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Abstract—Data Sparsity incurs serious concern in collabo-
rative filtering (CF). This issue is especially critical for newly
launched CF applications where observed ratings are too scarce
to learn a good model to predict missing values. There could
be, however, information from other related domains which
are with relatively denser data that can be utilized. This pa-
per proposes a transfer-learning based approach that exploits
probabilistic matrix factorization model trained with variational
expectation-maximization (VEM) to resolve data sparsity by
using information from multiple auxiliary domains. We conduct
experiments on several data combination and report significant
improvements over state-of-the-art transfer-based models for
collaborative filtering. The results also show that our framework
is the only solution that can achieve acceptable performance when
each user has only one single rating. The code of our model is
available at 1.

I. INTRODUCTION

Collaborative Filtering (CF) [8] is a popular technique
used to design a recommendation engine where the goal is
to predict missing values in an incomplete rating matrix. One
major limitation of CF is that it cannot produce satisfactory
results when the observed ratings are considerably fewer than
the total entries of the matrix, which is generally regarded
as data sparsity or cold-start phenomenon. Such issue happens
frequently for newly launched online services where users have
just begun to visit the site with insufficient amount of data
collected. Data sparsity seriously degrades the performance of
prediction due to over-fitting. It is a serious concern in practice
as generally new services demand an reliable system more
eagerly than mature ones.

Fortunately, in practice there are related data that one can
take advantage of from other domains to enhance a cold-
start CF model. They are usually called the auxiliary data,
and many transfer learning algorithms have been proposed to
leverage them from various perspectives [3], [4], [6], [7], [12],
[13]. For example, rating data from a movie recommendation
system may be helpful to alleviate the sparsity problem in
a book recommendation system if we assume certain, most
likely latent, correspondences are shared between these two
user-item matrices. In [3] and [4], authors assume that cluster-
level patterns of matrices are shared across domains, so they

1https://github.com/Kublai-Jing/TPCF

construct clusters of rating patterns as bridges to transfer the
knowledge.

Another type of auxiliary data that exists frequently in
real recommendation systems are users’ implicit feedbacks,
usually encoded in binary (i.e. click or unclick). It is almost
always the case that users have clicked or browsed a lot
more items than they have actually rated. Such click records
show users’ preferences of items to some degree, and they
are useful if we could extract and transfer the knowledge
from such ’heterogeneous’ feedbacks to enhance the system.
Likewise, item-side auxiliary data existing in the form of
implicit feedbacks are relatively easy to obtain in practice. For
instance, favored/disfavored is provided in Movieplot 2 and
love/ban is provided in Last.fm 3 for users to express their
preferences in a way that would not degrade users’ browsing
experiences and satisfaction. In [6], the authors show how a tri-
factorization model that first learns latent factors from auxiliary
domains with binary feedbacks, then transfers the latent factors
to the target domain can boost the performance in the target
domain.

We roughly categorize current state-of-the-art transfer-
based methods for handling sparsity issue in CF into four
categories by asking two questions. First, do we know ex-
plicitly the correspondences of users and/or items between the
auxiliary and target domains? Second, do auxiliary data come
from a homogeneous source (e.g. ratings) or heterogeneous
source (e.g. binary like/dislike values)? Table 1 shows the state-
of-the-art transferring methods that approach the problem from
these two perspectives.

Unfortunately, methods proposed to handle one type of
transfer scenario usually cannot handle the others. For exam-
ple, to construct cluster-level rating patterns as a knowledge
bridge, the auxiliary data needs to be homogeneous, meaning
that they should have the same rating scale as in the target
domain. Heterogeneous values are not suitable for clustering
rating values as described in [6]. On the other hand, methods
that use binary heterogeneous implicit feedbacks require that
either user or item variables share the same latent factors
across domains. Therefore, without knowing explicitly the
correspondences of users and/or items between target and
auxiliary domains, those methods cannot be exploited.

2http://www.moviepilot.de/
3http://www.last.fm/
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homogeneous heterogeneous
U and/or I TCF [7],CST [6]
None CBT [3] RMGM [4]

TABLE I: Current state-of-the-art methods on transfer-based
models for sparsity reduction in collaborative filtering. U
and/or I denotes whether the correspondences of users and/or
items are given in the auxiliary domains. Homo/Hetero-
geneous represent auxiliary data type.

The question we ask throughout this paper is: can we simul-
taneously transfer data from multiple domains with different
properties (i.e. data that falls into different cells in Table 1)?
The goal of this paper is to design a more general model not
only outperforming each existing work individually, but also
enjoying further performance leap by allowing the transferring
of multiple types of knowledge to the target domain.

We present a unified probabilistic framework named Trans-
fer Probabilistic Collective Factorization (TPCF) aiming at
bringing different information from multiple CF tasks into the
target domain to alleviate the sparsity problem. Specifically,
we focus on three auxiliary CF data. First type is data with
aligned users but not aligned items that have heterogeneous
implicit feedbacks, existing in binary form. Second type is
data with aligned items but not aligned users, also existing
in binary form. Third type is homogeneous data that have
the same rating scale as the target domain, but without the
knowledge of the correspondences of users and items between
target and auxiliary domains. We note that our model is general
and extendable to other cases that appear in each cell of Table
1 (such as the situation considered in [7]). Without loss of
generality, in this paper we will focus on the three cases for
transferring, because these cases happen more frequently in
practice.

The main contributions of this paper are as follows:

• We present TPCF, a general probabilistic model for
transfer learning in collaborative filtering by using
data from multiple domains with different statistical
properties. To our knowledge, this is the first unified
transfer learning model for CF that considers all the
above-mentioned scenarios.

• One technical challenge in the problem is how to
simultaneously transfer data from multiple domains
and tackle both binary and rating values well. We
present a learning schema based on variational EM
algorithm to solve this issue within the probabilistic
framework.

• The experiments show our model not only outperforms
the state-of-the-art CF-based transfer learning models
before unifying all the auxiliary sources together but
also enjoys another level of performance boosting
when bringing all information into the target domain.
The results also show that our model can achieve
reasonable outcome when there are as few as only
one single rating for each user.

II. RELATED WORK

Transfer learning algorithms have been proved to be effec-
tive in solving CF problems. Knowledge transferring is carried
out by assuming there is some shared latent structure present
across different domains. This section briefly introduces some
popular models.

Collective Matrix Factorization (CMF) uses common latent
features to jointly factorize multiple matrices with correspon-
dences between rows and columns Usually, CMF is trained by
minimizing some pre-specified Bregman divergence that does
not have to be squared L2 loss, plus regularization terms to
prevent over-fitting [13]. However, it was shown that in such
SVD style model, complexity control of regularization parame-
ters is a challenging problem that needs to be carefully tuned.
Probabilistic models, on the other hand, have the advantage
of using an adaptive prior for automatic complexity control
[9]. Rating Matrix Generative Model (RMGM) takes cluster-
level information to be transferred from auxiliary domains by
assuming that different domains share the same cluster-level
rating patterns [4]. RMGM can be viewed as an extension of
mixture model that simultaneously clusters users and items
to model rating patterns across domains. The drawback of
RMGM comes from its inability to handle binary source
data for transferring. Also, RMGM maximizes a self-defined
likelihood objective which does not always penalize bad pre-
dictions. Coordinate System Transfer (CST) is a matrix tri-
factorization approach that assumes latent features are similar
but not identical across domains and allows the user to control
the closeness of the latent features between different domains
[6]. It first learns users’ and items’ factors from the auxiliary
domains, then adapts them to the target domain.

III. PROBLEM FORMULATION AND NOTATIONS

We now describe the scenario we consider in this paper
formally. As mentioned before, our model is very flexible
and can be applied to problems in any quadrant of Table 1.
However, for clarity purpose, from this point on we only focus
on three transferring tasks with three types of auxiliary data.
There are four different domains represented as matrices. One
is the target matrix denoted as R which has sparse rating
values and represents the domain we want to predict missing
values in. There are two auxiliary matrices with heterogeneous
binary feedback, denoted as RU and RI, representing domains
with only aligned users (RU) and only aligned items (RI)
respectively. We assume that the two auxiliary matrices have
binary values 0/1 indicating users’ implicit feedback, though
it would be clear later on that our framework can be easily
adjusted to handle numerical values. Users in RU are aligned
to users in R, and items in RI are aligned to items in R.
Also, there is another auxiliary domain, denoted as RO, that
represents another different but related CF task with neither
users nor items aligned. To be more precise, we assume that
rating values in RO have the same scale as R, but items and
users in RO are different to those in R. An illustration of the
scenario we consider is shown in Figure 1.

For simplicity, the number of users and items in R,RU

and RI is denoted as N and M respectively. The number of
users and items in RO is denoted as L and S. Moreover, we
define a mask function Yab(d) which returns 1 if cell (a,b)



Fig. 1: Illustration of the scenario considered in this paper:
users in R are aligned to users in RU; items in R are
aligned to items in RI; we have no prior knowledge about
the correspondences of users and items in RO.

is observed in domain d, or 0 otherwise. In our setting, there
are four domains, hence d can take on values {T,U, I,O}
where T denotes the target domain, and U, I,O denote the
three auxiliary domains.

Our problem then can be formulated as
follows: given a target rating matrix R ∈
{1, 2, 3, 4, 5}N×M � Y∗∗(T) and three auxiliary matrices
RU ∈ {0, 1}N×M �Y∗∗(U), RI ∈ {0, 1}N×M �Y∗∗(I)
and RO ∈ {1,2,3,4,5}L×S �Y∗∗(O), the goal is
to utilize auxiliary matrices to boost missing rating
prediction performance for R. Here � means element-
wise multiplication. Note that we do not assume all three
matrices RU,RI and RO need to exist. Our model can be
conducted even when only one type of data is available.

IV. TRANSFER PROBABILISTIC COLLECTIVE
FACTORIZATION

We now present TPCF, which falls into the category of
an extension of the PMF family [9], in which we want to
learn a joint probabilistic model using all four domains that
can overcome the limitations of previous models mentioned in
Section 2.

A. The Model

The graphical illustration of TPCF is shown in Fig 2. The
intuition is that latent user factors and item factors should
capture both rating and binary feedback distributions well.
Moreover, no matter what domain we are in, we always
assume that users are coming from the same distribution; same
assumption applies for items. This assumption may seem to be
too strong at first glance, but since we are working in a low-
dimensional latent space, high-level shared concept such as
genres of items could emerge.

The distribution of the homogeneous ratings R,RO are

Fig. 2: The graphical representation of TPCF. Colored nodes
refer to variables that are shared. ξ is an auxiliary variable
for optimization that will be detailed in Section 4.2. Here we
replicate prior to avoid interleaved edges to make the picture
uncluttered.

assumed to be Gaussian:
N∏
i=1

M∏
j=1

N (Rij|uT
i vj, σ

2)Yij(T)

L∏
l=1

S∏
s=1

N (RO
ls |uT

l vs, ω
2)Yls(O)

and the distribution of the heterogeneous binary values is
modeled by Bernoulli distribution:
N∏
i=1

M∏
j=1

Bern(RU
ij |σ(uT

i vj))
Yij(U)Bern(RI

ij|σ(uT
i vj))

Yij(I)

where U = {ui,i=1:N,ul,l=1:L} is the set of param-
eters representing the preferences of the users, and V =
{vj,j=1:M,vs,l=1:S} is the set of parameters representing the
implicit attributes of the items. Note that from the figure, the
parameters ui,vj in domain R,RU and RI are different from
ul,vs in domain RO, yet we do not distinguish them by
defining different notations in order to make the equation more
succinct. The distinction is implicitly embedded in domain
variables T,U, I and O. We then assume that there is a
single prior distribution for all users’ parameters, and there
is a single prior distribution for all items’ parameters that are
both Gaussian. The whole generative process is as follows:

1) Domain R,RU,RI :
a) For each user i, generate ui ∼ N (mu,Σu)
b) For each item j, generate vj ∼ N (mv,Σv)
c) For each cell (i, j) in R, generate Rij ∼

N (uT
i vj, σ

2)
d) For each cell (i, j) in RU, generate RU

ij ∼
Bern(σ(uT

i vj))



e) For each cell (i, j) in RI, generate RI
ij ∼

Bern(σ(uT
i vj))

2) Domain RO :

a) For each user l, generate ul ∼ N (mu,Σu)
b) For each item s, generate vs ∼ N (mv,Σv)
c) For each cell (l, s) in RO, generate

RO
ls ∼ N (uT

l vs, ω
2),

where Bern(σ(x)) denotes the Bernoulli distribution with
mean given by σ(x) which is the sigmoid function: σ(x) =

1
1+exp(−x) . Note that the information of which user in RU

corresponds to which user in R and which item in RI

corresponds to which item in R are known. This makes
the algorithms easier to perform knowledge transfer because
the correspondence information tells us the preference of
each individual user, even though this preference statistics are
heterogeneous. For instance, in a movie rental application,
user i has only a few ratings in R, but we observe that
he/she has clicked on lots of action movies about in RU.
Then we can make a good guess about this user’s preference.
Similarly, movie j has only received a few ratings in R, but
we observe that this movie received a lot of clicks in RI.
Then it might be reasonable to believe that this movie is
a popular movie and will receive mostly positive ratings in
R. This correspondence/alignment information allows us to
identify user’s behaviors more clearly, and is the key to the
success of many algorithms.

However, in RO we do not have any correspondence
information. In fact, we do not even assume that there is
overlap of users/items between RO and the other three do-
mains. Even though there may exist some overlap between RO

and (R,RU,RI), we do not assume such correspondence is
available due to privacy or overhead concerns. For instance,
RO and R might be vendors that sell different products,
and both companies have the obligation not to disclose the
identities of its customers. This makes it harder to transfer
knowledge because we cannot identify and match individual
user from different domains easily.

Our basic assumption is that, in latent space of lower
dimension, users’ preferences and items’ attributes, are some-
what similar across domains and come from the same prior
distribution. This is different from those methods that consider
cluster-level ratings as a bridge for knowledge transferring,
as they assume the explicit rating patterns to be similar.
We hypothesize that as rating patterns differ across domains,
clustered patterns from domain A may not be beneficial to
domain B. However, down to a lower dimensional latent space,
we may have a better chance to capture the shared information
to improve the model performance.

Back to the model itself, we write down the (marginal)

log-likelihood function of our probabilistic model as follows:

logP (R,RU,RI,RO; Θ)

= logP (R,RU,RI; Θ) + logP (RO; Θ)

= log

[∫
u1:N

∫
v1:M

N∏
i=1

N (ui; mu,Σu)

M∏
j=1

N (vj; mv,Σv)

N∏
i=1

M∏
j=1

N (Rij; u
T
i vj, σ

2)Yij(T)

[
exp(uT

i vjR
U
ij )σ(−uT

i vj)
]Yij(U)

[
exp(uT

i vjR
I
ij)σ(−uT

i vj)
]Yij(I)

]

+ log

∫
u1:L

∫
v1:S

L∏
l=1

N (ul; mu,Σu)

S∏
s=1

N (vs; mv,Σv)

L∏
l=1

S∏
s=1

N (RO
ls ; uT

l vs, ω
2)Yls(O), (1)

where Θ = {mu,Σu,mv,Σv, σ
2, ω2} is a set of model

parameters, and we use the equivalence: σ(x)t(1−σ(x))1−t =
exp(xt)σ(−x) for the sigmoid function. Recall that we have
defined Yab(d) = 1 if Yab is a non-missing entry in domain
d to indicate which domain we are referring to.

B. Learning

The parameters set Θ which contains the means and co-
variances of the Gaussian prior for users and items needs to be
learned such that Equation 1 is maximized. This optimization
problem is intractable due to the integration over all latent
variables u and v, hence we exploit the concept of variational
approximation to perform learning [5]. We first use Jensen’s
inequality to derive a lower bound on the log-likelihood,

logP (R,RU,RI; Θ) + logP (RO; Θ) ≥

EQ

[
logP (R,RU,RI,u1:N,v1:M; Θ)

]
+H(Q(u1:N,v1:M;ψ))

+ EQO

[
logP (RO,u1:L,v1:S; Θ)

]
+H(QO(u1:L,v1:S;ψO)),

(2)

where H is the entropy. We have separated out domains
(R,RU,RI) and RO for notational convenience. Q,QO are
the variational posterior distributions that are governed by
a set of variational parameters ψ,ψO respectively. The gap
of this bound to the true log-likelihood is the Kullback-
Leibler divergence between the approximate posterior and the
true posterior, and the bound is tight if and only if Q is
equal to the true posterior [1]. However, it is intractable to
do exact inference on true posterior; hence we use mean-
field variational distribution by assuming a fully factorized
posterior,

Q(u1:N,v1:M;ψ) =

N∏
i=1

N (ui;λui
, γui

)
M∏
j=1

N (vj;λvj
, γvj

)

Q(u1:L,v1:S;ψO) =

L∏
l=1

N (ul;λul
, γul

)

S∏
s=1

N (vs;λvs , γvs),

(3)



where λ is a set of means for variational Gaussian, and γ is a
set of covariances which are set to be diagonal. We now have
two types of parameters. First, a set of model parameters that
control the Gaussian prior,

Θ = {mu,mv,Σu,Σv, σ
2, ω2},

and two sets of variational parameters,

ψ = {λui=1:N
, λvj=1:M

, γui=1:N
, γvj=1:M

},
ψO = {λul=1:L

, λvs=1:S
, γul=1:L

, γvs=1:S
}.

The optimization can then be done using variational
expectation-maximization (VEM) [1]. In VE-step, we fix
model parameters and optimize the bound in Equation 2 w.r.t.
ψ and ψO to make the bound as tight as possible. In VM-step,
we fix variational parameters and optimize Equation 2 w.r.t.
model parameters Θ to raise the bound. One thing should be
mentioned is that this procedure guarantees to raise the bound
of the log-likelihood, but not the log-likelihood itself. However,
VEM has shown to work well in practice. The details of VEM
steps are described below.

Variational E-step: First we start with the VE-step of
learning to obtain the mean and covariance for each variational
Gaussian. Let qui

be a single variational Gaussian for user i
with mean λui

and (diagonal) covariance γui
, the optimal q∗ui

can be derived by using the general principle of mean-field
inference [14]:

log q∗ui
∝ EQ−qui

[
log p(R,RU,RI,u1:N,v1:M; Θ)

]
, (4)

Making use of the independence relations in the graphical
model and drop constants that are not dependent to qui

, we
obtain the following form for q∗ui

,

log q∗ui
= E−qui

[ M∑
j=1

Yij(T) logN (Rij; u
T
i vj)

]
+

αE−qui

[ M∑
j=1

Yij(U)
(
uT
i vjR

U
ij + log σ(−uT

i vj)
)]

+

αE−qui

[ M∑
j=1

Yij(I)
(
uT
i vjR

I
ij + log σ(−uT

i vj)
)]

(5)

where the expectation is taken w.r.t. other variational Gaus-
sians, −qui

. We have introduced a parameter α which is a
trade-off parameter that controls the ’mixing’ weight between
R and (RU,RI). In general, the bigger the α, the more we
rely on the information from RU and RI.

In Equation 5, the first term involves the integration of a
Gaussian and a bunch of independent ’log-Gaussian’ over all
items set, which can be done analytically,∫

v1:M

M∏
j=1

N (vj;λvj
, γvj

)

M∑
j=1

Yij(T) logN (Rij; u
T
i vj, σ

2)dv1:M

=

M∑
j=1

1

2σ2
(2Rijui

Tλvj
− uT

i (λvj
λTvj

+ γvj
)ui) + const,

where const denotes factors that are not dependent on ui.

The second and the third terms in Equation 5, however,
require integration of a Gaussian and a log-logistic function,∫

vj

N (vj;λvj
, γvj

) log σ(−uT
i vj)dvj

that are not analytically tractable. We hence introduce another
lower-bound on the log-logistic function by using first-order
Taylor’s approximation for convex functions [2],

log σ(−uT
i vj)≥ log(ξij)+(−uT

i vj − ξij
2

− φ(ξij)((u
T
i vj)

2 − ξij2)
)
,

(6)

where φ(x) = 1
2x

(
σ(x)− 1

2

)
. The cost of this approximation

is that we have introduced an additional set of variational
parameters ξij for each (user, item) pair in domains RU and
RI. With Equation 6, the integration of a Gaussian and the
bound w.r.t. vj can be derived analytically, as shown below.∫

vj

N (vj;λvj
, γvj

) log σ(−uT
i vj)dvj

=
(

log(ξij) +
−uT

i λvj
− ξij

2
− φ(ξij)(u

T
i (λvj

λTvj
+ γvj

)ui − ξ2ij)
)

To proceed, we have specified how to compute all three terms
in Equation 5 that are needed to derive optimal q∗ui

. The
parameters for qui

, i.e. mean λui
and covariance γui

, can then
be determined by observing the first order and second order
terms and ’complete the square’ for the Gaussian density. Also,
the optimal variational parameters ξij can be determined by
replacing log σ(−uT

i vj) in Equation 5 with the lower bound
in Equation 6 and taking the derivative w.r.t. ξij. The update
rules for variational parameters are shown as follows:

λui
=

[
Σ−1

u +

M∑
j=1

(λvj
λTvj

+ γvj
)

(
Yij(T) + αYij(U)ξij + αYij(I)ξij

)]−1

[
Σ−1

u mu +
M∑
j=1

λvj

(
Yij(T)Rij + αYij(U)(RU

ij −
1

2
) + αYij(I)(RI

ij −
1

2
)
)]

γui,dd =

[
Σ−1

u,dd +

M∑
j=1

(λ2vj,dd
+ γvj,dd)

(
Yij(T)

1

σ2
+αYij(U)2φ(ξij) + αYij(I)2φ(ξij)

)]−1

ξij = Yij(U)Tr
(

(λui
λTui

+ γui
)(λvj

λTvj
+ γvj

)
)

+

Yij(I)Tr
(

(λui
λTui

+ γui
)(λvj

λTvj
+ γvj

)
)
,

where γui,dd denotes the cell in dth row and dth column of
γui

. The update rules for λvj
and γvj

have the same form.
The VE-step then proceeds by alternately updating λ, γ and ξ
until convergence. Note that the update rules for domain RO

is exactly the same except that there is no ξ in RO because



the ratings in RO are homogeneous to the ratings in R and
hence are modeled by Gaussian distribution.

Variational M-step: Next we move on to the VM-step.
In VM-step we fix all three sets of variational parame-
ters that we have obtained from VE-step, and optimize the
bound in Equation 2 w.r.t. the model parameters Θ =
{mu,Σu,mv,Σv, σ

2, ω2}. This is done by taking derivatives
of Θ in Equation 2 where all expectations can be done in the
same way as what we have described in VE-step. Similar to
VE-step, we introduce the trade-off parameters β that controls
the mixing weights between (R,RU,RI) and RO to update
the parameters for prior distributions.

The optimal mean and covariance for Gaussian prior in
VM-step take the following forms,

mu =
1

N + βL

( N∑
i=1

λui
+ β

L∑
l=1

λul

)
mv =

1

M + βS

( M∑
j=1

λvj
+ β

S∑
s=1

λvs

)

Σu =
1

N + βL

[
N∑
i=1

(
γui

+ (λui
−mu)(λui

−mu)T
)

+

β

L∑
l=1

(
γul

+ (λul
−mu)(λul

−mu)T
)]

Σv =
1

M + βS

[
M∑
j=1

(
γvj

+ (λvj
−mv)(λvj

−mv)T
)

+

β

S∑
s=1

(
γvs + (λvs −mv)(λvs −mv)T

)]

σ2 =
1

A

N∑
i=1

M∑
j=1

Yij(T)
(
R2

ij + λTui
γvj

λui
+ λTvj

γui
λvj

− 2Rijλ
T
ui
λvj

+ (λTui
λvj

)2 + Tr(γui
γvj

)
)

ω2 =
1

W

L∑
l=1

S∑
s=1

Yls(O)
(
RO2

ls + λTul
γvsλul

+ λTvs
γul

λvs

− 2RO
lsλ

T
ul
λvs + (λTul

λvs)
2 + Tr(γul

γvs)
)

where A and W are the total number of observed ratings in
R and RO respectively.

The complete optimization algorithm then proceeds by
first initializing variational parameters, and alternating be-
tween VE-step and VM-step until some stopping criterion
is met. Usually the stopping criterion would be the relative
improvement on the bound of the log-likelihood. However,
evaluating that bound requires non-trivial computation; hence
in our experiments we set a fixed number for VE-step as well
as the whole VEM algorithm, but we stop when RMSE on
the validation set starts to increase. More details about the
experiments will be given in Section 5.

C. Prediction

To predict missing ratings in R, we find the optimal
Rij which maximizes the bound in Equation 2 by taking
the derivatives w.r.t. Rij for a given user i and item j. It
turns out that the prediction has exactly the same form as in
matrix factorization: R̂T

ij = λTui
λvj

, although the optimization
objective is very different.

D. Automatic Complexity Control

In standard matrix factorization model such as SVD, choos-
ing regularization parameters is critical to prevent over-fitting.
The usual way is to choose a fixed regularization value by
doing an exhaustive search in some pre-specified range using
a validation set. Such method is very time consuming as we
need to train multiple models in order to select the best one.
Also, past experiences showed that such parameters are quite
sensitive that using a regularizer that is too strong prevents the
model from learning meaningful things, while using a weak
regularizer causes the model to overfit [9].

In our model, the complexity is controlled automatically via
the shared Gaussian prior. If we fix the prior and do not do any
learning on that, we will go back to the same issue as how to
choose the mean and covariance of the prior. However, because
our prior is adaptive to the training data, we do not need to fix it
beforehand, instead we can learn it through training. Moreover,
since in many practical situations we have denser auxiliary
data, the prior parameters will automatically balance between
modeling the target data and auxiliary data that we do not need
to worry about complexity control in our model. Also, update
rules in variational EM are all closed forms with no need to
tune the learning rate or perform line search.

V. EXPERIMENTS

A. Data Sets and Evaluation Metrics

There are in total of four datasets used in our experiments,
namely, Netflix 4, Movielens 5, Book-Crossing 6 and Each-
Movie 7, that are all popular datasets for collaborative filtering.
The Netflix dataset contains about 108 integer rating values in
the range {1, 2, 3, 4, 5} given by about 7×104 users on around
1.7 × 104 movies. The Movielens dataset contains about 107

rating values 1-5, rated by about 7× 104 users on around 104

movies. Book-Crossing is a dataset for book recommendation
with about 2.8 × 105 users and 2.7 × 105 books. Finally,
EachMovie contains approximately 2.8× 106 ratings given by
7.2× 104 users on 1628 movies.

For EachMovie and Book-Crossing, we first normalize their
rating values to be in the range {1, 2, 3, 4, 5}. The evaluation
metrics used in this paper is Root Mean Square Error (RMSE),

RMSE =

√∑N
i

∑M
j (Rtest

ij − R̂test
ij )2 �Yij(T)

W
,

where W is the number of observed ratings in the testing set
Rtest and R̂ is the predicted ratings given by the algorithms.

4http://www.netflixprize.com/
5http://www.grouplens.org/node/73
6http://www.informatik.uni-freiburg.de/ cziegler/BX/
7http://www.cs.cmu.edu/ lebanon/IR-lab/data.html

http://www.netflixprize.com/
http://www.grouplens.org/node/73
http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.cs.cmu.edu/~lebanon/IR-lab/data.html


B. Implementation Details

For the implementation of TPCF, there are few tunable
parameters: α, β and k which is the rank of matrix factors.
Throughout our experiments, we keep k at 10 unless otherwise
specified. For parameter α, we perform a grid search in
{0.1, 0.3, 0.5, 1}, and for parameter β, {0.1, 0.5, 1, 3, 5} are
tried. More experiments on the effects of α and β will be
presented later.

For VEM optimization algorithm, the number of VE-steps
is set to 20, and the total number of iterations of VEM is set to
20 as well. For each iteration of VEM, we record the RMSE
on the validation set and we stop when this number starts to
increase. The final parameters for α and β were selected by
choosing the one that performs the best on the validation set
in terms of RMSE. Furthermore, we preprocessed the data on
R and RO by subtracting each rating with the mean of all
ratings. This step is necessary to achieve good results when
using Gaussian distribution to model rating values.

C. Compared Algorithms

We compare our model with three transfer learning algo-
rithms introduced in Section 2: Collective Matrix Factorization
with L2 regularization (CMF-L2) [13], Coordinate System
Transfer (CST) [6], and Rating-Matrix Generative Model
(RMGM) [4]. We have implemented CMF-L2 and CST in
MATLAB. For RMGM, the authors have provided example
code 8 and we modify it for the purpose of this paper.
Note that CMF-L2 and CST cannot use data in RO because
they require knowing explicitly the correspondences for either
users or items in order to transfer knowledge. Also, RMGM
cannot use data in RU and RI as it requires the matrix to
have homogeneous ratings. Nevertheless, we can still compare
our model with these algorithms assuming our model only
observes partial data used in the corresponding scenario.

In the following section, we will first show some analysis
of TPCF alone, and comparisons of previous state-of-the-art
will be detailed later.

D. Results

1) Learning Netflix with MovieLens: First, we take Netflix
and MovieLens datasets to conduct this part of the experiment.
Here the goal is to predict missing values in Netflix (target
domain) and MovieLens is only used to construct RO. In
order to evaluate the effectiveness of using auxiliary data, we
perform the following pre-processing steps:

1) Randomly extract a 4000 × 4000 dense rating ma-
trix X from Netflix data, and take a sub-matrix
X1:2000,1:2000 as the target matrix R.

2) Take a sub-matrix X1:2000,2001:4000 as the auxiliary
matrix RU with shared users. Clearly, RU and R
only share common users but not common items.

3) Take a sub-matrix X2001:4000,1:2000 as the auxiliary
matrix RI with shared items. Clearly, RI and R only
share common items but not common users.

4) Split the target matrix R into disjoint sets
Rtrain,Rval, and Rtest as training set, validation
set and testing set respectively.

8https://sites.google.com/site/libin82cn/

5) To simulate implicit user feedbacks, we pre-process
RU and RI by relabeling ratings in the range
{1, 2, 3} as 0 and ratings in the range {4, 5} as 1
[11] .

6) Finally, we randomly select 2000× 2000 dense sub-
matrix from Movielens data as RO to simulate what
happens when we have other CF task without making
any assumption on the correspondence of users/items
between (R,RU,RI) and RO.

We make our training data in target domain very scarce. The
sparsity levels for each of the matrices are listed in Table 2.
For training set Rtrain, we start from an extremely sparse
case with each user having only 1 rating, and gradually add
observed ratings.

Data Data Source Domain Form Sparsity
Rtrain Netflix target 1-5 ≤ 1.00%
Rval Netflix target 1-5 1.00%
Rtest Netflix target 1-5 3.48%
RU Netflix aux 0/1 6.00%
RI Netflix aux 0/1 6.00%
RO MovieLens aux 1-5 6.00%

TABLE II: Statistics of matrices considered in Netflix-
MovieLens task. The sparsity levels of RU,RI,RO are pur-
posely set to be identical so that we can make fair observation
about which type of auxiliary data is most useful.

For this part of the experiment, we focus on our method
alone. In particular, we want to know which auxiliary domain
contributes the most to the prediction improvement. Hence we
start from the single-task version of TPCF without using any
data other than R (i.e. VBMF [5], [10]), and gradually add
auxiliary information from RO,RU and RI to examine the
performance gain.

We run the tests with a set of Rtrain having various
levels of sparsity. We start with the case where each user in
Rtrain has rated only one item. Then we gradually increase the
number of ratings for each user. The result in terms of RMSE is
shown in Fig 3 where we denote |R|u as the number of ratings
that each user has provided in Rtrain. The trend is very clear

Fig. 3: RMSE on Netflix dataset with different types of
information from auxiliary domains and different |R|u, that
is, the number of observed ratings for each user in Rtrain.
The matrix RO is sampled from MovieLens dataset

that at the beginning, when |R|u is small, VBMF does poorly
because there is not enough information to learn the model. For

https://sites.google.com/site/libin82cn/


TPCF + O, i.e. using data from MovieLens to learn a better
prior distribution for users and items, the improvements are
significant when |R|u ≤ 5, albeit the amount of improvement
gradually decreases when |R|u ≥ 10. When we use RU or RI

alone, the RMSE reduces greatly as expected. When using both
RU and RI, a huge reduction in RMSE is further obtained.
Interestingly, even though much information from RU and
RI has already been brought into the model, there is still
some improvement when we include RO, which essentially
just affects the prior distribution. This result shows that the
parameters of prior are critical in having a good prediction
results, and our model can automatically learn the priors even
though users and items are not well-aligned.

2) Learning EachMovie with MovieLens: Second, similar
to the previous experiment, we take EachMovie and MovieLens
datasets and the goal is to predict missing values in EachMovie
(target domain). All preprocessing steps for this experiment is
the same as in Netflix-MovieLens experiment. The dimensions
of R,RU and RI are all 1000 × 800; and we sample
MovieLens randomly to select 1000 users and 800 items to
form RO. Statistics are shown in Table 3:

Data Data Source Domain Form Sparsity
Rtrain EachMovie target 1-5 ≤ 2.50%
Rval EachMovie target 1-5 1.25%
Rtest EachMovie target 1-5 4.73%
RU EachMovie aux 0/1 5.00%
RI EachMovie aux 0/1 5.00%
RO MovieLens aux 1-5 5.00%

TABLE III: Statistics of matrices considered in EachMovie-
MovieLens.

The experiment result is shown in Fig 4, and we observe
similar trends as in Netflix-MovieLens experiment.

Fig. 4: RMSE on EachMovie dataset with different types of
information from auxiliary domains and different |R|u. The
matrix RO is sampled from MovieLens dataset.

3) Comparison with Related Algorithms: In this part of
experiment, we compare TPCF with several algorithms to
show its effectiveness on Netflix-MovieLens and EachMovie-
MovieLens tasks with all preprocessing steps being the same
as described in last two subsections. We compare against
methods introduced in Section 5.3, i.e. CMF-L2, CST, and
RMGM. CST is proven to be more powerful than CMF-
L2 in the original paper because CST is a tri-factorization

method [6], hence we consider CST as the state-of-the-art
benchmark model in the scenario where we have RU and RI

at hand. RMGM, on the other hand is the state-of-the-art cross-
domain learning algorithm considering situation that there are
no correspondence between users/items in the target domain
and auxiliary domains. All parameters in these three models
are also selected using the validation set.

We report the results with latent dimension k = {10, 50}
shown in Table 4 and 5. Here the experiments are repeated five
times with random initialization of the parameters. Comparing
TPCF+O to RMGM, using exactly the same data for both
models, our model outperforms RMGM with a big margin.
Also, comparing TPCF+U+I to CMF-L2 and CST with the
same set of data, our model shows significant improvements
over the other methods for all the chosen sparsity levels.
Moreover, as mentioned before, our probabilistic model can
effectively ensemble all three sources of auxiliary data, shown
as TPCF+U+I+O, to achieve further improvement.

Fig. 5: RMSE on Netflix dataset with TPCF. Top: varying
value of α; Bottom: varying value of β.

4) The Effects of α and β: Here we test how changes
in α and β affect the performance. α is the mixing weight
that controls relative importance of domains R and (RU,RI),
whereas β is the trade-off parameter between (R,RU,RI) and
RO. To reveal the effect of choosing the right α and β, we fix
the value of one of them and vary the other to see the change
in performance. We show the plots for Netflix-MovieLens and
EachMovie-MovieLens tasks in Fig 5 and 6.

5) Learning Books from Movies: Previous experiments are
conducted on domains with the same kind of items (movies).
It seems reasonable to assume that we can place the same prior
distribution over the latent space for items because they indeed
belong to the same class of items. In this part, we take Book-
Crossing as target matrix R and Netflix as auxiliary matrix RO



Netflix-MovieLens
k = 10 |R|u = 1 |R|u = 5 |R|u = 10 |R|u = 15 |R|u = 20
RMGM 1.0435±0.0013 1.0097±0.0011 0.9638±0.0026 0.9389±0.0010 0.9269±0.0035
TPCF+O 1.0263±0.0004 0.9695±0.0007 0.9356±0.0004 0.9182±0.0012 0.9070±0.0009
CMF-L2 0.9894±0.0027 0.9514±0.0031 0.9264±0.0045 0.9107±0.0040 0.9023±0.0029
CST 0.9352±0.0009 0.9057±0.0011 0.8975±0.0010 0.8925±0.0009 0.8792±0.0017
TPCF+U+I 0.9126±0.0010 0.8965±0.0007 0.8824±0.0005 0.8750±0.0008 0.8703±0.0010
TPCF+U+I+O 0.8823±0.0002 0.8763±0.0003 0.8723±0.0002 0.8689±0.0001 0.8643±0.0003
k = 50 |R|u = 1 |R|u = 5 |R|u = 10 |R|u = 15 |R|u = 20
RMGM 1.0443±0.0019 1.0104±0.0012 0.9613±0.0014 0.9394±0.0020 0.9284±0.0017
TPCF+O 1.0265±0.0013 0.9705±0.0015 0.9360±0.0015 0.9182±0.0012 0.9059±0.0014
CMF-L2 1.0427±0.0019 1.0015±0.0025 0.9719±0.0020 0.9545±0.0038 0.9442±0.0017
CST 0.9610±0.0022 0.9453±0.0024 0.9274±0.0020 0.9016±0.0020 0.8987±0.0031
TPCF+U+I 0.9338±0.0012 0.9044±0.0011 0.8929±0.0011 0.8843±0.0015 0.8766±0.0018
TPCF+U+I+O 0.8919±0.0016 0.8860±0.0014 0.8829±0.0014 0.8737±0.0016 0.8671±0.0016

TABLE IV: RMSE on Netflix: auxiliary domains include RU,RI and RO as described in section 5.4.1. Each algorithm utilizes
all applicable auxiliary data.

EachMovie-MovieLens
k = 10 |R|u = 1 |R|u = 5 |R|u = 10 |R|u = 15 |R|u = 20
RMGM 1.4554±0.0025 1.2963±0.0022 1.2210±0.0028 1.1984±0.0018 1.1827±0.0031
TPCF+O 1.4004±0.0011 1.2310±0.0013 1.1716±0.0013 1.1408±0.0016 1.1140±0.0012
CMF-MAP 1.3424±0.0014 1.2361±0.0026 1.1696±0.0010 1.1406±0.0011 1.1180±0.0020
CST 1.2621±0.0016 1.1707±0.0026 1.1483±0.0020 1.1371±0.0011 1.1159±0.0013
TPCF+U+I 1.1936±0.0012 1.1079±0.0014 1.0877±0.0014 1.0706±0.0013 1.0609±0.0012
TPCF+U+I+O 1.1807±0.0012 1.1067±0.0017 1.0862±0.0018 1.0720±0.0015 1.0599±0.0014
k = 50 |R|u = 1 |R|u = 5 |R|u = 10 |R|u = 15 |R|u = 20
RMGM 1.4418±0.0020 1.2812±0.0053 1.2175±0.0033 1.1901±0.0037 1.1750±0.0035
TPCF+O 1.4016±0.0010 1.2526±0.0009 1.1759±0.0014 1.1439±0.0012 1.1195±0.0008
CMF-MAP 1.3735±0.0020 1.2655±0.0018 1.1962±0.0033 1.1568±0.0024 1.1302±0.0019
CST 1.2838±0.0009 1.1912±0.0012 1.1557±0.0019 1.1408±0.0021 1.1299±0.0022
TPCF+U+I 1.1705±0.0007 1.1113±0.0009 1.0863±0.0012 1.0688±0.0014 1.0594±0.0009
TPCF+U+I+O 1.1660±0.0010 1.1080±0.0009 1.0847±0.0018 1.0686±0.0015 1.0548±0.0011

TABLE V: RMSE on EachMovie: auxiliary domains include RU,RI and RO as described in Section 5.4.2. Each algorithm
utilizes all applicable auxiliary data.

to see what will happen when item sets do not belong to the
same kinds. RMGM was proposed to solve this specific kind
of cross-domain collaborative filtering problem by capturing
similar cluster patterns. Our model, on the other hand, does
not use cluster-level patterns. Instead, we use auxiliary data
to learn a better prior distribution for users and items in the
target domain without knowing any correspondences of users
and items from different domains. We believe that down to a
lower-dimensional space (such as 10-D or 50-D), we can still
capture the semantic relations between books and movies (such
as genre) to perform predictions well in the target domain.

To see whether we can learn a better model for book
recommendation using auxiliary data from a set of ratings on
movies, we first randomly select 500 users and 500 books with
the most ratings from Book-Crossing dataset as target data.
Then we normalize the ratings to be in the range {1, 2, 3, 4, 5}.
Next, we sample a 2000×2000 sub-matrix from Netflix dataset
as auxiliary data with density 6%.

In this part of experiment, we only compare with RMGM
because CST and CMF-L2 could not handle data without
knowing correspondence information explicitly. The dimension

of k is fixed at 10. We report the RMSE with varying β
for our model and the RMSE of RMGM in Fig 8. We also
compare to a non-transfer version of RMGM that only uses
target domain as training data. We see that a transfer version of
RMGM learning with data from Netflix actually degrades the
model performance 9. To investigate the cause of this result,
we study the rating patterns in these two datasets. We treat
the observed ratings from Book-Crossing and Netflix as two
categorical distribution with values in the range {1, 2, 3, 4, 5},
then we compute the Kullback–Leibler divergence between
the two datasets. The result is 0.3251. Computing the KL
divergence between training and testing ratings from Book-
Crossing dataset gives us a value of 0.0016. This shows a clear
distribution mismatch, indicating inconsistent rating behaviors
between users in Book-Crossing and Netflix datasets. We
believe this is the core reason why a transfer version of RMGM
performs poorly. Because rating patterns across domains are

9In the original implementation of RMGM provided by the authors, they
use categorical distribution for generating data. We have therefore also
implemented a real-value version of RMGM using Gaussian distribution to
generate data. However, we still could not get a better result than non-transfer
version of RMGM.



Fig. 6: RMSE on EachMovie dataset with TPCF. Top:
varying value of α; Bottom: varying value of β

Fig. 7: Testing RMSE on Book-Crossing of TPCF with
varying β and RMGM. RMGMNON means learning RMGM
model without using auxiliary data from Netflix.

very different, cluster-level patterns from Netflix do not help
alleviate sparsity issue in Book-Crossing at all. Our model, on
the other hand, does not rely on explicit rating patterns. We
instead use an adaptive shared prior to automatically leverage
the data from the two domains. From the plot we see that it
indeed helps a lot as the RMSE reduces from 0.8283, with
non-transfer VBMF to 0.7861. For β greater than 2−6, we
get about the same performance, showing the insensitivity of
choosing exact value of β.

VI. CONCLUSION

A newly launched CF application usually contains scarce
rating values, and such cold-start phenomenon prevents
non-transfer learning algorithm from accurately capturing
users/items preferences. In this paper, we propose a robust

method to alleviate such problem with TPCF to transfer
knowledge from related domains in a unified sense. As shown
in the experiments, our method is particularly useful when
there are extremely scarce data in the target domain, as the
improvements are significant compared to other benchmark
algorithms.
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