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Abstract. In this paper, we describe a novel Gaussian process model for TV 

audience rating prediction. A weight-sharing covariance function well-suited 

for this problem is introduced. We extract several types of features from Google 

Trends and Facebook, and demonstrate that they can be useful in predicting the 

TV audience ratings. Experiments on a dataset consisting of daily dramas show 

that the proposed model outperforms the other conventional models given the 

same feature set. 
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1 Introduction 

Time series analysis is an active research area with many real-world applications 

including price forecasting [12] and sales prediction [9]. A typical method relies on 

historical data sequences to predict upcoming data points. In this paper, we focus on 

television audience rating prediction. The goal is to accurately predict the rating of an 

upcoming TV episode, and to analyze the most crucial factors that cause the audience 

ratings to fluctuate. 

Gaussian Process Regression (GPR) [16] is used to predict the audience ratings. 

We analyze variants of GPR models, and propose a weight-sharing kernel to deal with 

the overfitting issue caused by the increasing number of hyperparameters. The exper-

iments show that, with the weight-sharing technique applied, our GPR model outper-

forms the other competitors in predicting the audience ratings. 

Furthermore, we propose three novel types of features to boost the prediction per-

formance. Different from previous works, our model relies not only on classic time 

series features such as historical ratings, but also on features extracted from social 

networks and search engines. For example, trend information from Google Trends, 

opinion polarity and popularity information from Facebook are used in the prediction. 

We show how such information can be adapted in the proposed GPR model. 



The main contributions of this work are summarized as follows: 

 We modify a standard kernel of GPR model to avoid overfitting, and make it more 

suitable for the TV audience rating prediction problem. 

 We propose three novel types of web-based features: trend features, social network 

features, and opinion features for better performance. 

 We conduct experiments to verify the validity of the model and features. 

2 Related Work 

Audience rating prediction is treated as a time series forecasting problem in the field 

of statistics and data analysis. Well-known models such as autoregressive model, 

moving average model, or the hybrid (ARIMA), or the more advanced ones such as 

generalized autoregressive conditional heteroskedasticity (GARCH) [2] and the non-

linear extension of it (NGARCH) [12] are all plausible models that can be applied. 

However, those models may not be the best choice for audience rating prediction 

because they do not consider specific characteristic of the ratings. Researchers have 

shown that using time-based and program-based covariates provides a more effective 

way to forecast the audience ratings [5, 6] than general time series models, as these 

models consider correlations between rating, genre, show duration, live status, etc. 

Another serious drawback of general time series models is that they cannot consid-

er external features such as information from social media and search engine. Such 

external and social information has been shown effective in forecasting. In [1], a work 

using chatters from Twitter to predict future revenue of movies is proposed. The 

works in [4, 8] propose to perform audience rating prediction utilizing the count of 

posts and comments from social media. Our work further extends the idea to exploit 

opinion mining and search engine such as Google Trends to enhance the prediction 

performance. 

3 Framework and Features 

In this paper, the TV audience rating prediction problem is modeled as a supervised 

learning task. To forecast near-future ratings, historical data together with the follow-

ing listed features are used as the training input for the models. 

1. Basic Time Series Features 

Similar to other basic time series forecasting models, the ratings of the previous ep-

isodes, the rating of the first episode, and binary indicator variables corresponding to 

weekdays are used as features. 

2. Social Network Features 

Nowadays, TV companies often host “Fan Pages” on social networking sites such 

as Facebook. On these pages, companies run promotional campaigns, face-to-face 



events, polls, and provide previews of the next episodes. Also, it provides a platform 

for the fans to interact with each other and show their support or oppose to the show. 

To model such effects, the daily cumulative numbers of “posts”, “shares”, “likes”, 

“comments” on the official Facebook Fan Pages of the dramas are included as fea-

tures. 

3. Opinion Polarity Features 

Users may express their thoughts toward a show via a Facebook Fan Page, and 

such opinions will have influence on others’ opinions. For example, if most of the 

fans are looking forward to the upcoming episode, it will be reasonable to assign a 

higher audience rating for the new episode. Thus we propose to analyze the polarity 

(i.e. positive or negative) of users’ posts and replies on Facebook fans page. We use 

the daily cumulative number of positive and negative words in both posts and com-

ments as the opinion polarity features. 

4. Trend Features 

Google Trends is a useful tool provided by Google Inc. to investigate the populari-

ty of a keyword in a region. Given certain time period, it gives the number of searches 

for a keyword relative to the total number of searches across this period. The dis-

played number is normalized such that the highest number is equal to 100 and the 

lowest number is equal to zero. For each drama, we collect time series data from 

Google Trends for three different sets of keywords. We use drama name as well as 

actor/actress’s name as queries in Google Trends to obtain the corresponding features. 

4 Methodology 

4.1 Gaussian Process Regression (GPR) 

A typical regression problem can be formulated as 

𝑦 = 𝑓(𝐱) + 𝜀 (1) 

where 𝐱 is the input vector, 𝑦 is the observed target value, and 𝑓 is a function that 

models the underlying process of generating the data points {(𝐱𝑖 , 𝑦𝑖): 𝑖 = 1, … , 𝑁}. An 

additive independent and identically distributed Gaussian noise 𝜀 ~ 𝒩(0, 𝜎𝑛
2) is as-

sumed. 

There are two equivalent ways to derive the predictive distribution for Gaussian 

process regression, namely the weight-space view and the function-space view [13]. 

In the following paragraphs, we will give a brief introduction to the main concepts of 

GPR in the function-space. 

A random process 𝑓 = {𝑓(𝐱): 𝐱 ∈ 𝒳} is defined as a collection of random varia-

bles 𝑓(𝐱) indexed by an ordered set 𝒳. In the audience rating prediction problem, we 

consider the input space 𝒳 ⊆ ℜ𝑑 , where 𝑑  is the dimension of input vectors. The 

random variable 𝑓(𝐱) therefore represent the value of the random function 𝑓 evaluat-



ed at the data point 𝐱. If normality is assumed, the random process is called a Gaussi-

an process (GP). An important property of GP is that any finite collection of the ran-

dom variables 𝑓(𝐱) will be jointly normally distributed. 

A Gaussian process is completely defined by its second-order statistics. The mean 

function and the covariance function of a Gaussian process can be defined as follows: 

𝑚(𝐱) = E[𝑓(𝐱)] (2) 

𝑘(𝐱, 𝐱′) = E[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))] (3) 

and 𝑓 ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)). Without loss of generality, it is common to consider GPs 

with mean function 𝑚(𝐱) ≡ 0 to simplify the derivation. In this case, a GP is fully 

specified given its covariance function. 

Since it is infeasible to consider all possible random functions, certain assumptions 

must be made when making inference. By restricting the underlying function 𝑓 to be 

distributed as a GP, the number of choices is reduced. Furthermore, a Gaussian pre-

dictive distribution can be derived in closed-form under such assumption. If we con-

sider only zero-mean Gaussian processes, then for a test input 𝐱∗, the mean and vari-

ance of the predictive distribution can be computed as follows [16]: 

𝜇(𝐱∗) = 𝐤𝑇𝐾−1𝐲 (4) 

𝜎2(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐤𝑇𝐾−1𝐤 (5) 

where 𝐤 = (𝑘(𝐱∗, 𝐱1), … , 𝑘(𝐱∗, 𝐱𝑁))
𝑇
, 𝐾 = [𝐾𝑖𝑗] is the covariance matrix of training 

input vectors with 𝐾𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗), and 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑁)𝑇  is a vector of training 

target values. The point prediction is commonly taken to be the mean of the predictive 

distribution, i.e. 𝑦∗ = 𝜇(𝐱∗). 

4.2 Weight-Sharing Kernel 

The covariance function is also called the kernel of a GP. As previously mentioned, 

the behavior of a zero-mean GP can be fully specified provided its covariance func-

tion. For regression problems, we want to assign similar prediction values to two in-

put vectors that are close in space. In other words, if two similar time series are ob-

served, the model should be able to give similar predictions. A widely used kernel 

possessing this property is the radial basis function (RBF) kernel, which is called a 

squared exponential (SE) kernel in GP literature. It has the form 

𝑘(𝐱, 𝐱′) = exp (−
1

2
∑

(𝑥𝑖 − 𝑥′
𝑖)

2

𝑙𝑖
2

𝑑

𝑖=1

) (6) 

where 𝑥𝑖 is the 𝑖-th dimension of vector 𝐱 and 𝑑 is the dimension of input vectors. 



There are 𝑑 hyperparameters 𝛉 = (𝑙1, 𝑙2, … 𝑙𝑑)𝑇 for this kernel. The hyperparame-

ters are called the characteristic length-scales. It serves as a distance measure along 

the 𝑖-th dimension. The effect of these hyperparameters can be shown more clearly if 

we rewrite Eq. 6 as 

𝑘(𝐱, 𝐱′) = ∏ exp (−
(𝑥𝑖 − 𝑥′

𝑖)
2

2𝑙𝑖
2 )

𝑑

𝑖=1

 . (7) 

If the characteristic length-scale for the 𝑖-th dimension is large, the 𝑖-th exponential 

term will be close to zero, and the covariance will be independent of that input dimen-

sion. This is a form of automatic relevance determination (ARD) [11] or “soft” fea-

ture selection. When we are estimating the hyperparameters, the irrelevant input di-

mensions will be ignored by fitting the length-scales to a relatively large value. How-

ever, this type of kernel introduces one parameter per input dimension. The common 

problem of overfitting is severe if we are dealing with high-dimensional inputs [3]. 

This is especially the case for time series prediction. If we have 𝑀 types of co-varying 

features, and for each of them we consider only 𝑇 time steps before current predic-

tion, the total number of features is 𝑑 = 𝑀 × 𝑇, which will increase rapidly as we 

consider longer historical sequences. This will limit the power of the time series mod-

el in that it must either include less features or use shorter historical sequences. Fur-

thermore, the time needed to train an ARD kernel is significantly longer than its iso-

tropic counterpart (i.e. setting 𝑙1 = 𝑙2 = ⋯ = 𝑙𝑛 = 𝑙). The isotropic SE kernel, alt-

hough usually performs well, suffers from its inability to distinguish the importance 

of different input dimensions. Therefore, we propose a weight-sharing kernel that 

strikes a balance between the two. 

In the field of time series prediction, the input features usually come from co-

varying time sequences and therefore are naturally grouped. For example, the features 

extracted from Google Trends can be viewed as a feature group. The main idea is to 

reduce the number of hyperparameters by sharing the same length-scale among fea-

tures belonging to the same group, while at the same time possessing the ability to 

determine the importance of different groups of features. 

The kernel consists of a weighted sum of SE kernels: 

𝑘(𝐱, 𝐱′) = ∑ 𝑣𝑔 exp (−
1

2𝑙𝑔
2 ∑(𝑥𝑖 − 𝑥′

𝑖)
2

𝑑𝑔

𝑖=1

)

𝑔∈𝐺𝑇

 

= + ∑ 𝑣𝑔 exp (−
1

2
∑

(𝑥𝑖 − 𝑥′
𝑖)

2

𝑙𝑖,𝑔
2

𝑑𝑔

𝑖=1

)

𝑔∈𝐺𝑇′

 . 

(8) 

The first term is a weighted sum of isotropic SE kernels which are designed for 

time co-varying features. We denote the set of time co-varying feature groups (i.e. 

“Opinion”, “Google Trends”, “Facebook”) as 𝐺𝑇 . For each feature group 𝑔 , the 

number of features in the group is denoted as 𝑑𝑔, and the overall importance of the 



group is 𝑣𝑔. The same length scale 𝑙𝑔 is shared among all features belonging to the 

group. This can significantly reduce the number of hyperparameters. 

The second term of the kernel is a weighted sum of ARD SE kernels. We use 𝐺𝑇′ 

to denote the set of time-invariant feature groups, or features that require a separate 

length-scale for each dimension to function properly (e.g. “First Episode rating”, 

“Past 3 Episodes ratings” and “Weekdays”). Usually, the number of time-invariant 

features is much less than the time co-varying features, so this term would not add too 

many hyperparameters to the model. 

As a brief example, assume that we consider 𝑀 co-varying time sequences, each of 

them is of length 𝑇. In our case 𝑇 = 4 and there are 𝑀 = 11 time co-varying features 

(4 from “Opinion”, 3 from “Google Trends”, and 4 from “Facebook”). An ARD 

kernel will have 44 hyperparameters to be learnt, making the inference slow and the 

prediction inaccurate. On the other hand, the weight-sharing kernel introduces 2 hy-

perparameters (i.e. 𝑙𝑔  and 𝑣𝑔 ) for each feature group, merely 6 in total. With the 

weight-sharing kernel applied, the inference is much faster and, as will be shown in 

the Experiment section, a better performance is achieved. 

4.3 Training 

In general, the hyperparameters of a Gaussian process model can be learnt by maxim-

izing the marginal likelihood or by using Markov chain Monte Carlo methods such as 

slice sampling [10]. We adopt in this work the maximum marginal likelihood frame-

work, also known as Type-II maximum likelihood (ML-II) or empirical Bayes. 

In the ML-II framework, the hyperparameters are chosen by maximizing the prob-

ability of observing target values 𝐲 given the input 𝑋 = {𝐱𝑖: 𝑖 = 1, … , 𝑁}. Let 𝐟 =
(𝑓(𝐱1), 𝑓(𝐱2), … , 𝑓(𝐱𝑁))𝑇 be a vector of function values evaluated at the 𝑁 training 

input data points. Since the function 𝑓 ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) is a random function 

sampled from a GP, the vector 𝐟 is an N-dimensional normally distributed random 

vector, i.e. 𝐟|𝑋 ~ 𝒩(0, 𝐾). The exact form of the marginal likelihood is given by 

marginalizing over the random vector 𝐟: 

𝑝(𝐲|𝑋, 𝛉) = ∫ 𝑝(𝐲|𝐟, 𝑋)𝑝(𝐟|𝑋, 𝛉) 𝑑𝐟 (9) 

where 𝛉 is a vector of hyperparameters of the kernel. From Eq. 1 it is clear that 

𝐲 ~ 𝒩(0, 𝐾𝑦), where 𝐾𝑦 = 𝐾 + 𝜎𝑛
2𝐼. It follows that the log marginal likelihood is 

log 𝑝(𝐲|𝑋, 𝛉) = −
1

2
𝐲𝑇𝐾𝑦

−1𝐲 −
1

2
log|𝐾𝑦| −

𝑛

2
log 2𝜋 . (10) 

To find the best hyperparameters with ML-II, we must take the derivatives of the 

log marginal likelihood with respect to the hyperparameters, as shown below: 

∂

∂𝜃𝑗

log 𝑝(𝐲|𝑋, 𝛉) =
1

2
𝐲𝑇𝐾𝑦

−1 ∂𝐾𝑦

∂𝜃𝑗

𝐾𝑦
−1𝐲 −

1

2
tr (𝐾𝑦

−1 ∂𝐾𝑦

∂𝜃𝑗

) . (11) 



The above computations involve matrix inversion, which takes 𝑂(𝑁3) time com-

plexity. It often limits the use of GP models to small data sets, or approximation 

methods must be sought [14]. However, in our problem, the length of each drama 

usually does not exceed a few tens of episodes. Since time complexity is not a big 

issue for this application, we use exact inference in all the following experiments. 

To avoid being trapped to local minima, we randomly initialize the hyperparame-

ters and run the optimization multiple times. The set of hyperparameters yielding the 

highest marginal likelihood is selected as the final model to perform prediction. 

5 Experiments 

In this section we first introduce our dataset and the evaluation metric. Then we com-

pare our model with other competitors. Finally we conduct a quantitative analysis on 

the usefulness of selected features. 

5.1 Dataset and Evaluation Metrics 

Four daily dramas, which are broadcast only on weekdays, are chosen as the experi-

ment dataset. We collect Facebook Fan Page statistics, opinion polarities, and Google 

Trends information to create the features. All features are standardized. A brief sum-

mary for the dataset is listed in Table 1. 

Table 1. Basic information about the dramas. 

Drama #Episode Broadcast period Average Rating Std. 

D1 80 2012/04/10 ~ 2012/07/30 1.819 0.263 

D2 82 2012/07/31 ~ 2012/11/26 1.941 0.201 

D3 90 2012/06/27 ~ 2012/10/30 1.485 0.226 

D4 84 2011/12/13 ~ 2012/04/09 2.540 0.754 

We perform sequential prediction for all experiments. That is, to predict the rating 

of episode k of drama D1, we first train our model using data from the first k-1 epi-

sodes of D1 and data from the other dramas. For Facebook Fan Page statistics, opin-

ion polarities, and Google Trends features, we use the values from the broadcasting 

day and three days prior to it. To evaluate the usefulness of different feature combina-

tions, we also train models on all possible combinations of features. 

The mean absolute percentage error (MAPE) is used as the evaluation metric since 

it is the most commonly used metric for the audience rating prediction problems. 

𝑀𝐴𝑃𝐸 =
100%

𝑁
 ∑ |

𝑦𝑖 − 𝑝𝑖

𝑦𝑖

|

𝑁

𝑖=1

 (12) 



5.2 Comparison of the Models 

We compare the proposed model with three other models as described below. 

1. Support Vector Regression (SVR) [15]. This model solves the following regression 

problem: 

𝑚𝑖𝑛
𝑤

1

2
𝑤𝑇𝑤 + 𝐶 ∑

1

𝑦𝑖

𝜉𝜖

𝑁

𝑖=1

(𝑤; 𝑥𝑖 , 𝑦𝑖) (13) 

Note that Eq. 13 is different from the original form as there is an additional 1/yi 

term added to optimize the MAPE. We tried both linear and polynomial transfor-

mation, and use LIBLINEAR [7] for the experiment. After several trials, we choose 

the regularization parameter C=1. 

2. GP_ard. GPR with ARD SE kernel. (Eq. 6) 

3. GP_iso. GPR with isotropic SE kernel. (Eq. 6, with 𝑙1 = 𝑙2 = ⋯ = 𝑙𝑛 = 𝑙) 

There are six types of features, namely social network features (from Facebook), 

opinion features, trend features, ratings from previous three episodes, rating of the 

first episode, and weekday indicator variables. Therefore, there are total 26 − 1 = 63 

different combinations of features. Table 2 shows the average MAPE of all feature 

combinations for each drama. We also rank the MAPE obtained from different mod-

els, and then compute the average value. The result is shown in Table 3. Our model 

outperforms baseline models in terms of both MAPE and ranking. 

Table 2. Average MAPE of all possible feature combinations. 

Drama 

Model 
D1 D2 D3 D4 Avg. 

SVR 0.1132 0.1027 0.1300 0.1396 0.1214 

GP_ard 0.1124 0.0928 0.1297 0.1162 0.1128 

GP_iso 0.1165 0.0959 0.1357 0.1158 0.1160 

Our Model 0.1163 0.0918 0.1276 0.1117 0.1118 

Table 3. Average ranking of all feature combinations. 

Drama 

Model 
D1 D2 D3 D4 Avg. 

SVR 2.1904 3.3492 2.1587 3.0952 2.6984 

GP_ard 2.4365 2.2619 2.9444 2.6349 2.5694 

GP_iso 2.7540 2.4683 2.5635 2.4365 2.5556 

Our Model 2.6190 1.9206 2.3333 1.8333 2.1766 



Then, we compare our modified GP model with the two standard GP-based com-

petitors, GP_ard and GP_iso. Since the best feature combination is fairly different for 

each drama, a general scenario is considered, where all available features are used in 

the prediction. With the capability to estimate the relative importance of different 

groups of features and to avoid overfitting, the proposed weight-sharing method out-

performs the other standard GP-based models. Results are shown in Table 4. 

Table 4. Average MAPE using all features. 

Drama 

Model 

D1 D2 D3 D4 Avg. 

GP_ard 0.1015 0.0887 0.1001 0.1184 0.1022 

GP_iso 0.1018 0.0833 0.0929 0.0973 0.0938 

Our Model 0.0991 0.0794 0.0911 0.0869 0.0891 

5.3 Feature Analysis 

In this section, we study the usefulness of the features based on our proposed model.  

As previously mentioned, the features are categorized into six types, as shown in the 

first column of Table 5. Holding the rest of the features identical, we compare the 

performance with and without a certain type of features. If the resulting error is lower 

when a certain type of features is used, we define it as a “win”. Conversely, if the 

error is higher, then we define it as a “lose”. For instance, with all other conditions the 

same, if removing Facebook features results in a higher MAPE for D1, then a “lose” 

is assigned.  Since there are total 63 different combinations of features, 31 compari-

sons are made for each drama. The winning percentages (=
𝑊

𝑊+𝐿
× 100%) for each 

type of the features are shown in Table 5. The higher the winning percentage, the 

more useful it is. We can observe that the previous ratings and weekday information 

are overall the most important features, while most of the features except opinion 

feature generally improves the performance. 

Table 5. Winning percentage with or without a certain type of features. 

Winning Percentage (%) D1 D2 D3 D4 TOTAL 

Opinion 26 58 42 55 45 

Google Trends 58 35 74 77 61 

Facebook 29 71 87 55 60 

Ratings of previous three episodes 100 100 100 100 100 

Rating of the first episode 71 61 97 42 68 

Weekday 81 100 100 84 91 



6 Conclusion 

In this paper, we present a weight-sharing Gaussian process model for the TV audi-

ence rating prediction problem. Also, we extract three types of web-based features for 

this task, namely Facebook Fan Page statistics, opinion polarities, and Google Trends. 

A series of experiments on a dataset consisting of four popular Chinese dramas are 

made to investigate the usefulness of these features. With the weight-sharing kernel 

applied, the proposed model yields lower error rates than the other baseline models in 

predicting the audience ratings. 
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