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Abstract. This research proposes a novel transfer learning algorithm, Noise-

Label Transfer Learning (NLTL), aiming at exploiting noisy (in terms of labels 

and features) training data to improve the learning quality. We exploit the in-

formation from both accurate and noisy data by transferring the features into 

common domain and adjust the weights of instances for learning. We experi-

ment on three University of California Irvine (UCI) datasets and one real-world 

dataset (Plurk) to evaluate the effectiveness of the model. 
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1 Introduction 

This paper tries to handle the situation where there is no sufficient expert-labelled, 

high quality data for training by exploiting low-quality data with imprecise features 

and noisy labels. We generalize the task as a classification with noisy data problem, 

which assumes both features and labels of some training data are noisy, similar to [1]. 

More specifically, we have two different domains of labeled training data. The first 

we call it the high-quality data domain, which contains data of high quality labels and 

fine-grained features. We assume it is costly to obtain such data, therefore only a 

small amount of it can be obtained. The other is called the low-quality data domain, 

which contains noisy data and coarse-grained features. Unlike high quality data, the 

volume of this data can be large. 

The example we use throughout this paper to describe our idea is the compulsive 

buyer prediction problem given transaction data from different online stores (e.g. 

Amazon, eBay, etc.). Let us assume the users’ transaction records from different 

online websites are obtained as our training data to train a model for compulsive buy-

er classification. As shown in Fig. 1, there are some common features for users across 

these stores, such as gender and month or birth. However, there are also features that 

are common across different stores but have different granularity due to different 

registration processes. For instance, age can be exact (e.g. 25 years old) or in a range 

(e.g. 20~30), and same situation applies to locale and job categories. 
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Fig. 1. An Example of Compulsive User Prediction. 

 

Assume we ask experts to annotate whether a person is a compulsive buyer based 

on the transaction and content information of a more fine-grained dataset from a par-

ticular store. This dataset is considered the high-quality data. For the data with coarse-

grained features, we can hire non-experts (e.g., through Mechanical Turk) or exploit 

some indicators such as shopping frequency and quantity to label data. Such data (we 

call it low-quality data) might not be as accurate and precise as the high-quality data, 

but can potentially boost the learning performance under the assumption that there is 

only few high-quality data available. Training a classifier using such data is non-

trivial because (1) the features/labels in the low-quality domain might not be pre-

cise/correct, and (2) the data distribution in the low-quality training domain and the 

testing domain might not be identical.  

In this paper, we propose a novel transfer learning algorithm, Noisy-Label Transfer 

Learning (NLTL). First, we identify the mapping function between features from 

different domains. Next, we learn the importance of instance based on the labels from 

the different domain of data. Finally, we exploit the learnt importance of instances to 

improve the prediction accuracy. To summarize, the main contributions of this paper 

are as follows: 

 We introduce a novel and practical classification task given noisy data. In this 

problem, only small amount of correctly labeled data along with large amount of 

roughly labeled data are available for training. 

 We propose a transfer learning approach to solve the above-mentioned problem, 

and provide a practical application scenario on sentiment diffusion prediction. 



 We experiment with three University of California Irvine (UCI) datasets and one 

real-world dataset (Plurk) and show that our algorithm significantly outperforms 

the state-of-the-art transfer learning and multi-label classification methods. 

2 Related work 

The concept of transfer learning lies in leveraging common knowledge from different 

tasks or different domains. In general, it can be divided into inductive and transduc-

tive transfer learning, based on the task and data [2]. 

TrAdaBoost [3] is an inductive instance transfer approach extended from Ada-

Boost. TrAdaBoost applies different weight-updating functions for instances in the 

target domain and in the source domain. Since the distribution in the target domain is 

more similar to that of the testing data, the incorrect predictions in the target domain 

generally are assigned higher weights, comparing to those in the source domain.  

Structural Correspondence Learning (SCL) [4] is a transductive transfer learning 

with feature-representation transfer approach. It defines features with similar behavior 

in both domains as pivot features and the rest as non-pivot features. Then it tries to 

identify the correlation mapping functions between these features. 

Our proposed algorithm belongs to transductive transfer learning, which applies 

both instance and feature-representation transfer. However, the most important differ-

ence is that we deal with items that have diverse labels in different domains. Those 

items are used to serve as a bridge to connect different domains. 

3 Methodology 

3.1 Problem Definition 

We start by formulating the problem. Suppose a high-quality domain dataset DH and 

N different low-quality domain dataset DLj
, where 1 ≤ j ≤ N, are given. We define 

high-quality domain data as DH = {(xH1
, yH1

), … , (xHnH
, yHnH

)} , where nH  is the 

number of instance in DH, xHi
∈ XH represent the features of an instance, and yHi

∈

YH is the corresponding label. Here we assume low-quality domain data can come 

from multiple sources, defined as DL = {DL1
, … , DLN

} and |DL| = nL. The low-quality 

domain data from each source can be presented as DL_j =

{(xL_j1
, yL_j1

), … , (xL_jnL_j
, yLnL_j

)} , where nL_j  is the number of instance in DL_j , 

xL_ji
∈ XL_j, and yL_ji

∈ YL_j. Moreover, we assume that instances in DH contain high 

quality labels and fine-grained features and those in DL have coarse-grained features 

and noisy labels. Note that in general we assume nH ≪ nL, as obtaining high quality 

data is more expensive and time-consuming. 



 
Fig. 2. Sketch Illustration for Instances 

 

 

 
Fig. 3. Algorithm Architecture 



 

Algo. 1. Noise-Label Transfer Learning (NLTL)  

 

We show a simple sketch illustration for the relationship between training instanc-

es in Fig. 2, where the red and blue areas denote the instances in high-quality and 

low-quality domains respectively. The dark areas represent instances belonging to 

both domains. However, the features that represent these instances might have differ-

ent granularity, and the labels in low-quality domain might be incorrect. Each in-

stance can belong to one of the four groups (as shown in Fig. 2), high-quality domain 

with low-quality mapping, high-quality domain without low-quality mapping, low-

quality domain with high-quality mapping, and low-quality domain without high-

quality mapping. Finally, the task to be solved is defined as given DHtrain
 and DLtrain

, 

learn an accurate classifier to predict DHtest
. 

 



3.2 Noise-Label Transfer Learning (NLTL) 

We propose NLTL, which is a transfer learning model to solve the above-mentioned 

problem. The overall architecture is shown in Fig. 3. The idea is to transfer infor-

mation from low-quality domain data to improve the prediction in high-quality do-

main which has insufficient training instances. Note that for each object, we may 

integrate corresponding instances from multiple low-quality data sources. NLTL first 

uses instances existing in both high-quality and low-quality domains as a bridge to 

identify the correlation between coarse-grained and fine-grained features. Then it 

learns the weight of instances from each domain to train a binary classifier to predict 

testing data in the high-quality domain. It should be noted that we perform feature 

transfer on both training and testing data, however, only training data are used to learn 

the weight of instances since testing data are not labeled. We define NLTL in Algo-

rithm 1. Feature transfer is performed using Structural Corresponding Learning (SCL) 

[4] (Step 1 to Step 4, see 3.3), and TrAdaBoost [3] is used to tune the weight of in-

stances (Step 5 to Step 12, see 3.4). 

3.3 Feature Transferring 

We want to handle the problem that the quality of features in low-quality domain is 

not as good as that in high-quality domain in terms of granularity. The goal is to iden-

tify a mapping function to project the features in the low quality domain to the high 

quality domain, by changing their distributions. 

We propose a method based on Structural Corresponding Learning (SCL) [4]. The 

intuition is to identify the correspondences among the features from different domains 

by modeling their correlation with features that have similar distribution in both do-

mains. To transfer the low-quality data into high-quality domain, for each feature in 

the low-quality domain, it is necessary to find its mapping to the more fine-grained 

high-quality domain. Here we propose to create a prediction model to perform the 

mapping. That is, for each feature in the high-quality domain, we create a classifica-

tion or regression model, for categorical and numerical features respectively, to pre-

dict its value given each corresponding instance in the low-quality domain. Assume 

an user u appears in both high-quality domain (its feature vector, denoted as 𝑢𝑠1, is 

{“Male”, “22”, “May”, “Taipei”, “Software Engineer”} ) and low-quality domain 

(feature vector denoted as 𝑢𝑠2 , which is {“Male”, “20 to 30”, “May”, “Taiwan”, “En-

gineer”}). 𝑢𝑠1 will of course be used as the training example to learn a compulsive 

user model, but we want to use 𝑢𝑠2 as well to enlarge the training set. Therefore, for 

each feature in the high-quality domain, we create a classifier that maps 𝑢𝑠2 to a cor-

responding value. In our example, we will build 4 classifiers and 1 regressor (for 

‘age’ feature), each of which takes an instance in 𝑢𝑠2 as input and output the possible 

assignment for the fine-grained feature. 

We denote these models as mapping function 𝜃, and it models the correlation be-

tween the features from different domain. In the experiment we use linear regression 

to learn 𝜃.  

𝜃 = (𝑋𝑆𝐿
𝑇 ∙ 𝑋𝑆𝐿)−1 ∙ 𝑋𝑆𝐿

𝑇 ∙ 𝑋𝑆𝐻 



where 𝑋𝑆𝐿  denotes features with instances in the low-quality domain that have 

high-quality mapping, and 𝑋𝑆𝐻  denotes features with instances in the high-quality 

domain that have low-quality mapping. 

Finally, we create a new feature space, which is twice in length comparing to the 

original feature space, for the processed instances. The instances are processed in 

three different ways. 1) For instances appear in both low-quality and high-quality 

domains, we concatenate the corresponding low-quality features with the original 

high-quality features. 2) For instances that only appear in high-quality domains, we 

simply copy the features and concatenate them to the end. 3) For instances that only 

appear in low-quality domain, we first generate the corresponding mapping to the 

high-quality domain, and then treat it like case 2. 

3.4 Instance Weight Tuning 

We are now ready to exploit the instances from both domains to train a classifier. 

However, it is apparent that the instances from high-quality and low-quality domains 

should not be treated equally during training. Here we propose a method to adjust the 

initial weights on each instance according to the following heuristics. 

 Instances in the high-quality domain should have higher weights. Furthermore, if 

the corresponding low-quality instances also contain identical label, the weight is 

even higher. 

 For instances in the low-quality domain that can be mapped to high-quality domain 

with the same labels, their weights should be greater than the weights of the in-

stances that cannot be mapped to high-quality domain.  

We order the instances based on the above heuristics, and assign initial weight as 

Wi = Wi−1 × α where α<1, Wi and Wi−1 stands for instances of order i and i-1.  Wi 

represents the set of weights to the instances. After setting initial instance weights, we 

apply TrAdaBoost [3] to tune the weights iteratively. The intuition of TrAdaBoost is 

to use different weight-updating function for different domain data. More specifically, 

we increase the weight more if the instance is predicted incorrectly in high quality 

domain. The assumption of this setting is that the data in low-quality domain does not 

have as high confidence score as those in high-quality domain. The formulas of 

TrAdaBoost to update the instance weights are as follows: 

𝑤𝑖
𝑡+1 = {

𝑤𝑖
𝑡𝛽𝑡

−|ℎ𝑡(𝑥𝑖)−𝑦𝑖|
, in high-quality domain

𝑤𝑖
𝑡𝛽|ℎ𝑡(𝑥𝑖)−𝑦𝑖|, in low-quality domain

  

where β and βt are multiplier calculated by error rates and traditional AdaBoost. 

 

  



 

 CTG Magic Wine 

High-Quality 88.35% 75.49% 69.95% 

Low-Quality_1 85.58% 76.91% 73.89% 

Low-Quality_2 85.14% 58.81% 66.28% 

All Instance 89.20% 78.22% 75.37% 

TrAdaBoost 89.56% 81.28% 76.52% 

SCL 86.58% 76.04% 69.42% 

Label-Powerset 85.77% 78.82% 71.29% 

NLTL 91.83% 81.71% 76.63% 

Table 1. Experiment Results in AUC 

4 Experiments 

4.1 Dataset and Settings 

We test our model on three datasets (CTG, Magic, and Wine) collected from UCI 

Machine Learning Repository [5]. We preprocess the labels to binary classes in our 

experiment. The three datasets contain 2126, 19020, and 6497 instances and 21, 10, 

and 11 features, respectively. For each dataset, we use original features and labels as 

high-quality domain data. To generate noisy low-quality domain data, we randomly 

pick c% of instances, flip their labels, and modify their features to be coarser. For 

example, for a numerical feature, we quantize its values into K groups, and assign the 

medium value for each group as the new feature value. In our experiment, we gener-

ate two low-quality domain datasets with (c, K) = (20, 5) and (c, K) = (50, 10). To 

reflect the fact that correctly labeled data are rare, we randomly choose 10% of high-

quality domain data for training and keep the remaining for testing. We use 4-fold 

cross validation for evaluation. 

We choose area under ROC curve (AUC) as the evaluation metric because of data 

imbalance. We rank the testing instances base on the predicted positive probability, 

and then compare it to the ground truths to produce AUC. For weight tuning, we 

manually assign the largest weight to 10 and α to 0.7. That is, the second largest 

weight is 7, third is 4.9, and so on. We compare our model with three types of algo-

rithms, traditional non-transfer learning (High-Quality, Low-Quality_1, Low-

Quality_2 and All Instance), transfer learning (TrAdaBoost and SCL), and multi-label 

(Label-Powerset) algorithms. 

4.2 Results 

We show the results comparing other baselines to NLTL in Table 1. The best results 

are marked in bold. 



 

Fig. 4. Framework of Sentiment Diffusion Prediction with NLTL 

The results show that NLTL outperforms the competitors for all dataset, especially 

for CTG. It also shows that by exploiting low-quality domain data, NLTL is useful 

and can improve the result using only high-quality domain data (denoted as High-

Quality in Table 1) up to 6.7% in terms of AUC. On the other hand, NLTL combines 

the advantages of TrAdaBoost and SCL. It considers not only features but also labels 

to the same items together. The improvement of NLTL over baseline algorithms 

shows that both features and labels information from low-quality domain data are 

important and useful. 

 

5 Sentiment diffusion prediction on novel topics 

In this section, we use NLTL to handle a novel real-world sentiment diffusion predic-

tion problem. Sentiment prediction aims at predicting whether an opinion is positive 

or negative [6]. However, in this application, we are interested in predicting the diffu-

sion of sentiment through social networks. In other words, we emphasize on senti-

ment “diffused” rather than sentiment “expressed” by a user. Analyzing sentiment 

diffusion allows us to understand how people react to other people’s comments on 

micro-blog platforms. 

Traditional sentiment prediction uses a variety of textual or linguist information as 

features [6]. Such solution has a serious drawback as it is unable to handle new topics 

that appear rarely. On the other hand, Kuo et al. [7] propose a method to predict the 



diffusion on novel topics utilizing latent and social features. Rather than predicting 

the existence of diffusion, we extend [7] to predict the diffusion of sentiments. 

Our framework applies NLTL as shown in Fig. 4. We first provide high-quality 

and low-quality labels using three methods, and then the features are generated as 

described before. Finally, we learn a classifier using both high-quality and low-quality 

domain data, and show that low-quality domain data is useful in improving the per-

formance. 

5.1 Labeling  

We provide high-quality labels (manual labeling) as well as low-quality labels (using 

emoticon and sentiment dictionary). The low-quality labeling methods are automatic 

and low-cost but the result may contain noises. 

 Emoticon Labeling. We first manually classify the emoticons which are clearly 

positive or negative. Then, we use the emoticons to decide the label (positive or 

negative) of the diffusions. 

 Manual Labeling. Human annotators are asked to label whether the content is 

positive, negative, or unknown. 

 Sentiment Dictionary Labeling. We construct a sentiment dictionary and label 

the diffusions based on the voting of the words in the sentiment dictionary. 

5.2 Dataset 

We first identify 100 top discussion topics from Plurk micro-blog site [8]. We collect 

the messages and responses from users who discuss about those topics in the period 

from 01/2011 to 05/2011. A diffusion of sentiment is denoted as (𝑥, 𝑦, 𝑡, 𝑠), which 

means user 𝑥  posts a message of topic 𝑡 , and user 𝑦 responses 𝑥  with sentiment 𝑠 

(positive or negative, labeled by different methods introduced in 5.1). This dataset 

contains 699,985 objects, thus is not practical to label them all manually. We choose 

17% of the objects to be labeled manually, while other objects are labeled using emot-

icon and sentiment dictionary. Finally, we obtain 82,277 diffusions from manual la-

beling, 117,876 diffusions from emoticon labeling, and 396,370 diffusions from sen-

timent dictionary labeling. 

5.3 Feature Generation 

To perform sentiment prediction, we design the following features. We divide the 

proposed features into four types as follows. 

 Link Sentiment Information. The link sentiment information describes the ten-

dency of each link in the network to be positive or negative for a given topic. For a 

link, link sentiment score (𝐿𝑆) is calculated by comparing the number of times that 

a positive or negative content is diffused. That is, we increase LS by one for each 

positive diffusion and decrease LS by one for each negative diffusion.  



 All Features Best Features 

High-Quality 62.90% 65.04% 

Low-Quality_1 61.73% 65.36% 

Low-Quality_2 63.47% 66.26% 

All Instance 62.13% 64.25% 

SCL 61.65% 62.33% 

TrAdaBoost 61.84% 65.27% 

Label-Powerset 59.58% 62.59% 

NLTL 64.21% 68.30% 

Table 2. Sentiment Diffusion Prediction results

 

 User Sentiment Information. Similar to link sentiment information, user senti-

ment information models the tendency of each user to reply to positive/negative 

posts. For a user, we generate the user sentiment score according to sender aspect 

(𝑈𝑆𝑆), receiver aspect (𝑈𝑆𝑅), and sender-receiver aspect (𝑈𝑆𝑆𝑅). More specifical-

ly, for 𝑈𝑆𝑆 we only consider the number of positive and negative posts sent by us-

er, and ignore those received by this user. On the other hand, 𝑈𝑆𝑅 only considers 

the number of positive and negative posts received by user. 𝑈𝑆𝑆𝑅 considers both 

aspects.  

 Topic Information. We follow the same approach described in [7] to extract latent 

topic signature (𝑇𝐺) features. Besides TG, we also extract topic similarity (TS) fea-

tures weighted by link sentiment information and user sentiment information. 

There are four features generated based on topic similarity, topic similarity for link 

sentiment (𝑇𝑆𝐿𝑆), topic similarity for user sentiment with sender aspect (𝑇𝑆𝑈𝑆𝑆), 

topic similarity for user sentiment with receiver aspect (𝑇𝑆𝑈𝑆𝑅), and topic similar-

ity for user sentiment with sender-receiver aspects (𝑇𝑆𝑈𝑆𝑆𝑅). 

 Global Information. We extract global social features such as in-degree (ID), out-

degree (OD), and total-degree (TD) from social network. Note that these three fea-

tures remain the same for different labeling methods; thus, we utilize them as pivot 

features in SCL and NLTL algorithms. 

5.4 Results 

The experiment setting of sentiment diffusion prediction task is the same as that de-

scribed in Section 4.  We compare NLTL that utilizes three sources to the competitors 

as described in 4.1. We run the experiment on two set of feature combinations: using 

all features and the best feature combination chosen using wrapper-based forward 

selection method [9]. The result shows that NLTL is able to integrate the information 

of features and labels to outperform the competitors by a large margin. 

 



6 Conclusion 

In this paper, we propose a novel prediction problem together with a transfer learning 

algorithm to solve it. We serve the objects which have multiple labels as a bridge and 

transfer knowledge from different data domains. We update instance weights and 

transfer features by comparing labels and features in high-quality domain and low-

quality domain simultaneously. The experiment result shows NLTL consistently out-

performs the competitors. Furthermore, we propose a real-world task of sentiment 

diffusion prediction that can benefit from our framework. Our experiments demon-

strate how such problem can be formulated into a noisy-label prediction task that can 

be solved using NLTL. 
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