechanism is the key to the best-
first search in our algorithm. When exploiting the heuristic 
satisfaction function to choose the next location to visit, it is 
necessary to expand all neighbor locations to generate the 
satisfaction scores. We keep track of such scores in the search 
tree. When it is needed to select the next visiting location, not 
only the expanded locations from the current location, but also 
those had ever been expanded during the previous rounds can 
be considered. In other words, in addition to continue 
expanding the current location, the algorithm can possibly go 
backward to consider the previously expanded nodes for 
finding the ones with the highest satisfaction score. 

We elaborate the details of Guidance Search algorithm as 
follows. We first construct the initial route    by including the 
source location   . A priority queue is employed for the 
purpose of the backward checking mechanism. Each element 
in the priority queue consists of a route   and the 
corresponding heuristic satisfaction score. The priority queue 
automatically sorts its elements according to their satisfaction 
scores. We add    to initialize the priority queue. After setting 
the final route    as the initial one   , we perform the iterative 
expansion search process until the route    is constructed up to 
length  . For each iteration, the last location       in the route 
   with the highest satisfaction score is identified and each 
possible next visiting location       is put into a candidate set  . 
Then for each candidate of the next location   , we can derive 
the heuristic satisfaction score   (  )  (if     , we set the 
weighting parameter     for the function   ; otherwise 
     ). We put   (  )  together with the corresponding 
route      into the priority queue. The priority queue will then 

pick the next best route and location to conduct the further 
expansions. Finally, the route    is reported as the final route. 

III. EVALUATION 
We use Gowalla dataset [9] to construct our TripRouter 

system. Such dataset contains 6,442,890 check-in records from 
Feb. 2009 to Oct. 2010 on 1,280,969 locations. By regarding a 
route as a sequence of check-in locations of a user within a day, 
we have the route database containing 1,136,737 routes whose 
lengths are more than one (the average length of them is 4.09). 
We extract three subsets for the experiments, which 
corresponds to cities of New York (NY), San Francisco (SF), 
and Paris (PR). We test the effectiveness of our goodness 
model and demonstrate the performance of the proposed search 
methods by a time-sensitive location cloze test. Given some 
real trip routes with time stamp in each location, by removing 
some middle locations, the goal of cloze experiment is to test 
whether a method can successfully identify the removed 
locations. We use Hit Rate as the accuracy measure. Given N 
removals of locations over all routes, and assumed M places 
out of N is successfully predicted, the hit rate is defined as M/N. 
Higher hit rate indicates better quality. We compare our 
method with a strong greedy algorithm [8] and a series of 
baseline methods: (1) Distance-based approach: choose the 
closest location to the current spot as the next one. (2) Popular-
based approach: choose the most popular spot of a given time 



in that city as the next one. It rates the path using the goodness 
function     ( ) . (3) Forward heuristic: choose the location 

possessing the largest bi-gram probability with the previous 
location  (       ) as the next location. (4) Backward heuristic: 
choose the location possessing the largest bi-gram probability 
with the next location  (       ) as the next one. 

In the cloze experiment, we vary the number of guessing 
instance per route and report the hit rate in three cities. Here we 
set       (i.e.,  ( )  and  ( )  are considered as equally 
important). The results are shown in Fig. 1. In general, the hit 
rate of each method is decreasing while the number of guessing 
instance increases. Nevertheless, our method significantly 
outperforms the greedy search method [8] and other baselines. 

  

Fig. 1. Hit rates by varying the number of guessing instance per route (i.e., 1, 

2, 3, 4, and 5) on SF, NY, PR (left to right). 

 

Fig. 2. The system snapshot of TripRouter. 

IV. SYSTEM FUNCTIONS AND DEMONSTRATION 

The snapshot of TripRouter is shown in Fig. 2. The main 
function of TripRouter allow users to specify the city they 
intent to travel, select one location with starting time as the 
source, and/or the destination location, and/or the desired 
number of places during a trip. In, addition, users can 
determine the extent of location time-sensitivity by specifying 
the   parameter. We list four additional functions: (a) show the 
pictures of locations obtained from Flickr, (b) recommend the 
proper stay time on locations, (c) provide the transportation 
according to the mined transit time duration, and (d) display 
contextual location information, including popularity, category, 
nearby events and restaurants, and weather.  

Below we demonstrate an example by varying   as 0, 0.5 
and 1 to show three recommended routes querying from 
Central Park to Time Square starting at 10AM, in which the 
route length k=4. The results are highlighted in blue and shown 
in Fig.3. 

Route 1. (   ): Central Park (10AM) → Metropolitan 
Museum of Art (1PM) → American Museum of Natural 
History (4PM) → Time Square (9PM). 

Route 2. (     ): Central Park (10AM) → 5th Ave (1PM) 
→ New York Public Library (5PM) → Time Square (7PM).  

Route 3. (   ) : Central Park (10AM) → New York 
Public Library (2PM) → Bryant Park (7PM) → Time Square 
(9PM). 

   

Fig. 3. Recommended routes for    ,    , and 1 from left to right. 

For    , since it pays attention to fit the time-sensitive 
score,  ( ) , it produce longer transit time to the final 
destination. Thus, we think that     provides routes for users 
who have much traveling time, and really care about time-
sensitivity of locations. On the contrary,     finds shorter 
route to the destination, and thus it is suitable for travelers who 
prefer to visit more places with a short period. Moreover, 
       is suitable for general travelers because it tries to 
strike a balance between  ( ) and  ( ). 

V. CONCLUSION 

We develop the TripRouter system that measure and 

recommend time-sensitive trip routes based on user needs on 

source, destination, current time, and time-sensitivity. 

Experimental results and user study encourage the promising 

performance and practicability of TripRouter. TripRouter is 

mostly data-driven, which assures diverse results can be 

learned from different cities in which visiting patterns may 

vary with different culture and characteristics of the city. 

Moreover, despite that we emphasized on the check-in data, in 

fact any kinds of route data (e.g. GPS trajectory data) can be 

exploited in our framework. 
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