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Abstract—Multi-label classification (MLC) is a type of struc-
tured output prediction problems where a given instance can
be associated to more than one labels at a time. From the
probabilistic point of view, a model predicts a set of labels y
given an input vector v by learning a conditional distribution
p(y|v). This paper presents a powerful model called a Neural
Conditional Energy Model (NCEM) to solve MLC. The model
can be viewed as a hybrid deterministic-stochastic network of
which we use a deterministic neural network to transform the
input data, before contributing to the energy landscape of v, y,
and a single stochastic hidden layer h. Non-linear transformation
given by the neural network makes our model more expressive
and more capable of capturing complex relations between input
and output, and using deterministic neurons facilitates exact in-
ference. We present an efficient learning algorithm that is simple
to implement. We conduct extensive experiments on 15 real-world
datasets from wide variety of domains with various evaluation
metrics to confirm that NCEM is significantly superior to current
state-of-the-art models most of the time based on pair-wise t-test
at 5% significance level. The MATLAB source code to repli-
cate our experiments are available at https://github.com/Kublai-
Jing/NCEM.

I. INTRODUCTION

The goal of multi-label classification (MLC) is to classify
a given input vector v into a set of class labels y by learning
a mapping function g : v 7→ y where y ∈ {0, 1}M and M
being the number of distinct labels. Such scenario may arise
in applications such as text mining, vision, or bioinformatics.
For instance, a document can be associated with more than
one categories; a gene is very often multi-functional; a picture
can contain multiple objects. MLC is attracting much more
research attentions because there is a wide range of potential
applications in various domains such as scene classification
[3], music and text classification [13], [33], object recognition
[7], ... etc.

In MLC, one important issue is to capture the correlations
between labels. This is believed to be the key to a state-of-the-
art MLC model because dependencies between labels could
be a good feature when trying to learn the correct mapping
[34]. For example, a document being tagged as sports should
have a higher probability to also be tagged as entertainment,
whereas it is not likely to be tagged as politics at the same
time. Effective exploitation of this information is crucial for
the success of a MLC system, while ignoring it and simply
considering each label independently may significantly hamper
system performance.

Several algorithms have been proposed for the purpose of
encoding label correlations into their models [5], [8], [44],
[23], [43]. We will briefly introduce some of them in Section
2 when talking about related work.

While a lot of previous works have focused on encoding
label correlations into the model in order to incorporate
label dependencies during training, there is another class of
approaches based on undirected graphical models that does not
explicitly ”hand-engineer” label correlations like many of the
previous approaches do. Conditional restricted Boltzmann ma-
chines (CRBMs) fall into this category. CRBMs are basically
undirected models with hidden units, aiming at learning a con-
ditional distribution between input v and output y [14], [15].
In CRBMs, label correlations can be automatically captured
by the hidden units. Without having prior knowledge about
how labels are structured (such as trees or chains), we simply
maximize the conditional likelihood p(y|v) to fit the training
data. Previous results show that CRBMs work well on some
multi-label tasks [15], [19] and various other problems [25],
[31]. Our preliminary experiments also confirm that CRBMs
outperform some popular MLC algorithms such as [5], [44],
and is comparable to more recent methods like [42], [43]. This
preliminary results are shown in Table 1.

Probably the most important reason why CRBMs are so
widely applicable to various tasks is that, given the data,
inferring the hidden states can be done exactly, leading to an
efficient approximate maximum likelihood learning algorithm
called the Contrastive Divergence (CD) that has been used
extensively in training related undirected models [9].

Nonetheless, such models may be restricted because they
have to learn the mapping from a low-level representation v to
a high-level concept y using only a single stochastic hidden
layer. Whereas in MLC the relationships between input and
output could be highly complex and non-linear, requiring more
modeling power to capture all the richness present in the data.
Limiting ourselves with one hidden layer may prevent us from
learning more complicated relationships [1].

One plausible solution is to extend such model by intro-
ducing multiple hidden layers to form a multi-layer graphical
model, usually called a deep Boltzmann machine (DBM)
[24]. Multiple hidden layers are used to capture the statistical
patterns of the input to benefit later prediction. However,
performing conditional maximum likelihood learning as well
as posterior inference (given the data) are difficult in such



TABLE I: Results of pair-wise t-test applied to CRBM compared with other popular methods with different metrics. Each cell
contains three numbers: (from left to right) the counts that CRBM is significantly better/tied/significantly worse of 15 datasets
we use. Here the significance level of t-test is set to 5%. More details about experiments will come in Section 5.

Algorithm Ranking loss Coverage Average precision Micro-f1
ECC [23] 14 / 1 / 0 14 / 1 / 0 12 / 3 / 0 11 / 3 / 1

LEAD [43] 12 / 3 / 0 12 / 3 / 0 13 / 2 / 0 14 / 1 / 0
LIFT [42] 7 / 4 / 4 8 / 4 / 3 9 / 5 / 1 13 / 1 / 1

model because of the presence of multiple stochastic hidden
layers. Due to this reason, DBMs were mostly trained in a
generative manner to model the density of the input p(v) using
variational method and stochastic approximation procedure
[24]. Then for prediction, the whole model was treated as a
deterministic feed-forward network with labels placed at the
top, and trained with back-propagation where the objective
is cross-entropy or squared distance. Conditional likelihood
p(y|v) was never used as the training objective. In such case,
we throw away the benefit of probabilistic modeling, such
as inferring p(yS |v,y−S), where S is some subset of labels
that are given a priori. Moreover, sometimes a given input
could be associated of multiple set of labels. For example,
an image could possibly be associated to more than one set
of tags due to the variability of users who tag it. However,
for an identical input, a neural network always produces the
same result because the mapping from v to y is assumed
to be uni-modal and deterministic in a neural net. While
a rich probabilistic model could potentially capture highly
multi-modal distribution, resulting to a possibly more powerful
model that can produce multiple explanations for a single v.
See [29] for a good example of probabilistic models generating
different tags for an image.

In this paper, we propose Neural Conditional Energy Model
(NCEM) that 1.) improves the performance and expressive
power of CRBMs, and 2.) overcomes the limitation in using
DBMs for discrimination where one has to resort to approx-
imate inference technique that is either inaccurate (such as
mean-field variational inference) or inefficient (such as Markov
Chain Monte Carlo) in order to learn the parameters. To
be specific, our model is a hybrid deterministic, stochastic
network with two types of hidden layers. First, the goal of
deterministic hidden layers, consist of deterministic neurons, is
to extract patterns in the data before contributing to the energy
landscape. Second, the goal of stochastic hidden layers, consist
of random variables, is to enforce the discriminative power for
making predictions. The network as a whole, being a single
discriminative model then enjoys a simple, efficient learning
algorithm (Section 4).

The main contributions of this paper are summarized as
follows:

• We empirically show that CRBMs are highly com-
petitive to current state-of-the-art MLC methods. Al-
though, as mentioned above, using CRBMs for multi-
label problems (or more generally, structured output
problems) seems to be natural, we have not yet
found extensive experiments and comparison with
other popular MLC algorithms on benchmark datasets.
We believe this is the first ever work that performs this
comparison, and we hope our results can attract more

research attention on improving this class of models
to further benefit the field of MLC.

• Built upon the success of CRBMs, we present our hy-
brid deterministic, stochastic network called the Neu-
ral Conditional Energy Model, along with its learning
algorithm to capture the rich relations between v and
y.

• We conduct our experiments on 15 real-world datasets
from a wide range of domains, and confirm that our
model performs significantly better than CRBMs and
other state-of-the-art models with statistical guaran-
tees.

II. RELATED WORK

There have been many multi-label classification algorithms
proposed. Here we briefly introduce some of them. For more
details, we refer to [17], [35], [45]. Existing approaches
roughly fall into two categories: Algorithm Adaptation (AA)
and Problem Transformation (PT). Methods in AA extend
algorithms designed for multi-class problems to solve MLC.
Some well-known examples include those that adapt ada-
boost [27], decision tree [38], k-nearest neighbors [44], [5]
and neural networks [16]. PT transforms the problem of
multi-label classification to a multi-class problem, or possibly
other type of problems, then solves the transformed tasks.
For example, Label Powerset (LP) methods transform the
problem by treating each label combination that appears in the
training set as a distinct class label, then the problem becomes
a multi-class one where traditional classification algorithms
can be exploited [37]. On the other hand, Binary Relevance
(BR) methods transform MLC into several binary classification
problems and solve them accordingly [23], [6], [3].

Here, we highlight three methods that we will compare in
the experiments section, as they are considered state-of-the-
art with superior performance, namely ensemble of classifier
chains (ECC), multi-label Learning by Exploiting lAbel De-
pendency (LEAD), and multi-label learning with Label specIfic
FeaTures (LIFT).

In ECC [23], the task of learning label dependencies is
divided into several binary classification problems. Each binary
classifier would incorporate the predictions propagated from
the previous ones to make its own prediction. More specifi-
cally, there are in total M binary classifiers to be learned in one
chain, where M is the number of distinct classes. Assuming
that we are currently training the lth classifier, the conditional
likelihood p(yl|v, y1, y2, ..., yl−1) would be optimized. Thus,
M classifiers form a chain in which latter classifiers are trained
using the results of former predictions as additional features;
hence the label correlations are learned. Finally, many such



chains with different data subset and different ordering of
permutations of the labels are ensembled to make the final
prediction. Classifier chain (CC) model is shown to be a
deterministic approximation of probabilistic classifier chain
(PCC) [6], where the problem is formalized from Bayes point
of view. However in their proposed version of PCC, the
computational complexity is exponential (w.r.t. M ), hence we
will not compare PCC in the experiments section as many of
the datasets we use have number of labels way beyond 20,
making it impossible to train PCC within a reasonable time.

LEAD is a recently proposed model [43]. LEAD first
constructs binary classifiers for each label independently. Then
it uses the error produced by classifiers to learn the structure
of a Bayesian network that encodes the label dependencies.
Finally, it trains classifiers that takes label dependencies into
account via the Bayesian network structure.

LIFT considers the problem from a different perspective
[42]. While most methods aim at capturing the dependencies
between labels, LIFT aims at finding label-dependent features
for better discriminative power. It uses k-means to cluster data
into several groups, and create a mapping function that maps
from the original feature space v to a label-specific space.
Then the classifiers are trained in this new space instead of
the old one for prediction.

We note that LEAD and LIFT have been compared with
ML-KNN [44], ECC [23], B-SVM [3], and BP-MLL [16], all
popular algorithms for MLC, and both of these two models
outperform previous methods significantly. Also, methods that
aim to reduce the computation based on singular value de-
composition will not be compared with our methods, because
they have comparable performance of BR, which is inferior
than LIFT and LEAD [20]. So, we will mainly focus on the
comparison of LEAD and LIFT with our method. More details
about experiments will come later in Section 5.

III. PRELIMINARIES

A. Conditional Restricted Boltzmann Machines

A conditional restricted Boltzmann machine (CRBM, see
Figure 1(a)) is an undirected graphical model with its energy
function defined as

E(v,h,y) = −vTWh− yTUh− vTLy − cTh− dTy.

where W is a matrix of weights between elements of v and h,
U is a matrix of weights between elements of y and h, and L
captures the interactions between v and y. c,d are biases for
h and y respectively. The conditional probability distributions
are defined by

p(y|v) =
∑

h exp(−E(v,h,y))∑
h,y exp(−E(v,h,y))

,

p(h|v,y) =
|h|∏
j=1

σ(vTW•j + yTU•j + cj),

p(y|v,h) =
|y|∏
l=1

σ(vTL•l +Ul•h+ dl).

where σ(x) = 1
1+exp(−x) is the sigmoid function and we

use X•j to denote the jth column vector in the matrix X,
and Xi• to denote the ith row vector in matrix X. Unlike
traditional restricted Boltzmann machines (RBMs) that are
used for modeling the density of the data, CRBMs learn
to capture the conditional distribution p(y|v) using a single
stochastic hidden layer h. Many variants of such model have
been successfully applied to problems such as collaborative
filtering [25], automatic music tagging [18], and motion style
modeling [31].

Learning in a CRBM is usually done using gradient ascent
in conditional log-likelihood, log p(y|v), with training set
{V,Y}. We can write the conditional log-likelihood term for
a single training case as

log p(y|v) = log
∑
h

exp(−E(v,h,y))− log
∑
h,y∗

exp(−E(v,h,y∗)).

and differentiating with respect to a parameter θ to get the
gradient

∂ log p(y|v)
∂θ

=
∑
h

p(h|v,y)∂ − E(v,h,y)

∂θ

−
∑
h,y∗

p(h,y∗|v)∂ − E(v,h,y∗)

∂θ
. (1)

The first term in Equation 1, also known as the positive
phase during learning, can be computed exactly because hidden
units are conditionally independent given the visible and
label vectors, hence the distribution p(h|v,y) factorizes. The
second term, also known as the negative phase during learning,
however is intractable to compute except in the special case
where the size of the label space is small [14]. To see this, we
can rewrite the gradient rule in Equation 1 in the ’free energy’
form
∂ log p(y|v)

∂θ
=
∂ − F (v,y)

∂θ
−
∑
y∗

p(y∗|v)∂ − F (v,y
∗)

∂θ
,

(2)

where F (v,y) is called the free energy

F (v,y) =− log
∑
h

exp(−E(v,h,y))

=−
∑
j

log
(
1 + exp(cj+vTW•j + yTU•j)

)
− dTy − vTLy.

For any given pair of (v,y), we can compute its free energy
with time linear to the number of hidden units. However, to
compute the second term in Equation 2, we need to visit all
possible label combinations in the output space. In multi-class
problems, this number is linear w.r.t. the number of labels,
while in more general problems such as MLC, the number is
exponential; hence it is not feasible to exhaustively enumerate
all of them.

It is possible to estimate the negative phase gradient
by drawing samples from the model using Markov Chain
Monte Carlo (MCMC). Since both p(y|v,h) and p(h|v,y) are
factorial distributions, we can define an efficient block Gibbs
sampling procedure by alternately updating h and y. However,



in practice it usually takes a long time to wait for the Markov
Chain to reach the stationary distribution.

There is, however, a fast approximation algorithm for
estimating the negative phase gradient for CRBMs, called
Contrastive Divergence (CD) [4], [9]. CD works by starting the
chain at the training vector, and running for only a few steps to
obtain the negative phase statistics. This method clearly does
not follow the likelihood gradient, yet it does a reasonable job
and has been used extensively in learning restricted Boltzmann
machines family [10], [25].

B. Deep Boltzmann Machines

While CD is applicable to train CRBMs without paying
much computation, a single hidden layer may not be powerful
enough to model all the statistical correlations observed in the
data. Usually, the complexity of the model can be improved by
adding extra hidden layers to form a hierarchical model [1],
[11], [24]. A deep Boltzmann Machine (see Figure 1(b)) is a
type of deep graphical model that is popular in the last few
years for many tasks [29], [30]. For example we can define
the following energy function for a DBM that has three hidden
layers h1,h2,h3 and one label layer y,

E(v,h1,h2,h3,y) =−vTW1h1 − h1T

W2h2 − h2T

W3h3

−h2T

Ly −−yTUh3

−c1
T

h1 − c2
T

h2 − c3
T

h3 − dTy.

Conditional maximum likelihood learning has the same ex-
pression as in CRBM. However, since now hidden units are
not conditionally independent given visible and label vectors,
we cannot perform exact inference to estimate the positive
phase gradient which makes learning difficult. Moreover, since
now it is required to sample from the space consisting of
{h1,h2,h3,y}, we would expect the Markov Chain to take
even longer to mix when performing Gibbs sampling to
estimate the negative phase gradient. Also, stochastic approxi-
mation procedure (SAP) cannot be used in learning conditional
distribution because each given instance vs leads to a unique
distribution p(y|vs), preventing us from using ’persistent’
contrastive divergence (PCD) [32].

Due to these issues in discriminative training of DBMs,
they are mostly trained in a generative manners using mean-
field inference and PCD to learn the distribution of the input
data p(v) first, then use the weights learned in DBMs to initial-
ize the parameters in a feed-forward neural network. Finally
a different objective function, such as cross-entropy error is
used for back-propagation fine-tuning instead of conditional
likelihood. See [24] for details.

IV. NEURAL CONDITIONAL ENERGY MODELS

A. The Model

A Neural Conditional Energy Model (NCEM) (see Figure
1(c)) is defined according to the following energy function,

E(v,h,y) =−f(v;λ)TWh− yTUh− f(v;λ)TLy

− cTh− dTy. (3)

where f(v;λ) denotes the output given by a deterministic,
feed-forward neural network parameterized by λ. Note that f

(a) CRBM

(b) DBM

(c) NCEM

Fig. 1: (a): A conditional restricted Boltzmann machine
(CRBM). Given visible and label vector, hidden units are
independent. (b): A three-layer deep Boltzmann machine
(DBM). Multiple stochastic hidden layers makes h1,h2,h3

dependent on each other given v and y. (c): A three-layer
neural conditional energy model (NCEM). Replacing low-level
hidden layers by deterministic neurons makes inference easy.
Colored nodes refer to random variables, black nodes refer to
deterministic neurons.

here can be any differentiable function. We use neural network
because the optimization in neural network is well-studied, and
it is a powerful model that can learn non-linear structure.

There is only one stochastic hidden layer in the model,
and we could have one or many deterministic hidden layers,
as shown in Figure 1(c). Since stochasticity only takes place
at the top layer, low-level representations can be efficiently
transformed into useful features via a single feed-forward pass
without performing any kind of inference procedure. This is the
most advantageous feature in NCEM where no approximate



posterior inference is involved in the model. Note that our
model has similar motivation to [22], yet Conditional Neural
Field (CNF) is specifically designed for sequence labeling in
NLP, whereas our model is more general and can deal with
arbitrary output distribution.

B. Learning

We train our model by maximizing the conditional log-
likelihood of a training set using mini-batch stochastic gradient
ascent. Specifically, given a training set {V,Y}, we learn
the parameters {W,U,L, c,d, λ} to maximize log p(Y|V) =∑
i log p(y

i|vi). The conditional log-likelihood for a single
training case takes the same form as in a CRBM,

∂ log p(y|v)
∂θ

=
∑
h

p(h|v,y)∂ − E(v,h,y)

∂θ

−
∑
h,y∗

p(h,y∗|v)∂ − E(v,h,y∗)

∂θ
.

with its energy function defined as Equation 3. We use
h to denote the stochastic hidden layer at the very top of
the model. We will not explicitly denote deterministic hidden
layers hereafter, as it is already encoded in λ. Again, we need
to compute two expectations under the distributions p(h|v,y)
and p(h,y|v). The first term now can be computed exactly
since p(h|v,y) is a factorial distribution. The second term
can be approximated by contrastive divergence, as the sample
space is now {h,y}, and and efficient block Gibbs sampling
procedure can be designed.

For clarity, we work out the gradient update rule for
parameters in a NCEM here. First, we turn to the free energy
form of the gradient,

∂ logp(y|v)
∂θ

=
∂ − F (v,y)

∂θ
−
∑
y∗

p(y∗|v)∂ − F (v,y
∗)

∂θ
,

where F (v,y) is the corresponding free energy,

F (v,y) = − log
∑
h

exp(−E(v,h,y))

=−
∑
j

log
(
1 + exp(cj+f(v;λ)TW•j + yTU•j)

)
− f(v;λ)TLy − dTy.

The derivatives of the free energy w.r.t {W,U,L, c,d} are

∂F (v,y)

∂Wij
= − exp(cj+f(v;λ)TW•j + yTU•j)

1 + exp(cj+f(v;λ)TW•j + yTU•j)
vi,

∂F (v,y)

∂Ulj
= − exp(cj+f(v;λ)TW•j + yTU•j)

1 + exp(cj+f(v;λ)TW•j + yTU•j)
yl,

∂F (v,y)

∂Lil
= −ylf(v;λ)i,

∂F (v,y)

∂cj
= − exp(cj+f(v;λ)TW•j + yTU•j)

1 + exp(cj+f(v;λ)TW•j + yTU•j)
,

∂F (v,y)

∂dl
= −yl.

We see that exp(x)
1+exp(x) = 1 − σ(−x). By making use of the

equivalence: σ(−x) = 1−σ(x), we obtain the following terser
form of the derivatives.

∂F (v,y)

∂Wij
= −σ

(
cj+f(v;λ)TW•j + yTU•j

)
vi, (4)

∂F (v,y)

∂Ulj
= −σ

(
cj+f(v;λ)TW•j + yTU•j

)
yl, (5)

∂F (v,y)

∂Lil
= −ylf(v;λ)i, (6)

∂F (v,y)

∂cj
= −σ

(
cj+f(v;λ)TW•j + yTU•j

)
, (7)

∂F (v,y)

∂dl
= −yl. (8)

Next, we work out the derivative of the free energy w.r.t.
the output given by the neural network.

∂F (v,y)

∂f(v;λ)i
=

−
∑
j

σ
(
cj+f(v;λ)TW•j + yTU•j

)
Wij − (Ly)i.

(9)

Afterwards, the derivatives of the parameters in the neural
network ∂F (v,y)

∂λ can then be derived by standard back-
propagation using the chain rule [2].

After deriving the derivatives of the free energy for all
parameters in our model, we summarize the learning algorithm
as follows (for a single training case (v,y))

1) Given a visible vector v, feed v through the neural
network and obtain output f(v;λ).

2) Given an output f(v;λ) and a label vector y, run
Gibbs sampling for k steps by alternately updating h
and y.

3) Collect the sample produced by the previous step, call
it yk.

4) Update the parameter using the following rule,

θnew = θold + α(−∂F (v,y)
∂θ

+
∂F (v,yk)

∂θ
)

where α is the learning rate, θ ∈ {W,U, c,d, λ},
and the derivatives of the free energy function for all
parameters as specified in Equations 4-9.

5) Repeat steps 1-4.

We call this algorithm conditional stochastic back-propagation
(CSBP).

C. Unsupervised Pre-Training

It is relatively hard to jointly learn the whole NCEM at
once if we start with randomly initialized weights. We can
alleviate this problem by first initializing the parameters in the
model to sensible values, before performing CSBP.

Fortunately, there is a lot of work on initializing the
parameters in a neural network using unsupervised learning.
Training a stack of restricted Boltzmann machines or a stack
of autoencoders are two of the many strategies [40], [11]. We



will learn a stack of RBMs in this paper because it works better
in our experiments. In the experiments section we will show
that unsupervised pre-training indeed helps the model find a
better solution.

D. Prediction

At test time, we need to perform a Maximum a Posterior
(MAP) inference to find the label set that has the highest pos-
terior probability p(ytest|vtest). This inference is intractable,
hence we again resort to Gibbs sampling to find such label set.
To be specific, for a given test case vtest, we first randomly
initialize stochastic hidden units and label units, then feed
vtest through the network to get f(vtest;λ). Then we start to
run alternating Gibbs sampling by updating h and y in turns,
and collect label sample every 10 Gibbs steps and aggregate
the results. This gives us a confidence score for each label that
can be used to evaluate the quality of the prediction given by
the model.

E. Summary

NCEM uses a deterministic neural network to transform the
data, and a single stochastic hidden layer is used to capture
the correlations between the transformed input and the labels.
Comparing to CRBMs, we can potentially gain more modeling
power because of the presence of multiple hidden layers. Com-
paring to DBMs, we can jointly train the whole model more
efficiently to learn p(y|v) because we have deterministic layers
at lower-level. Learning is done using conditional stochastic
back-propagation that aims at maximizing the conditional log-
likelihood of the training data. Our pre-training algorithm is
necessary for initializing parameters to sensible values.

V. EXPERIMENTS

A. Datasets

We use 15 real-world datasets to show the effective-
ness of our model across a broad range of domains with
diversified characteristics. All the datasets are available at
http://mulan.sourceforge.net. Statistics about these data are
shown in Table 2. Dimensionality reduction is performed on
rcv1-subset1 to rcv1-subset5 by selecting top 2% features with
the highest document frequency [41]. For numerical features,
we normalize them to have zero-mean and unit variance.

B. Compared Algorithms and Evaluation Metrics

We compare our algorithm with CRBM, neural network
(NNet), ECC, LEAD and LIFT. As mentioned in Section 2,
LEAD and LIFT are our two main competitors since both of
them have been proven to outperform many previous state-of-
the-art models, but for reference, we also report the results
of ECC. For CRBM, NNet and NCEM, we implement them
in MATLAB; for ECC, we use the implementation from
MULAN, a Java library for multi-label learning [36]. For
LEAD and LIFT, we use the code released by the authors at
http://cse.seu.edu.cn/people/zhangml/Publication.htm. It does
not contain the structure learning part in the package, which
is required for LEAD, hence we use DAGLearn, a MATLAB
package for structure learning in Bayesian network [28].

We use 4 standard metrics to evaluate all multi-label learn-
ing algorithms. Among those, there are three ranking-based
measures, namely ranking loss, coverage, average precision,
and one label-based measure, micro-f1. Detailed definitions of
these metrics can be found in [45].

C. Implementation Details

For ECC, the ensemble size is set to 10 [23]. The pa-
rameters for LEAD and LIFT are chosen as reported in the
original papers. In the implementation of CRBM and NCEM,
we use mini-batch stochastic gradient ascent with 100 total
training epochs. NNets are first pre-trained with stack of RBMs
and then fine-tuned using conjugate gradient descent with 3
line searches with cross-entropy error as the objective function
[11]. A fixed learning rate and weight-decay are used in our
experiments, selected from the set {0.05, 0.005, 0.0005} for
CRBM and NCEM. We also use momentum during training
[10]. The size of each hidden layer is selected from the choices
in {100, 200, 300, ..., 800}. For NCEM, we try 2 or 3 hidden
layers (including top-level stochastic layer), and find out that
in general using 3 layers gives roughly the same performance
as using 2 layers; hence we only report the result of using two
layers throughout the experiments. The best combination of
learning rate, weight-decay, and model architecture is selected
via cross-validation. The same architecture tried in NCEM is
also tried for NNet. Finally, the number of Gibbs sampling
performed to get the negative phase statistics is set to 1 and
gradually increase to 5 during learning, as described in [26].
Our implementation is based on ”DeepLearnToolBox” which
is a MATLAB package [21].

D. Results

We now provide detailed results for algorithms compared
across 15 datasets and 4 evaluation metrics. Ten-fold cross-
validation is performed on each experimental dataset. The
results are shown from Table 3 through Table 6, where the
mean and standard deviation of each algorithm is reported. We
bold the algorithm that performs the best for a given metric
and a given dataset. Note that for ranking loss, coverage, lower
values are preferred, and for average precision and micro-f1,
higher values are desired.

Maybe surprisingly, CRBM already outperforms ECC in
almost every metrics on all datasets, and is also highly compet-
itive comparing to LEAD and LIFT. We note that using CRBM
for MLC is not new. However, to our best knowledge this
paper is the first one that conducts extensive experiments on a
wide variety of MLC tasks. The results show that CRBM as a
general probabilistic model can perform pretty well on MLC.
Also, in terms of time complexity and coding complexity,
CRBM is efficient to train using contrastive divergence and
is also simple to implement. The core training algorithm takes
merely about sixty lines of (unoptimized) MATLAB code in
our implementation with no dependencies on external libraries,
and stochastic gradient method allows us to scale up to large
datasets.

Clearly, NCEM outperforms CRBM significantly in most
cases, showing that adding one or many extra hidden layers
helps in terms of capturing the complex conditional distribu-
tion. NNet, on the other hand, does not perform as well as our
model does.



TABLE II: Statistics of 15 datasets used in this work. N is the number of instances, D is the feature dimension, M is the
number of labels, cardinality denotes the average number of labels per example, and nominal indicates whether the feature is
nominal or numerical.

dataset N D M cardinality nominal? domain
scene 2407 294 6 1.074 no image
emotions 593 72 6 1.869 no music
yeast 2417 103 14 4.237 no biology
medical 978 1449 45 1.245 yes text
enron 1702 1001 53 3.378 yes text
rcv-subset1 6000 944 101 2.880 yes text
rcv-subset2 6000 944 101 2.634 yes text
rcv-subset3 6000 944 101 2.614 yes text
rcv-subset4 6000 944 101 2.484 yes text
rcv-subset5 6000 944 101 2.642 yes text
bibtex 7395 1836 159 2.402 yes text
corel5k 5000 499 374 3.522 yes image
corel16k-sample1 13766 500 153 2.859 yes image
corel16k-sample2 13761 500 164 2.882 yes image
corel16k-sample3 13760 500 154 2.829 yes image

TABLE III: Ranking loss of each algorithm (mean±std), where bold number indicates the best performance. Avg Rank indicates
the average ranking across all datasets.

Algorithms
dataset ECC LEAD LIFT CRBM NNet NCEM
scene 0.093±0.015 0.088±0.011 0.062±0.010 0.074±0.009 0.068±0.010 0.059±0.007
emotions 0.172±0.045 0.156±0.024 0.142±0.020 0.167±0.028 0.159±0.015 0.142±0.021
yeast 0.227±0.016 0.173±0.011 0.166±0.013 0.168±0.011 0.193±0.017 0.164±0.009
medical 0.048±0.019 0.022±0.012 0.027±0.013 0.022±0.010 0.024±0.010 0.021±0.008
enron 0.160±0.008 0.076±0.006 0.070±0.005 0.069±0.008 0.073±0.011 0.065±0.009
rcv1subset1 0.124±0.009 0.064±0.003 0.047±0.003 0.040±0.004 0.068±0.006 0.037±0.003
rcv1subset2 0.130±0.005 0.063±0.004 0.050±0.003 0.042±0.004 0.076±0.006 0.040±0.002
rcv1subset3 0.129±0.004 0.065±0.003 0.046±0.002 0.042±0.003 0.075±0.004 0.040±0.003
rcv1subset4 0.106±0.003 0.043±0.003 0.034±0.002 0.032±0.002 0.060±0.006 0.031±0.001
rcv1subset5 0.122±0.008 0.058±0.002 0.045±0.002 0.040±0.002 0.071±0.006 0.037±0.001
bibtex 0.209±0.005 0.085±0.006 0.067±0.002 0.059±0.004 0.091±0.007 0.052±0.003
corel5k 0.413±0.012 0.127±0.008 0.121±0.007 0.114±0.006 0.123±0.005 0.099±0.005
corel16k001 0.547±0.014 0.152±0.006 0.135±0.003 0.139±0.004 0.154±0.010 0.130±0.005
corel16k002 0.552±0.008 0.147±0.004 0.129±0.003 0.134±0.002 0.144±0.013 0.122±0.003
corel16k003 0.552±0.011 0.149±0.004 0.142±0.008 0.134±0.004 0.144±0.008 0.123±0.003
corel16k003 0.552±0.011 0.149±0.004 0.142±0.008 0.134±0.004 0.144±0.008 0.123±0.003
Avg Rank 6 4.1333 2.7333 2.6000 4.4667 1.0667

To further justify the improvements our model achieves,
we apply pair-wise t-test at 5% significance level to compare
NCEM with other models. In Table 8, we show three numbers:
out of 15 datasets, how many times that NCEM is significantly
superior/tied/significantly inferior to the compared method for
a given metric. For the four metrics, NCEM almost always
significantly outperforms all compared methods. Only rarely
does NCEM perform significantly worse than other models.
This result confirms that the proposed model is superior across
different datasets and different metrics in a statistical sense.

E. The Effect of Unsupervised Pre-Training

Next, we show whether unsupervised initialization of the
parameters helps in terms of finding a better solution. Fig.
3 shows the performance of ranking-loss without and with
unsupervised pre-training. We observe that pre-training helps
almost surely. Many times this gap is significant, which justi-
fies that it is important to initialize the parameters to sensible
values before learning the model as a whole.

VI. CONCLUSION

MLC is attracting more attention in the research field
because of its wide range of potential application usage. We



TABLE IV: Coverage of each algorithm (mean±std), where bold number indicates the best performance. Avg Rank indicates
the average ranking across all datasets.

Algorithms
dataset ECC LEAD LIFT CRBM NNet NCEM
scene 0.093±0.008 0.088±0.008 0.066±0.009 0.076±0.007 0.071±0.008 0.063±0.006
emotions 0.313±0.048 0.292±0.025 0.282±0.022 0.299±0.025 0.296±0.018 0.279±0.021
yeast 0.511±0.013 0.461±0.014 0.455±0.014 0.454±0.013 0.477±0.021 0.443±0.015
medical 0.074±0.012 0.031±0.015 0.041±0.016 0.036±0.014 0.038±0.013 0.033±0.012
enron 0.396±0.017 0.215±0.013 0.213±0.015 0.205±0.024 0.215±0.028 0.196±0.022
rcv1subset1 0.262±0.021 0.149±0.007 0.119±0.008 0.099±0.007 0.154±0.010 0.093±0.005
rcv1subset2 0.249±0.019 0.140±0.007 0.122±0.008 0.100±0.009 0.160±0.009 0.096±0.005
rcv1subset3 0.254±0.013 0.144±0.006 0.110±0.005 0.100±0.007 0.156±0.007 0.094±0.006
rcv1subset4 0.198±0.010 0.098±0.006 0.082±0.003 0.077±0.004 0.124±0.011 0.073±0.004
rcv1subset5 0.244±0.009 0.132±0.004 0.110±0.004 0.098±0.004 0.153±0.010 0.090±0.003
bibtex 0.355±0.020 0.157±0.010 0.119±0.004 0.107±0.007 0.165±0.010 0.097±0.005
corel5k 0.733±0.009 0.297±0.017 0.287±0.015 0.262±0.014 0.271±0.011 0.225±0.012
corel16k001 0.551±0.012 0.297±0.011 0.265±0.005 0.275±0.008 0.294±0.018 0.259±0.008
corel16k002 0.556±0.007 0.289±0.008 0.257±0.005 0.265±0.004 0.276±0.021 0.242±0.005
corel16k003 0.557±0.012 0.292±0.006 0.294±0.024 0.267±0.007 0.276±0.014 0.241±0.006
Avg Rank 6 4.0667 3.0667 2.5333 4.2667 1.0667

TABLE V: Average precision of each algorithm (mean±std), where bold number indicates the best performance. Avg Rank
indicates the average ranking across all datasets.

Algorithms
dataset ECC LEAD LIFT CRBM NNet NCEM
scene 0.861±0.022 0.845±0.020 0.888±0.018 0.864±0.015 0.875±0.015 0.891±0.013
emotions 0.782±0.024 0.808±0.027 0.821±0.027 0.799±0.032 0.806±0.026 0.821±0.029
yeast 0.715±0.028 0.755±0.017 0.767±0.018 0.763±0.017 0.740±0.021 0.769±0.013
medical 0.874±0.022 0.889±0.027 0.876±0.029 0.885±0.026 0.879±0.022 0.886±0.018
enron 0.623±0.028 0.672±0.018 0.707±0.012 0.707±0.019 0.703±0.022 0.722±0.020
rcv1subset1 0.558±0.009 0.544±0.012 0.601±0.010 0.618±0.014 0.581±0.010 0.628±0.016
rcv1subset2 0.590±0.009 0.576±0.013 0.614±0.010 0.634±0.009 0.602±0.010 0.628±0.009
rcv1subset3 0.587±0.005 0.573±0.015 0.588±0.006 0.631±0.012 0.597±0.014 0.620±0.012
rcv1subset4 0.660±0.013 0.662±0.016 0.684±0.017 0.698±0.014 0.681±0.015 0.685±0.008
rcv1subset5 0.597±0.011 0.586±0.016 0.611±0.005 0.637±0.014 0.608±0.018 0.635±0.012
bibtex 0.518±0.022 0.542±0.012 0.551±0.010 0.576±0.014 0.557±0.015 0.593±0.008
corel5k 0.235±0.016 0.277±0.014 0.290±0.011 0.292±0.012 0.295±0.015 0.317±0.011
corel16k001 0.277±0.011 0.336±0.009 0.329±0.007 0.341±0.008 0.309±0.019 0.346±0.010
corel16k002 0.274±0.006 0.331±0.005 0.326±0.008 0.335±0.004 0.307±0.023 0.346±0.004
corel16k003 0.270±0.007 0.331±0.007 0.329±0.004 0.337±0.008 0.312±0.012 0.348±0.008
Avg Rank 5.6667 4.4667 3.2667 2.3333 3.9333 1.3333

show that a type of undirected model, called the conditional
restricted Boltzmann machines, can achieve good performance,
even though they are considered to be generic probabilistic
models, and not sp1ecifically designed for MLC. We also
introduce the Neural Conditional Energy Model, a type of
hybrid network, and conduct extensive experiments to justify
that NCEM performs significantly better than current state-of-
the-art.

There are two future extensions of this work. First, it is

needless to say that NCEMs are not restricted to making
discrete predictions such as MLC only. We can generalize it to
produce arbitrary output distribution such as Gaussian if we
are interested in multiple regression problems, for example,
to model expressions of human faces. It will be interesting
to see how our probabilistic model can capture continuous
outputs, where a lot of complex dependencies among them
need to be learned. Second, we use a simple optimization
algorithm that involves Gibbs sampling and back-propagation



TABLE VI: Micro-f1 of each algorithm (mean±std), where bold number indicates the best performance. Avg Rank indicates
the average ranking across all datasets.

Algorithms
dataset ECC LEAD LIFT CRBM NNet NCEM
scene 0.727±0.020 0.676±0.021 0.765±0.023 0.722±0.017 0.767±0.023 0.787±0.022
emotions 0.687±0.027 0.629±0.050 0.684±0.027 0.684±0.034 0.670±0.025 0.711±0.035
yeast 0.640±0.018 0.629±0.014 0.653±0.013 0.663±0.011 0.630±0.015 0.675±0.009
medical 0.831±0.022 0.794±0.025 0.765±0.023 0.793±0.029 0.775±0.028 0.795±0.020
enron 0.546±0.033 0.485±0.024 0.572±0.013 0.607±0.022 0.597±0.021 0.625±0.018
rcv1subset1 0.433±0.020 0.312±0.018 0.342±0.017 0.518±0.013 0.440±0.017 0.518±0.008
rcv1subset2 0.441±0.017 0.347±0.017 0.354±0.012 0.499±0.010 0.447±0.015 0.490±0.006
rcv1subset3 0.451±0.008 0.349±0.014 0.271±0.014 0.501±0.011 0.445±0.015 0.491±0.010
rcv1subset4 0.517±0.015 0.433±0.021 0.406±0.026 0.541±0.012 0.514±0.014 0.528±0.009
rcv1subset5 0.459±0.013 0.356±0.014 0.364±0.020 0.511±0.011 0.461±0.015 0.514±0.010
bibtex 0.448±0.015 0.382±0.011 0.319±0.019 0.457±0.016 0.453±0.014 0.476±0.011
corel5k 0.207±0.017 0.047±0.008 0.076±0.010 0.266±0.010 0.263±0.014 0.287±0.010
corel16k001 0.217±0.008 0.111±0.006 0.030±0.006 0.282±0.008 0.258±0.014 0.286±0.007
corel16k002 0.220±0.005 0.111±0.005 0.025±0.008 0.285±0.004 0.257±0.020 0.292±0.006
corel16k003 0.220±0.006 0.108±0.007 0.045±0.013 0.286±0.008 0.262±0.014 0.291±0.008
Avg Rank 3.6000 5.4000 5.0000 22.2000 3.4667 1.3333

TABLE VII: Results of pair-wise t-test applied to NCEM compared with other methods. Each cell contains three numbers: (from
left to right) the counts that NCEM is significantly better/tied/significantly worse out of 15 datasets. Here the significance level
of t-test is set to 5%.

Algorithm Ranking loss Coverage Average precision Micro-f1
ECC 14 / 1 / 0 14 / 1 / 0 14 / 1 / 0 12 / 2 / 1

LEAD 13 / 2 / 0 14 / 1 / 0 13 / 2 / 0 14 / 1 / 0
LIFT 10 / 5 / 0 10 / 5 / 0 9 / 6 / 0 15 / 0 / 0

CRBM 14 / 1 / 0 13 / 2 / 0 8 / 4 / 3 9 / 3 / 3
NNet 15 / 0 / 0 15 / 0 / 0 12 / 3 / 0 14 / 1 / 0

to train our model in this paper; it will be possible to consider
more advanced methods like [39], or to use other specific loss
function that favors different metric in different applications
we care about.
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