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Abstract—One of the main purposes of a computer-aided
diagnosis (CAD) system is to reduce the workload of the ra-
diologists in identifying potential diseases. However, such system
can become unreliable and useless if it produces even only a
small amount of false negatives, since a misclassification of any
unhealthy patient as healthy can result in the delay of treatment,
which can lead to fatal outcomes. Designing a CAD system that is
capable of reducing the workload of radiologists and meanwhile
avoiding any false negative is a very challenging problem. To
tackle this problem, we propose a two-stage framework and a
novel evaluation criterion, namely optimal specificity under perfect
sensitivity (OSPS). We argue that for medical data classification,
this criterion is more suitable than other conventional measures
such as accuracy, f-score, or area-under-ROC curve. We further
propose two learning strategies to improve OSPS. The first aims
particularly at multi-instance learning tasks via disregarding the
misclassified negative instances of positive patients. The second
tries to improve OSPS by embedding more restricted constraints
for negatives.

I. INTRODUCTION

Computer-aided diagnosis (CAD) systems are designed to
assist radiologists in interpreting medical data. CAD systems
have widely used for many diseases, such as Alzheimer’s dis-
ease detection from single photon emitting computer tomogra-
phy [1] and nodule detection from lung computed tomography
[2]. The design of a CAD system can be further decomposed
into three stages: Identifying potentially unhealthy regions of
interest (ROI), extracting descriptive features for each ROI, and
designing a classifier to identify the labels of newly added
candidates. This study focuses on the final stage of a CAD
system.

Without the help of CAD systems, radiologists generally
have to rely on their own eyes and go through all the images
or videos to identify potentially unhealthy ROIs. To ensure
that no plausible indicators for diseases escape detection, in
many cases the second reading on negative data (i.e. the ones
believed to be healthy by the first radiologists) by another
radiologist is required at the cost of doubling of the workload.

The major goal of a CAD system is to reduce the workload
of the radiologists. Some studies have suggested the use of
CAD systems as a filter for positive instances in clinical trials
[3]. To serve such a purpose, we argue that CAD systems
should aim at classifying a complete negative set, within which
all instances are highly likely to be true negative (i.e. a negative
data point that is correctly identified as negative). In other
words, a complete negative set contains no false negatives (i.e.
a positive data point that is wrongly identified as negative).

Guaranteeing a complete negative set can reduce the workload
of the radiologists since they do not need to check this set
anymore.

Compared to other kinds of data, medical data possesses
several special characteristics which in many cases amplify the
intricacy of the mining task [4]:

• Imbalanced data. For many diseases (in particular for
cancer), the positive collections are far fewer than the
negative ones.

• Multiple-instance data. Medical data are usually bun-
dled together as sets. Moreover, in many cases we
only care about the label for that set. A set is positive
if at least one of its instances is positive; otherwise
it is believed to be negative. Diverse Density [5] and
EM-DD [6] are two of the most popular approaches
for multi-instance learning.

• Extremely high penalty for false negatives. For med-
ical data, failing to identify positive individuals can
result in fatal costs while false alarms are generally
not as serious. It is different from some other problems
(e.g. search engine) where false positives are as serious
(if not more severe) than false negatives. The emphasis
on false negatives also applies to homeland security,
crime analysis and fraud detection data.

This study tries to address the third issue given the first two
conditions for medical data mining. To our knowledge, this is
the first report that aims at solving the problem of identifying
a complete negative set for medical data.

The major contributions are threefold:

1) We propose a framework that divides the task into
two sub-tasks: instance ranking and rank-list thresh-
olding. In this study, we focus on tackling the former
task.

2) We propose a novel performance measure, the op-
timal specificity under perfect sensitivity (OSPS), for
evaluating how well a ranking model benefits a CAD-
like system.

3) To improve OSPS for the instance ranking task, we
propose two strategies. The false positive tolerance
strategy and the suspicion expansion strategy. The
experiments show that our strategies can outperform
the state-of-the-art multi-instance models by as much
as 20% in OSPS.



II. PROBLEM ANALYSIS

A. Preliminaries

A binary classified instance can generally be assigned to
one of these following categories:

1) True positive (TP): A positive data point that is
correctly identified as positive.

2) False positive (FP): A negative data point that is
wrongly identified as positive.

3) False negative (FN): A positive data point that is
wrongly identified as negative.

4) True negative (TN): A negative data point that is
correctly identified as negative.

Some evaluation metrics have been proposed:

1) Precision = TP
TP+FP

2) Negative predictive value = TN
TN+FN

3) Sensitivity (Recall) = TP
TP+FN

4) Specificity = TN
TN+FP

5) Accuracy = TP+TN
TP+TN+FP+FN

In addition to these evaluation metrics, the receiver operat-
ing characteristic (ROC) curve [7] is another commonly used
metric to assess the quality of a classifier. ROC curves plot
relationships between the sensitivity and (1 - specificity) while
varying the decision boundary. It shows the tradeoff between
sensitivity and specificity. The ROC curve of a model is usually
quantified by the area under curve (AUC).

B. Insights of the Problem

In medical data mining, the costs of false negatives are
usually much higher than those of false positives [8] because
a misclassified malignant tumor is much more fatal than a
false alert of healthy issue. Consequently, if a CAD system
cannot guarantee perfect sensitivity, inevitably, radiologists
have to re-examine the entire believed-to-be negative data out
of fear that some positives might slip through the net. In
this sense, a CAD system failing to achieve perfect or near-
perfect sensitivity cannot really alleviate any of the workloads
of medical personnel. Therefore, researchers are motivated to
design classifiers that focus on the elimination of all plausible
false negatives.

However, minimizing false negatives is not enough because
classifiers can easily achieve perfect sensitivity by predicting
everything as positive. Therefore, there is a second goal that
must be achieved in this task, that is, to maximize the number
of true negatives in the predictions. There is a trade-off
between these two criteria since the classifiers need to predict
more instances as negatives to have a chance to increase
the number of true negatives. However, doing so inevitably
increases the risk of predicting one or more positive instances
as negative. It is this trade-off that makes this problem a
difficult one to solve.

C. A Two-Stage Framework

Acknowledging the two aforementioned trade-off factors to
consider in classification, we propose a two-stage framework to
handle this problem. The first stage aims at producing a faithful

ranking (e.g. using a classification model) of the instances. The
second stage then determines a decision threshold that breaks
the ranked list of instances into positive part and negative part.
Given such a framework, there are two critical issues to be
addressed:

1) How to design a learning model that produces a
faithful order in which the positive instances are more
likely to be ranked above the negative ones.

2) Given the ranked list of instances from 1, how to de-
termine a threshold that has low chance of containing
false negatives without having to sacrifice too much
specificity.

Note that these two challenges are not necessarily indepen-
dent since a strategy to identifying the best decision threshold
could depend on the quality of ranking. However, tackling
them all together makes this a very challenging problem, since
then we need to search the model space, parameter space, and
threshold space at the same time. Nevertheless, our framework
allows the exploitation of the divide-and-conquer principle to
tackle two easier tasks independently. We hope by doing so it is
more likely to search for a high-quality local-optimal solution.

This study focuses on designing general strategies to tackle
the first challenge, which aims at producing a faithful ranking
of instances. The second challenge is out of the scope of this
work.

III. A NOVEL EVALUATION METRIC: OSPS

We propose a novel evaluation metric called optimal
specificity under perfect sensitivity (OSPS) that evaluates how
well a model ranks the most difficult positive instance, which
stands for the positive instance ranked below all other positive
ones. Given an order of instances, OSPS is defined as the
maximal specificity attainable with this ranked list of instances.
More specifically, to calculate OSPS, the decision threshold is
placed at the lowest-ordered positive instance, above which the
sensitivity is 100% and below which exists a complete negative
set without any false-negative. In other words, OSPS can be
illustrated as the proportion of the size of the complete negative
set with respect to the total number of negative instances.
Consequently, optimizing OSPS is essentially equivalent to
optimizing the upper-bound of the size of the complete neg-
ative set, or equivalently, the optimal amount of effort that
can be saved for radiologists. For any given learning model
that provides a prediction score or ranking (rather than only a
binary decision) for each instance, OSPS can be viewed as the
specificity of the negative data in the largest-possible complete
negative set. Taking advantage of OSPS, one can now focus
on improving the ranking of instances. Mathematically OSPS
is defined as

#(instances)− idx(last ranked positive instance)
#(negative instances)

,

where #(·) counts the size of a set, and idx(·) denotes the index
of an entry in a ranked list.

Several evaluation metrics have been proposed for CAD
systems. In addition to ROC, one of the most commonly used
metrics for a CAD system is the FROC curve [9]. It modifies
the ROC curve by making the y-axis as the sensitivity of the
patients rather than instances. Many studies have evaluated
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Fig. 1. An example of 15-instance dataset with models A and B. An arrow
represents the positive side of a decision boundary. A dotted line represents
the decision boundary at which sensitivity is perfect.

their results by area under ROC curve (AUC) [10], [11] within
a certain false alert rate [11], [12]. However, doing so raises the
difficulty of comparison since people might choose different
ranges, and one CAD system might be better for a certain
range but not for others.

Note also that improving accuracy, f-score, or AUC does
not necessarily guarantee the improvement of OSPS. Like
AUC, OSPS is concerned with the ranking of the outputs
rather than the absolute classification scores. However, OSPS
is a more suitable evaluation metric than AUC in CAD
applications. For instance, when considering the design of a
CAD system, a model that ranks most of the positive instances
on the top of the list but leaves very few at the bottom 1% of
the list is not preferred comparing to a model that ranks all
positive instances in the middle of the list. As for the former
case, the largest possible complete negative set cannot exceed
1% in size; and in the latter case it is possible to find one that
is close to 50%. ROC curves fail to reflect such criteria since
in the former case, the AUC would be close to perfect (instead
of 1%), which is much better than the AUC in the latter case.
What makes the difference is that, OSPS precisely targets the
threshold at which a CAD system exactly desires; however,
unlike OSPS, AUC aimlessly considers every possible decision
threshold in its calculation and thus blurs the exact goal of a
CAD system.

Another advantage to incorporate OSPS for evaluation is
that it is a more suitable criterion for choosing a potentially
better model among a set of hypothesized models for CAD
systems. For example, Fig. 1 is a sample of 15 instances (5
positives) with two classification models A and B (note that
the arrow points to the positive side). Model A apparently has
higher accuracy than model B. However, for the purpose of
optimizing the size of a complete negative set, if the decision
boundary is placed behind the last ranked positive instance for
both A and B, it is possible to find that model B is capable of
producing a larger complete negative set (5 instances) than that
of A (1 instance), as shown by the dotted lines. In this sense,
B is better since it has higher potential in terms of reducing
the workload of the radiologists (i.e. OSPS value is higher).

According to the definition, OSPS is suitable for applica-
tion scenarios where the cost of incorrect decision on a positive
instance is such tremendous that any false negative is hardly
allowed. In some other applications, however, one or few false
negatives may be relatively acceptable. We can extend OSPS
to support such applications as

#(instances)− idx((K + 1)th last ranked positive inst.)
#(negative instances)

, (1)

where K denotes the number of false negatives the target
application can tolerate.

In general, noises in data can be categorized into two types
based on their causes. One type of noises occurs in the feature
of the instance, while the other type indicates the incorrectness
of the instance’s label. The latter type is sometimes incurred
by, for example, a mistake made by a human annotator. For the
first type of noises, OSPS is a well suited measure for detecting
deviated outputs that may be produced when a learning model
does not adapt well to noises of this type. For example, let x
be a positive instance that is affected by the first type noises.
Let A be a model that produces a discordantly low score for
x, and thus improperly arranges x to be the lowest ranked
positive instance. If B is another model that is relatively more
insensitive to the noises, and thus grades x into a more proper
rank, then B will receive higher OSPS than that from model
A.

One may argue that OSPS could be sensitive to the second
type of noises. For example, let z be a negative instance that
is incorrectly annotated with the positive label. If z is properly
assigned a relatively low score by a model C, as it should be,
potentially the OSPS of model C could be underestimated. If
an application is prone to suffering this type of noises, we can
use the extended version of OSPS defined in (1).

IV. TWO DIRECTIONS TO IMPROVE OSPS

This study proposes two instance ranking strategies aiming
at improving the OSPS. The first strategy targets particularly
at the multi-instance learning tasks, while the second one can
be used as a method for more general classification tasks. Both
of these two strategies can enhance or cooperate with extant
well-developed classification models to produce the ranking
scores of instances.

A. False Positive (FP) Tolerance Method

As described previously, for medical data generally it is the
classification of patients (note that each patient has multiple
and varied number of instances) instead of instances that is
concerned. In this sense, CAD systems generally deal with
multi-instance learning (MIL) [5], [6] problems: A patient is
considered as a set while the ROIs of that patient are consid-
ered as instances inside that set. In multi-instance scenarios, a
small proportion of false negatives can cause serious damage
to the accuracy of the system if they all belong to different
sets. On the other hand, increasing the number of correctly
identified instances does not necessarily improve the accuracy
if the instances are from the same set. Such special features
of multi-instance learning bring about different strategies for
classification.

Here we consider OSPS in the patient level rather than the
instance level: To obtain the OSPS for MIL in medical data
classification, one has to produce the ranking of the patients.
A conventional strategy for patient ranking is to first predict
the scores of all instances, and then rank the patients based
on the highest-scored instance of each. This is a reasonable
approach since for MIL, only one positive instance is sufficient
to confirm a patient as positive. The OSPS in the patient level
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Fig. 2. (a) An example of multi-instance dataset. (b) The dataset after
relabeling NP as positives.

is defined as

#(patients)− idx(last ranked positive patient)
#(negative patients)

.

Given such a strategy, it is not difficult to infer that in
order to obtain high OSPS in the patient level, a model has
to assign a relatively high score to at least one instance of
every positive patient without exception. In this sense, simply
applying a conventional classification model for ranking can
hardly improve the OSPS since even a single mis-prediction of
a positive patient can hurt the overall performance. Therefore
we propose a novel false-positive tolerance method to tackle
this problem.

In a multi-instance dataset, there are labels at both patient
level and instance level. In view of this aspect, we can divide
the instances into three categories:

1) Positive instances (P)
2) Negative instances of positive patients (NP)
3) Negative instances of negative patients (NN)

The ranking of the positive patients can be determined
by either P or NP, while that of the negative patients can
be decided only by NN. One interesting observation is that
although raising the ranking of NP for positive patients hurts
the instance-level accuracy (since they are truly negative in-
stances), it may in fact improve OSPS. This is because such
a strategy might move the positive patient to a higher rank
(recall that the rank of a patient is determined by the highest-
scored instance, regardless of whether or not it is originally a
positive instance). In other words, instances in NP play a very
tricky role in MIL in the sense that the misclassifications can
improve the patient-level accuracy.

Fig. 2a demonstrates an example (the decision boundaries
are represented by dashed lines and the arrows point to the
positive side). Model 1 and model 2 both have one false
positive instance. However, in model 2, the misclassified
instance in NP (the green circle point in the left bottom corner)
turns out to suggest the correct identification of positive patient
1.

Based on this observation, one immediate idea would be to
re-label NP as positives for classification. However, as can be
seen in the later experiments, this is not a promising direction
to pursue since labeling all NP as positives produces too much
interference for the true positive points, and consequently
confuses the classifier. As shown in Fig. 2b, labeling all NP as
positives makes it much harder for a model to learn the true
positives, and consequently hurts the generalization capability
of a classifier.

To deal with such an issue, instead of assigning NP as
positives, our strategy is still to assign them as negatives,
but to tolerate the misclassifications of NP. Compared with
the previous proposal, our method does not encourage the
misclassifications of NP. Instead we only choose to wink at
the false positives of NP. We realized such ideas on SVM and
AdaBoost, as described below.

1) False-positive Tolerance SVM: We expect to treat mis-
classified NP less seriously than other types of errors. Based
on this idea, we assign different cost values (penalties) for the
three categories of data. Normally in medical data, the positive
instances are much fewer than the negative ones, and same
situation applies to the positive patients and negative ones. That
says, there are much fewer P than NP, while NN occupy the
majority of the data. For a class-balanced SVM, normally the
cost values are assigned based on the distribution of majority
and minority classes: The penalties for the misclassifications of
the minority class (P) should be larger than that of the majority
class (NP and NN). FP tolerance further differentiates NP from
NN and assigns different penalties to them.

Built upon standard SVM, false-positive tolerance SVM
(FPT-SVM) solves the minimization problem

min
w,b,ξ

1

2
wTw +

l∑
i=1

Ciξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l,

where l denotes the size of the training set S and each training
instance xi has a corresponding misclassification cost Ci. Let
Q+ denote the set of positive patients, which comprises at least
one positive instance, and let Bp denote the set of instances
belonging to patient p. FPT-SVM applies the costs Ci that
satisfy the equations∑

i∈P

Ci =
∑
j∈NP

Cj +
∑
k∈NN

Ck, (2)∑
i∈Bm∩P

Ci =
∑

j∈Bn∩P

Cj , ∀m,n ∈ Q+, (3)

Ci = γCj , ∀i ∈ NP, ∀j ∈ NN, (4)

where γ is a constant between 0 and 1.

In equation (2), the summation of the misclassification
costs of all positive instances is equal to the summation of
the misclassification costs of all negative instances. To treat all
positive patients equally, (3) makes sure that each individual
positive patient has equal summation of misclassification costs
on the positive instances. In (4), a parameter γ is introduced
to adjust the ratio of weights between NP and NN. γ is a real
value between 0 and 1 that makes sure the cost values of NN



are larger than that of NP. A large γ does not distinguish NN
and NP and a small γ tends to ignore the misclassified NP.
FPT-SVM can be implemented easily using available SVM
packages supporting instance-individual weight assignment.
For those that do not support the instance-individual cost
weight, one can still achieve FP tolerance by re-sampling the
dataset.

2) Applying FP Tolerance Method to AdaBoost: The FP
tolerance method can also be implemented through adjusting
the cost functions of other classification algorithms. Here we
apply FP tolerance method on AdaBoost [13]. We assign the
importance weights to the base learner in the first iteration as
suggested in [14]. In addition, we consider the weight vector D
of AdaBoost, which is used to represent a cost distribution of
the training instances. For FP tolerance, the elements in D are
assigned with Ci, which are derived by solving the equations
(2)−(4).

3) Back to the Example in Fig. 2a: Refer back to the
example illustrated in Fig. 2a. Model 1 is a normal model
trained without adjusting the costs of NP misclassifications,
while model 2 applies false positive tolerance, and the NP
misclassifications are assigned with smaller penalties in the
learning stage. It turns out that the ranked list of patients
produced by model 1 is (2, 3, 1), where positive patient 1 is
improperly given a lower score than that of negative patient 3.
In contrast, with false positive tolerance, model 2 produces
higher score for patient 1, and patient 1 is thus ranked
before patient 3. The ranked list becomes (2, 1, 3). Under the
measurement of OSPS, model 2 performs better and stands
out.

B. Suspicion Expansion Method

Being able to avoid false negatives is important for not only
medical but other types of data such as fraud detection and
homeland security. However, data in other domains might not
possess the multiple-instance characteristic. Hence, we propose
a general idea to improve the OSPS for them.

Because the last-ranked positive point directly affects the
OSPS, hard-to-detect positive data can no longer be ignored or
treated as noises. Traditionally, a discriminative or generative
model employs the strategy of classifying an instance as
negative if the probability of it being negative is larger than that
of it being positive. However, for OSPS, a false negative can
be so severe that we need to adopt a new strategy to enforce
stricter criteria about being negative, which is equivalent to
having looser criteria for positives. To do so, we propose
to generalize the positive class into another class called the
suspicious class, and constrain the negative class into a more
stringent non-suspicious class.

Fig. 3 illustrates this idea: The suspicious class contains
the original positive class, while the non-suspicious class is a
subset of the original negative class. We refer to this process of
redefining the labels of data as suspicion expansion. We hope
by doing so, the instances that are left in the non-suspicious
class are those that are highly unlikely to be positive. Therefore
this non-suspicious class has a higher chance of being a
complete negative set.

One unsolved piece of the puzzle remains: How to expand
the positive class into a suspicious one. Considering a case

Positives

Non-suspicious Suspicious

More strict than negatives Looser than positives

Negatives

Fig. 3. The suspicious expansion method.
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Fig. 4. (a) Training without suspicion expansion. (b) Training after suspicion
expansion.

in which one or very few positives are surrounded by many
negative points, as shown in the bottom-left part of Fig. 4a. A
conventional accuracy-driven classifier would probably treat
those positives as noises and still classify all points in that
region as negatives. While emphasizing the complete negative
set, we can no longer ignore the sparse positive points because
although labeling those positives as negatives can improve the
generalization capability of a classifier, it can also significantly
hurt the OSPS since there are indeed some positives in that
region.



Instead, we would like to treat positive instances sur-
rounded by negative ones as the indicator of a suspicious area,
and mark all points in that area as suspicious. To be more
general, a mass of close instances is labeled as suspicious if
at least one positive instance exists within it. To realize this
idea, one can first cluster the whole dataset into several groups,
and identify the suspicious groups as those containing at least
one positive instance. Finally we can re-label all points in the
suspicious groups as suspicious and the rest as non-suspicious.

Fig. 4 uses a simple classification example to demonstrate
this idea. Fig. 4a represents the dataset with original labels
(positive and negative) and Fig. 4b represents the re-labeled
one after clustering (assuming there are 4 groups). In Fig. 4a,
using the linear SVM model for the original labels, we obtain
very high accuracy (86%), but the OSPS is low (2%). This
happens because of several sparse positive instances located in
the left bottom corner. However, after conducting a clustering
analysis, we essentially identify four clusters, as shown in Fig.
4b: Three of them are suspicious since they have at least one
positive data and one (centered in the upper left part) is non-
suspicious. We can then re-label the data as suspicious/non-
suspicious: The original 25 positives remained suspicious; 46
out of the 75 negative instances now become suspicious; while
only 29 negatives in the upper left cluster remained non-
suspicious. Based on the new labels the classifier is capable of
obtaining a completely different hyperplane which improves
the OSPS to 26%.

V. EXPERIMENTS

A. Dataset Description

Our experiments are performed on the breast cancer
dataset, which is a public medical image classification dataset1
containing patient information. The dataset aims at breast can-
cer detection on mammogram provided by Siemens Medical
Solutions USA. The features are extracted from mammograms
for two different views (Mediolateral Oblique and Cranio-
Caudal, MLO and CC) of left/right breasts. It is a multi-
instance dataset since each patient contains a different number
of instances, and the evaluation focuses on the labels of the
patients (not the label of the instances). The dataset contains
a training set and a test set. The training set consists of 117
dimensions and 102,294 instances of 1712 patients, while the
test set contains 94,230 instances of 1602 patients.

B. Experimental Setup

The two proposed strategies, suspicion expansion and false-
positive tolerance, extend the power of single-instance classifi-
cation algorithms to handle the ranking task of a multi-instance
problem. Two classification toolkits are used in our experi-
ments: LIBLINEAR [15] and AdaBoost [13]. Both classifiers
can produce real-value outputs as the confidence of an instance
being positive. We can then use them to rank the instances and
produce the OSPS. The base learner we use with AdaBoost is
the classification and regression tree (CART). Note that the
parameters of the classifiers are tuned using log-scale grid
search to optimize OSPS. For each classifier we compare the
performance of four different settings, as shown below:

1http://www.sigkdd.org/kdd-cup-2008-breast-cancer

TABLE I. OSPS ON TEST SET

Classifier: LIBLINEAR OSPS
Original 12.95%
SIL approach 16.49%
FP tolerance method 20.63%
Suspicion expansion method 23.83%
Classifier: AdaBoost OSPS
Original 11.68%
SIL approach 8.88%
FP tolerance method 30.77%
Suspicion expansion method 22.70%
Multi-instance Learning OSPS
Diverse Density 7.14%
EM-DD 10.75%

1) Original classifiers: Conventional classifiers without
any modification except parameter tuning. These are
treated as the baseline.

2) Single instance learning (SIL) for multi-instance
tasks: The SIL approach assigns the label of the
patient to all its instances. This means that all in-
stances belonging to a positive patient are considered
as positive instances, and vice versa for negative ones.
This is a simple and typical solution of multi-instance
learning.

3) Suspicion expansion via cluster analysis: For the
suspicion expansion method, we apply K-Means as
the clustering algorithm.

4) False-positive tolerance assignments: We adjust the
cost function in AdaBoost to achieve FP tolerance.
For LIBLINEAR, we apply up-sampling on the orig-
inal dataset.

As the breast cancer dataset by nature is a multi-instance
problem, we also compare our strategies to two state-of-the-art
MIL algorithms (according to the experimental study in [16]):
Diverse Density (DD) [5] and EM-DD [6]. We exploited the
package MI-Ensemble2 [16]. In the training stage, the goal is
to find (1) an instance in the feature space that approaches the
underlying hidden concept point, and (2) the corresponding
feature weights. For DD, we randomly select 10 positive
instances in the training set as the starting points, and define the
concept point as the one that has the highest diverse density.
For EM-DD, the start point is assigned as a randomly selected
positive instance. In the test stage, for a test instance, we use
its minus weighted L2 distance to the concept point as the
confidence score of this instance being positive. Analogously,
these scores can then be used to produce OSPS.

C. Results

In accordance with the evaluation method used in many
CAD systems, we compare the OSPS in patient level among
different strategies. The patients are ranked based on the
maximum score of their instances. Evaluation is conducted on
the test set. The OSPS for each method on the breast cancer
dataset is shown in Table I.

The result shows that for the non-linear classifier Ad-
aBoost, SIL performs even worse than a normal classifier in
terms of OSPS. As discussed above, this is mainly because
assigning NP as positives confuses the classifier, which in turn
hurts its capability to identify the true positive data. Both of

2The source code of the package MI-Ensemble is available at http://lamda.
nju.edu.cn/code MIL-Ensemble.ashx



our methods lead to decent improvement for linear SVM and
a significant improvement for AdaBoost, Diverse Density and
EM-DD.

After analyzing the test set used in the experiment, we
found it has relatively inconsistent distribution compared with
the training set. It is known that when the test set has slightly
different distribution with the training set, as in the case
of the breast cancer dataset, a method that tends to overfit
cannot generalize well to predict the data in the test set. The
results show that, comparing to the competitors, our method
is more general and does not overfit the data as seriously.
We believe this is because our methods incorporate looser
constraints while trying to fit the data, through tolerating FP
or generalizing the definition of positives.

In summary, the best result come from the FP tolerance
method with AdaBoost, which reaches 30.77% in terms of
OSPS, outperforming the best baseline result (16.49%) by
14%, and the best MIL result (10.75%) by 20%.

VI. CONCLUSION

One important mission for a CAD system is to produce a
complete negative set with no positive instances. Radiologists
can then confidently ignore data in this set and focus on the
remaining data. The larger the complete negative set, the more
effort can be saved. We believe our study has made significant
progress on solving this problem, for three reasons.

First, we argue that instead of solving this problem once
and for all, we should decompose the problem into two sub-
tasks: The first is to produce a high-quality ranking order
that is capable of promoting the rank of the lowest-ranked
positive instance. The second is to determine a proper decision
threshold to obtain a complete negative set with acceptable
size. Under this framework, in the future, researchers can
replace the existing ordering and thresholding strategies with
better techniques to obtain better results.

Second, we propose an evaluation measure, optimal speci-
ficity under perfect sensitivity, suitable for medical data clas-
sification. We argue that optimizing this metric is equivalent
to optimizing the maximal amount of effort that can be saved
for radiologists. Another advantage of OSPS is that it allows
for comparison among hypothesized models, where models
potentially capable of producing larger true negative set, or
models insensitive to the noises on features, will be promoted.

Finally, we propose two strategies with different founda-
tions to improve OSPS: (1) The false positive tolerance method
is designed specifically for multi-instance learning problems,
based on assigning not-as-severe penalties to the misclassi-
fications of the negative instances for positive patients. (2)
The general-purpose suspicion expansion method propagates
positive labels to nearby suspicious instances, in order to avoid
the misclassification of any positive instance.

Experimental results show the two proposed approaches not
only improve OSPS significantly (as much as 1.63 times better
than a conventional classifier), but also avoid the potential
overfitting problem. Our methods are not overwhelmed by the
relatively inconsistent distribution between the training set and
the test set.

The evaluation criterion OSPS and related learning strate-
gies proposed in this work are not limited to medical data.
Generalized application to other scenarios where false neg-
atives imposed extremely high costs (e.g. cyber-attack or
intrusion detection, or detection of catastrophic failures of
public facilities) might be beneficial as well.

One main future work of us is to solve the second part of
the puzzle, which is to approach the ideal decision threshold
that produces perfect sensitivity while still being able to filter
significant amount of negative instances.
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