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ABSTRACT
Considering nowadays companies providing similar products
or services compete with each other for resources and cus-
tomers, this work proposes a learning-based framework to
tackle the multi-round competitive influence maximization
problem on a social network. We propose a data-driven
model leveraging the concept of meta-learning to maximize
the expected influence in the long run. Our model considers
not only the network information but also the opponent’s
strategy while making a decision. It maximizes the total in-
fluence in the end of the process instead of myopically pursu-
ing short term gain. We propose solutions for scenarios when
the opponent’s strategy is known or unknown and available
or unavailable for training. We also show how an effective
framework can be trained without manually labeled data,
and conduct several experiments to verify the effectiveness
of the whole process.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sci-
ences—Economics

Keywords
Influence maximization; reinforcement learning; social net-
work

1. INTRODUCTION
Influence maximization has been an eye-catching task in

social network analysis for more than a decade. The goal
is to identify a small subset of seed nodes that have the
best chance to influence the most number of nodes through
a given influence propagation process. The idea of viral
marketing is widely accepted as a proper application sce-
nario for influence maximization. A company intends to
select a small set of seed customers in a social network to
distribute their trial products, with the hope that these cus-
tomers as a group spread their praises to a larger popula-
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Figure 1: The example of competitive network

tion through the word-of-mouth effect. The problem then
becomes who to be selected as the initial seeds in order to
maximize the final outcome. Domingos and Richardson [1,2]
are the first to study influence maximization as an algorith-
mic problem. Kempe, et al. then formulate the problem as a
discrete stochastic optimization problem [3]. They consider
the independent cascade model and linear threshold model
and prove that the optimization is NP-hard. They further
prove that a greedy approximation algorithm guarantees the
spread achieves at least (1-1/e) of the optimal spread. How-
ever, such a greedy model suffers from high computational
complexity. Consequently, several works have been proposed
to handle the efficiency problem [4–8].

Competitive influence maximization (CIM) is a natural
extension of influence maximization. Instead of considering
only one type of innovations or items being propagated in
the social network, competitive influence maximization or
multi-party influence maximization assumes multi-items to
be propagated in a social network. Furthermore, concurrent
diffusions may interfere with each other as a single node can
only be activated by one type of item (or by one party). For
example, people generally only subscribe to one internet ser-
vice provider (ISP). Thus for viral marketing purposes, two
ISPs are forced to compete with each other to allure poten-
tially influential customers to use their trial package. The
same situation applies to companies that sell high-end elec-
tronic products as people are less likely to buy the same
product if they already own one. In such competitive en-
vironments, the optimization strategy for single party may
fail due to the existence of a competitor. Below we provide
a toy example to elaborate this point.

Example 1. Given a single party in the network shown
in Figure 1, the optimal choice is obviously the root node A
assuming IC model of equal edge-weight. However, in CIM
with two parties, each choosing one node in turn, the optimal
choice is no longer node A. For the first player, the best
choice is node B since if it chooses A, then the second player
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Figure 2: The best strategy varies for different net-
works.

will choose B to block A’s influence path. Thus, choosing
B maximizes first player’s expected influence while second
player’s optimal choice is node A.

Competitive diffusion optimization has been studied by sev-
eral researchers [9–15]. Most of them consider less complex
settings such as known opponent strategy and single-round
of choice. Here we propose a general solution for a more com-
plicated but realistic setup. That is, the opponent’s strategy
can be either known or unknown, while a company needs to
make sequential decisions in multiple rounds to choose seeds
with the objective to maximize its own influence in the long
run. We assume the influence is exclusive, implying that
once a node is influenced by party A, it cannot be influenced
again by party B. For simplicity, in this paper we assume for
each round all parties choose one node and then influence
propagates before the next round of selection starts.

Our work aims at filling the following gaps in competitive
influence maximization:

1. Most of the strategies proposed for competitive influ-
ence maximization assume the opponent’s strategy is given,
or consider the selections of the opponents being visible
[12–15]. Such an assumption is problematic as in real world
scenario it is very difficult to decipher the opponent’s strat-
egy, and in some situations one needs to make decision with-
out complete information about the opponent’s selection. To
make things even more complicated, the opponents can dy-
namically change their strategy. Our solution, on the other
hand, works for scenarios where opponents’ strategies are
known or unknown. If it is known, or unknown but avail-
able to compete with for multiple times, we propose to train
a model to gradually learn a strategy to defeat the oppo-
nent’s strategy. If the opponent’s strategy is unknown and
unavailable for training, then we propose a game-theoretical
solution to seek the Nash equilibrium as the best strategy
which a rational agent should act.

2. In many of the previous works, only single-round prop-
agation is considered. That is, after the player and the op-
ponent pick the seeds, the propagation starts and the final
outcomes are generated. Here we consider a more general
and probably more realistic case where the players can keep
selecting seeds to activate after the previous round ends, un-
til reaching a predefined threshold of rounds or until all the
nodes are activated. Such a multi-round scenario makes the
task even more interesting though difficult to solve, as one
does not have to stick to one single strategy through all the
rounds. Conceivably a more flexible and intelligent strategy
that adjusts itself during the process has a better chance of
beating a model that remains the same.

3. In most of the previous works, the influence maxi-
mization problem is solved by model-driven methods which,
given a known influence propagation model (e.g. LT model),

apply certain heuristic to choose the seed nodes in the net-
work [12–15]. One concern for such strategies is that they
are not adaptive to the network topology. For example,
Figure 2(a) displays a single-player influence maximization
experiment we conducted on two real-world networks: P2P
and Facebook networks. The results show that Degree strat-
egy (i.e., choosing high degree nodes as seeds) works better
in P2P network while Weight strategy (i.e., choosing nodes
whose overall weights of adjacent edges are maximal) works
better in the FB network. Similar situations also happen on
the multi-party influence maximization problem. In Figure
2(b), it shows that against the same opponent, in the P2P
network, Degree is more effective but the opposite is ob-
served in the Facebook network. Thus, we believe to excel
in the competitive influence maximization task, the model
has to be general and flexible enough to adapt not only the
opponent’s strategy but also the environment setting such
as the underlying network topology and the diffusion model.

4. To design such a general framework, we resort to a
learning-based approach. One critical issue of exploiting
learning-based approach lies in the acquisition of data. Pre-
viously, data-driven strategies have been proposed to pre-
dict the influence paths, under the assumption that there
is only one party trying to propagate the media in a so-
cial network [16–18]. In these studies, the real propagation
records are exploited to construct an appropriate diffusion
model. However, it is extremely hard to obtain the propa-
gation record in a multi-party case, not to mention the un-
derlying strategies these parties deploy. Chen et. al. once
proposed a multi-party influence optimization game whose
goal is to record the behavior of different parties through
playing a chess-like game to optimize the activation of in-
fluenced nodes [19]. However, to use such data to train a
learning model, one needs to collect playing record for many
networks, which is not very cost-effective in particular when
the network size becomes large. To improve the feasibility of
building a learning-based model, here we propose a strategy
to exploit the influence-simulation outcomes for learning an
optimal policy that alleviates the requirement for human-
playing data in training a model. To be more precise, our
framework performs data generation and model learning at
the same time. The data, which is the experience gener-
ated through simulation by applying the current model, will
become the feedbacks to refine the model for better perfor-
mance. In this sense the data sparsity issue can be overcome.

We propose the STrategy-Oriented Reinforcement-Learning
based influence Maximization (STORM) framework that is
capable of learning a good multi-party influence-maximization
strategy. The framework utilizes arbitrary existing single-
player influence maximization strategies as its actions, and
finds the best policy to select them given the observed con-
ditions. The rewards are designed as the gain of the influ-
enced nodes compared to its opponents. The optimal strat-
egy is learned through interacting with the network envi-
ronment and the opponents. The actions are taken to op-
timize the expected accumulated rewards in the long term
avoiding being myopic on short-term gain. We specifically
consider the following three scenarios. The first scenario as-
sumes the opponent uses a known strategy for every round,
in which our model can gradually learn an optimal strat-
egy to win. The second scenario assumes the component’s
strategy is unknown but available for training, in which our
model can still learn a strategy through competing with it.
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In scenario 3, the opponent’s strategy is unknown and un-
available for training, we propose to model it as a rational
and smart agent to maximize our own influence, which also
guarantees to reach equilibrium. We design the STORM-Q,
STORM-QQ, STORM-MM learning models to handle above
mentioned scenarios. Our experiment results on real-world
datasets demonstrate the usefulness of the model.

2. PROBLEM STATEMENT
In the competitive influence diffusion environment, the

influences from different parties are assumed to propagate
at the same time. We assume the media being propagated
are exclusive, meaning if a node is activated by a party,
it cannot be activated again by another party. This paper
focuses on the competitive LT model (CLT) for experiments,
but the proposed model shall be applicable to competitive
IC model as well.

Definition 1. COMPETITIVE LINEAR THRESHOLD
(CLT) CLT model is a multi-party diffusion model. Similar
to the original LT model, in which a node v is activated by
party i, denoted as Pi, at round t when

∑
u∈Oi

t
wu,v > θv,

where wu,v is the weight of node u to node v and Oit is
the set of nodes that have been activated by Pi before tth

round. The θv is the activation threshold of v. Once v is
activated by one party, it cannot be activated again by any
party. When more than one party is eligible to activate the
same node in the same round, node v will be activated by
Pi which has the highest overall influence on node v, that
is, ∀j

∑
u∈Oi

t
wu,v >

∑
u∈Oj

t
wu,v. This is regarded as the

majority rule of conflict.

Note that the conflict rule is slightly different from those
proposed by He et al. and Chen et al, in which the for-
mer always assigns tie-break to the negative party in the
influence blocking maximization task and the latter breaks
the tie based on a random experiment whose successful rate
is proportional to the overall influence value to the target
node [15,19].

Then, we define the multi-round competitive influence
maximization problem with CLT model as follows.

Definition 2. MULTI-ROUND COMPETITIVE INFLU-
ENCE MAXIMIZATION (MRCIM) Given the information
of network G and CLT diffusion model, each party Pi, 1 ≤
i ≤ n, chooses a set of seed nodes N i

t among G in turn
and then performs influence propagation with CLT model
at round t. Note that for each round, the influence only
propagates to k-layer of neighbors (in our experiment, k=1)
before the next round starts. The objective of each party is
to maximize its overall relative influence F i after T rounds,
where F i is the difference among activated nodes of different
parties. That is, F i = |OiT | −

∑
∀j 6=i |O

j
T |, where T is the

terminal round number.

Note that since we are considering a multi-round scenario,
the opponents’ previous decisions can be regarded as ob-
served, but their future decisions are unknown to our model.

Figure 3 summarizes the process of MRCIM. In the begin-
ning of round t, each party Pi chooses N i

t seeds in turn, and
then the system performs CLT diffusion. Based on the out-
comes of previous rounds, each party selects another N i

t+1

seeds to activate for the next round, and the process con-
tinues. After the predefined round-limit has reached, the
overall influence of each party can then be evaluated.

Choose seed 

nodes N1
t 

Perform 

diffusion 

CLT 

Occupation  

status O1
t O

2
t 

Graph G 
When terminate 

Total influence 

       F1  F2 

Choose seed 

nodes N2
t 

Round t 

Figure 3: Multi-round multi-party system model

3. RELATED WORK
We have introduced model-driven and data-driven solu-

tions for the single-party influence maximization problem
in Section 1. Here we would like to focus on solutions for
competitive influence maximization.

3.1 CIM with Opponent Strategy Known
There are several studies addressing the competitive influ-

ence maximization problem given known opponent strategy.
One of the popular strategies is called the Influence Block-
ing Maximization (IBM), whose objective is to minimize the
opponent’s influence given the seed nodes already selected
by the opponents [12, 13, 15]. Since IBM is proved to be
NP-hard, these studies have provided greedy-based meth-
ods to solve it with either IC model or LT model. Borodin
et al. and He et al. proposed the greedy methods in LT
model [12, 15]. Furthermore, Budak et al. proposed the
greedy methods in IC model [13]. They also studied IBM
with uncertain data where each node’s occupation status is
stochastic. They use predictive hill climbing to predict the
occupation status and then create a new instance of IBM.
For these three studies, since the opponent’s choice is as-
sumed to be given and fixed, we can treat the opponents’
choices as part of the predictable, observed information and
search for the best response directly. This assumption might
not be realistic in real world scenario where opponents are
strategic, that is, their choices are neither known nor fixed.

3.2 CIM with Opponent Strategy Unknown
There are also solutions that assume the other party’s

strategy is not known and the opponent’s choices cannot be
observed before its own decisions are made. They have to
’guess’ the opponents’ choices and act accordingly. Bharathi
et al. resort to game theory to analyze this problem [9].
They show that at least (1-1/e) of the optimal results can
be achieved when the opponent’s choices can be predicted
accurately. However, predicting the opponent’s choices is
a very challenging task, which has not yet been addressed.
Kostka et al. prove that the seed selection tasks of the first
and the second parties are both NP-hard [10]. Although
their analysis provides nice theoretical bounds on this prob-
lem, they do not propose a practical solution to tackle it.
Also they only focus on single-round choices, without con-
sidering making sequential decisions in multiple rounds.

The most closely related work might be the one proposed
by Tsai et al. [11]. They consider the situation where two
parties have to make their choices without the opponents’
choices in competitive diffusion networks. They propose an
framework called Double Oracle. They use EXACT, AP-
PROX, LSMI, and PageRank as the oracle strategies to
estimate and block opponent’s influence. One of the par-
ties keeps iteratively updating its oracle strategy in turns to
choose its seed nodes according to the opponent’s temporal
choice until their choices converge.
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Different from our framework, this solution does not con-
sider the multi-round scenario. In other words, the Dou-
ble Oracle solution might not reach global optimal in multi-
round cases as it myopically searches the best response in
each round. Another major concern, similar to that in most
of the model-driven approaches, is that there has not yet
been a mechanism which is able to adapt to different types
of networks and different opponent strategies. Table 1 sum-
marizes the properties of the existing competitive influence
maximization algorithms.

Table 1: Summary of CIM related work

feature multi- unknown multi- data/model
party opponent round driven

[12,13,15] V Model
[9, 10] V V Model
[11] V V Model
Our paper V V V Data

4. METHODOLOGY
If the strategy of the opponent is fixed and known, the

multi-round competitive influence maximization (MRCIM)
can be proved as NP-hard by reducing it to a single party in-
fluence maximization, which has already been proven as an
NP-hard problem [3]. Due to the NP-hardness of MRCIM,
finding an optimal solution is impractical for real world prob-
lems. Therefore, we will look for an approximated solution.
In addition, MRCIM is a repeated process through which all
parties can obtain new occupation status next round. Thus
the seed node selection of each round cannot be regarded
as independent. Myopically maximizing the influence for
each round may not maximize the overall influence in the
end. We have to consider the impact of the selection for the
current round in the long run.

4.1 Preliminary: Reinforcement Learning
We propose to exploit reinforcement learning (RL), a kind

of machine learning technique based on Markov Decision
Process (MDP), to tackle this task. In RL, the agent keeps
interacting with the environment to find the optimal policy π
that maximizes his expected accumulated rewards [20]. RL
formulates the iterative process as an MPD and solves the
optimization problem in a dynamic programming manner.
Here we would like to first introduce the RL framework and
then discuss how it can be exploited to tackle MRCIM.

The goal of an RL is to learn a policy π(s) to determine
which action to take given a certain environment represented
by state s. RL formulates the expected accumulated rewards
of a state (also called the V function) and the expected ac-
cumulated rewards given a state-action pair (also called the
Q function) to estimate how good the policy π is in maxi-
mizing the accumulated reward Rt. The V function V π(s)
given a policy π is defined as

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑
k=0

γkrt+k+1|st = s}, (1)

where γ is the discount factor. The Q function Q(s, a) given
the policy π is defined as

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a}. (2)

choose seed 
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t

Perform 

diffusion
Graph G

Compute new 

policy 
t+1

Update Q-table

Qt+1(st, at)

Agent

Environment

Graph (st+1) 

Rewards  (rt+1)

Strategy at

from 
t

(st)

Total 

influence

When terminate

Figure 4: STORM framework in training phase

The two functions (1) and (2) can be learned through sam-
ples of agents interacting with the environment. The opti-
mal policy π(s) can be obtained given the Q function, that
is, π = arg min

a∈A
Q(s, a).

4.2 Strategy-Oriented Reinforcement-Learning
We propose the STrategy-Oriented Reinforcement Learn-

ing based influence Maximization (STORM) framework to
learn a strategy for seed node selection. To simplify the
analysis, here we assume there are only two parties that
compete with each other. There are two parts of STORM
we would like to discuss, the training phase (see Figure 4)
and the competition phase (after a model is learned). To
exploit the STORM framework, we need to first define the
environment, the reward, the action and the state.

ENVIRONMENT We treat the influence propagation pro-
cess as the environment effect, which propagates the influ-
ence of currently activated nodes to its neighbors and acti-
vate new ones.

REWARD The environment returns the reward r designed
as the delayed reward to represent the difference of activated
nodes between parties at the last round. That is, rit = 0
when t 6= T , and rit = |OiT | −

∑
∀j 6=i |O

j
T | when t = T . The

rewards are then propagated to the previous states through
Q-function updating. Although using the delayed rewards
generally requires more iterations to converge, it usually con-
verges to a more accurate Q-value compared to the immedi-
ate rewards rit = (|Oit|− |Oit−1|)−

∑
∀j 6=i(|O

j
t |− |O

j
t−1|) [21].

ACTION The key of our model lies in the design of the
action set A. Straightforwardly we can design actions as
choosing a certain node to activate. However, it will lead to
a very large action space to learn from. Also the key to the
success of RL lies in its capability to learn under given states
which action should be taken. With an overwhelming num-
ber of actions, it would then be hard to correlate the states
with the actions, raising the issue of overfitting. Here we
introduce the concept of meta-learning into RL framework
by designing actions using a set of single-party information
maximization strategies specifically sub-greedy, degree-first,
blocking, max-weight in our experiments. Thus the size of
action set can be reduced to the size of different strategies
to be chosen (e.g., 4 in our experiments). That is, our agent
chooses one strategy to perform as an action, while the ac-
tual seed to select is determined by this strategy. Note that
to fully utilize the strength of our model, it is preferred to
have diverse strategies that aim optimizing different aspects
of the influence. The meta-learning framework eventually
learns which strategy to choose given the current state. We
call these basis strategies the candidate strategies. In this
sense we can take advantage of any powerful IM strategy
by using them as one of the candidate strategies to yield
superior outcome.
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STATE We need to model the state to represent the net-
work and environment status. A straightforward way is to
record the occupation status of all nodes as states. By doing
so, the number of possible states can reach 3|V | given there
are two players (i.e., a node can be either activated by player
1 or player 2 or not yet activated). When |V | is large, the
problem becomes intractable since it is infeasible to either
visit each state or store the Q-table. Also an overwhelming
number of states can also lead to the problem of overfitting.
Here we need to resort to the design of features to repre-
sent the current occupation status as well as the condition
of the network. Note that when designing the features, we
need to make sure they are explicitly or implicitly correlated
with the rewards and the choice of actions. Below are the
features we have designed:

1. Number of free (i.e., non-occupied) nodes
2. Summation of degrees of all free nodes
3. Summation of weight of the edges for which both ver-

tices are free
4. Maximum degree among all free nodes
5. Maximum sum of free out-edge weight of a node among

all nodes
6. Maximum sum of free out-edge weight of a node among

nodes which are the first player’s neighbors
7. Maximum sum of free out-edge weight of a node among

nodes which are the second player’s neighbors
8. Maximum activated nodes of a node for the first player

after two rounds of influence propagation
9. Maximum activated nodes of a node for the second

player after two rounds of influence propagation

We quantize each feature into three levels (i.e., low, medium,
and high). Thus, we have at most 39 states. In practice,
since some of the features are dependent, not all the combi-
nations of states can happen. Note that these features are
somewhat correlated with the candidate strategies used as
our actions. For instance, it is not hard to imagine that if
the max free degree is low, then it makes less sense to choose
degree-first strategy.

DATA FOR TRAINING Since we are proposing a data-
driven approach, normally it is required to acquire multi-
party seed selection data to train our model. Theoretically
we need some experience data (i.e., which action given which
state can lead to what amount of rewards) to learn the V and
Q functions. Unfortunately, as described previously, obtain-
ing human-labeled seed selection data is costly, in particular
for multi-party cases. Fortunately, since in our problem the
propagation model is known (e.g., we choose LT in our ex-
periments), and the candidate strategies served as actions
are predefined, we can simply resort to agent simulation to
obtain multi-round seed selection outcomes. That is, in the
training phase we train the agent against a certain strategy
(or fused strategies) and see how it performs on the given
network. Such simulation data can then be used to learn the
value functions. Training against opponents can be divided
into three different scenarios:

S1. If the opponent’s strategy is known, then we can
simply simulate the opponent’s strategy during training so
that the agent can gradually learn how to play with it.

S2. If the opponent’s strategy is unknown but available
during training, then our agent can still play against it to
learn how to optimize its own influence against it.

S3. The opponent’s strategy is unknown and unavailable
for training. In Section 4.4, we introduce how to train a
more general model that has a better chance to defeat such
opponents.

In summary, one important advantage for our design is
that the data acquisition cost is very low as no human se-
lection data is needed while training a model, which signifi-
cantly boosts the usability of this solution.

The flow of our framework is shown in Figure 4. Given
the social network and the design of the actions, states, and
rewards, our agent keeps interacting with the opponent and
environment to learn the association between actions, states,
and rewards during training. The agent can gradually up-
date its Q function (Q-table) from the simulation experi-
ences throughout the training rounds, and in the meantime
update its policy π for choosing seed nodes. Since the frame-
work feedbacks the ultimate rewards back to each previous
step to update its V function, we can expect the model to
learn the true long-term value of each state-action pair, in-
stead of simply optimizing the immediate rewards myopi-
cally. During the competition phase, the agent would not
update its Q-table. Instead, it generates the policy π ac-
cording to the existing Q-table. Next, we will describe in
detail how to learn a model given the above three scenarios.

4.3 Strategy-Oriented Reinforcement-Learning
with Opponent Strategy Known

We first consider an easier scenario, where the opponent’s
strategy is given or predictable. Note that predicting the
strategy of an opponent is out of the scope of this paper.
However, if the opponent’s strategy is known, then it can
be simulated exactly allowing our model to choose the max-
imum reward based on past experience. What we need to
do is to let our model compete against this known opponent
several times to learn the optimal policy against it. Here we
propose an algorithm called STORM-Q which updates its
Q-function following the concept of Q-Learning [21].

STORM-Q enters next state once the occupation status
of the network is changed. We utilize the nine features in
Sec. 4.2 to represent the current occupation status. Instead
of choosing nodes directly, STORM-Q determines a node
selection strategy from candidate strategies for each state.
In the training phase, STORM-Q determines the strategy
using ε-greedy on the current policy derived from Q-table.
The ε-greedy is used to explore the new directions to avoid
sticking at local optimum.

We can adapt Q-learning to the MRCIM problem given
opponent’s strategy. The idea of Q-learning allows us to
approximate the V and Q functions without knowing in ad-
vance the state transition probabilities. It updates the func-
tions one step at a time using current experience in the train-
ing phase. Since MRCIM is a finite round game, Qt+1(st, at)
is guaranteed to converge to the optimal policy through Q-
learning [22]. The Qt+1(st, at) is updated in the following.

Qt+1(st, at) = (1− α)Qt(st, at) + α [rt+1 + γV (st+1)] , (3)

where rt+1 is the relative number of activated nodes to
the opponent’s using strategy at in state st and V (st+1) is
the expected accumulated influence gain from st+1 to the
end. The term of rt+1 + γV (st+1) in (3) is a fresh ex-
pected accumulated reward obtained from this experience
and Q(st+1, at+1) is the previous expected accumulated re-
ward. The learning rate α is a weight to sum the fresh and
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Algorithm 1 STORM-Q algorithm

1: Q(s, a)← initial value
2: while training is not terminal do
3: st ← s0
4: while st is not a terminal state do
5: Determine strategy at using ε-greedy on the current

policy π(st) derived from Qt(st, at)
6: Take strategy at to choose a seed node
7: Simulate the opponent’s seed choice
8: Propagate influence to obtain reward rt+1

9: Compute network features as next state st+1

10: Update Q(st, at) by (3) and st ← st+1

11: end while
12: end while

previous expected rewards to derive a new expected accu-
mulated reward Qt+1(st, at). Then the maximum reward
from the learnt model is chosen to obtain the next state’s
expected accumulated reward V (st+1). That is, V (st+1) =
maxat+1 Q(st+1, at+1). The training process then moves on
to update state st+1. Note that STORM-Q adopts a pure
strategy, meaning that the most likely strategy is chosen
given a state. It is different from the mixed strategy that
samples an action from the distribution of actions in each
state. More details are given in Algorithm 1.

On the other hand, in the competition phase, Q-STORM
greedily determines a strategy in each state without explo-
ration on the current policy derived from Q-table.

4.4 Strategy-Oriented Reinforcement-Learning
with Opponent Strategy Unknown

In the second scenario we consider the opponent’s strategy
unknown but available for training. Given this situation, we
can still treat the opponent’s selection as part of the environ-
ment feedback and apply STORM-Q to handle it. The only
difference is that the experience cannot be obtained through
simulation any more; instead, we have to train against the
unknown opponent’s strategy during competition. It is feasi-
ble because STORM-Q only needs to know the seed-selection
outcomes of the opponent to update the Q-table, not the ex-
act strategy it takes.

The most practical and challenging scenario might be the
third one that assumes the opponent’s strategy is unknown
and unavailable for training. In the real world, we normally
cannot obtain the competitors’ promotion strategy and there
is little chance to repeat a promotion campaign multiple
times for training purposes. Here our goal is to create a
general enough model that is competitive against a variety
of rational strategies. Also we make a reasonable assumption
that the opponent is rational. That is, it wants to optimize
its own influence and knows that its opponents also want to
optimize theirs when considering the opposite’s strategy.

Under this assumption, the opponent chooses the node se-
lection strategy with maximum rewards according to the ex-
perience, just like our agent. Then to conquer it, we propose
STORM-QQ model. In STORM-QQ training, two identical
STORM-Q agents are constructed to compete against each
other and update their Q-tables at the same time. STORM-
QQ interacts with each other according to the current Q-
table during training phase. The other components are iden-
tical to STORM-Q. Note that STORM-QQ can be applied
to more than two parties IM. If there exists only one equi-

librium in MRCIM, STORM-QQ can reach the equilibrium
by updating Q-table until convergence.

However, STORM-QQ consists of STORM-Q, which uti-
lizes a pure strategy. It is not guaranteed that the equilib-
rium in MRCIM exists given a pure strategy is used which is
adopted by STORM-QQ. For this reason, to find the equilib-
rium in MRCIM, it is preferable to use mixed strategy that
samples an action from the distribution of actions in each
state. Next, we will introduce a solution toward this goal.

We found that MRCIM is a zero-sum game for two players
since (F 1−F 2)+(F 2−F 1) = 0, where F 1−F 2 and F 2−F 1

are the goals of P1 and P2, respectively, according to Defini-
tion 2. In a two-player zero-sum game, the Nash equilibrium
is guaranteed to exist with mixed strategies and we can use
MINMAX theorem to find the equilibrium [23]. To model
it, we search for our best strategy considering the opponent
also using the best strategy for itself. We use a payoff ta-
ble similar to the Q-table while considering both parties’
actions together. That is, Q(s, a, o) is the reward obtained
when the first party uses strategy a against the opponent’s
strategy o in state s. We propose the STORM-MinMax (ab-
breviated as STORM-MM) algorithm to learn an optimal
strategy and apply the MINMAX-Q learning [24] to update
the two-dimensional Q-table. The Q-table, Qt+1(st, at, ot),
in STORM-MM can be updated in the following manner.

Qt+1(st, at, ot) = (1−α)Qt(st, at, ot)+α [rt+1 + γV (st+1)] (4)

where V (st+1) is the expected accumulated reward for the
next state. It can be determined as the equilibrium value
in Q(st+1, a, o) with considering both agents’ goals. The
equilibrium value is derived by MINMAX theorem. The
objective becomes finding such mixed strategies of the model
itself πs and the opponent’s πo.

For simplicity, the probability Pa represents the distribu-
tion of each action a taken by 1st-player and Po represents
the distribution of each action o taken by 2nd-player given
st+1. The goal in STORM-MM is to find πa that maximizes
its expected accumulated reward while considering the worst
case. That is, maxπa minπo

∑
a

∑
o papoQ(st+1, a, o). For

the opposite agent, it wants to minimize the opposite’s ex-
pected accumulated reward derived from the same Q-table.
Its goal is to find minπo maxπa

∑
a

∑
o papoQ(st+1, a, o).

Since it has been proved that there exists equilibrium in
a two-player zero-sum game, the equality of (5) holds [23].

V (st+1) = max
πa

min
πo

∑
a

∑
o

papo(st+1, a, o)

= min
πo

max
πa

∑
a

∑
o

papo(st+1, a, o) (5)

Since Po > 0, maxπa minπo

∑
a

∑
o papoQ(st+1, a, o) can be

reduced to maxπa mino
∑
a paQ(st+1, a, o). Then we can

transform this minmax problem to an optimization problem
which can be solved with a linear programming.

Maximize V (st+1)

Subject to

∀o max
πa

∑
a

paQ(st+1, a, o) ≥ V (st+1),

∀apa > 0, and
∑
a

pa = 1.

After solving that, we obtain V (st+1) and πa. The πo can
be obtained in the similar manner.
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The flow of STORM-MM in the training phase is similar
to that of STORM-Q except that the Q-function is updated
by (5) in the line 7 of Algorithm 1.

The difference between STORM-QQ and STORM-MM is
that in STORM-QQ there are two separate agents choosing
strategies by separately maximizing the rewards in their own
Q-tables; while STORM-MM finds equilibrium with one sin-
gle Q-table and determines both sides’ actions at the same
time. Although STORM-QQ and STORM-MM choose their
strategies using ε-greedy in the training phase, the goal of
STORM-QQ is to learn pure strategies as a policy while
STORM-MM learns mixed strategies. Thus, in the execu-
tion phase, STORM-QQ chooses a strategy by greedy (same
as STORM-Q) while STORM-MM samples from the mixed
strategy πa or πo.

Ideally, the policies learnt by well-trained STORM-QQ
and STORM-MM are similar in two-party MRCIM. Since
both parties in STORM-QQ simultaneously update their Q-
tables, the stable action pair is also at equilibrium when the
two Q-tables reach convergence. However, in practice their
results might not be the same due to two reasons. First, the
equilibrium may not exist in STORM-QQ (and thus may
not converge) because it resorts to pure strategy. Second,
though it is guaranteed that there exists equilibrium in two-
party CIM with mixed strategies (i.e., STORM-MM), it does
not guarantee that Q-table shall converge to a correct value.
For example, lack of training data and bad initialization can
all lead to the convergence in local optimum. If so, STORM-
MM might not produce better results.

4.5 Complexity Analysis
We first analyze the time complexity of STORM in train-

ing and testing processes. One episode in training includes
node selections and CTL propagation of T rounds. In Algo-
rithm 1, one round of node selection includes five parts:
• O(|A|): ε-greedy strategy determination in Line 5
• maxiO(xi): executing a candidate strategy of choos-

ing nodes in Line 6 and 7
• O(|E|+ |V |): performing propagation in Line 8
• maxj O(yj): computing the state in Line 9
• O(1)/O(|A|): updating the Q-table by STORM-QQ

/STORM-MM in Line 10
Thus, for one episode in training, the time complexity is
O(T (maxi xi + maxj yj) + |E|+ |V |) since the complexity of
overall propagation is still O(|E|+ |V |) and A is a constant.

It is not hard to realize that the key to efficiency lies in
candidate strategy executions maxiO(xi) and state compu-
tations maxj O(yj). In the experiment, we choose four can-
didate strategies, Degree, Weight, Blocking, and SubGreedy,
which is bounded by O(|E|). Note that the greedy strat-
egy might not be a suitable basis strategy if efficiency is a
concern, since its worst case cost is O(|V ||E|). Next, the
computation of states varies a lot, depending on the com-
plexity of each state. In our setting, Features 8 and 9 dom-
inate the computation. Their computational complexity of
the expected reward after propagating two rounds is O(|E|).
Hence, we have maxj O(yj) = O(|E|).

Since O(|E|) > O(|V |), the complexity of the training
phase is O(kT |E|), where k is the predefined number of
episodes. For testing, since there is only one episode and
the Q-table is not being updated, the complexity for testing
is merely O(k|E|)), which is generally very efficient.

For space complexity, we need to store Q-tables with com-
plexities of |S||A| and |S||A|2 for STORM-QQ and STORM-
MM, respectively, where S is the set of the states which have
been visited. In our experiment, |A| is 4 .

5. EXPERIMENTS
To demonstrate the effectiveness of the proposed frame-

work for MRCIM, we have designed experiments to test the
following three hypotheses:

• H1. When the opponent’s strategy is given, STORM-
Q can be trained to optimize its performance against
the opponents. Furthermore, while training and test-
ing on the opponents of the same strategy, our model
can do a better job than testing on opponents with
different strategies to the training opponent.
• H2. When the opponent’s strategy is unknown but

available for training, our solution can gradually learn
how to beat the opponent.
• H3. When the opponent’s strategy is unknown and

not available for training against, our solution can still
yield better results than other solutions, including fixed
strategies and meta-strategies such as voting.

5.1 Experimental Setting

Table 2: Statistics of real-world networks

Name Node# Edge# Weight Full graph
Ca-HepTh 9,877 51,971 given Full
Ca-GrQc 5,242 28,980 given Full
P2P-Gnutella 6,301 20,777 random Full
Facebook 4,039 88,234 random Full
Cit-HepPh 620 827 given Subgraph

We choose four kinds of networks for evaluation, including
social network, collaboration network, peer to peer network,
and citation network with their details listed in Table 2. All
datasets are downloaded from the Stanford Large Network
Dataset Collection website [25]. Facebook is a network with
social circles from the popular website Facebook.com. Ca-
GrQc and Ca-HepTh are collaboration networks of Arxiv.
P2P-Gnutella is a snapshot of Gnutella peer to peer net-
work taken on August 8, 2002. Cit-HepPh is a subgraph of
Arxiv High Energy Physics paper citation networks, which
is created using Breadth-First-Search on the original cita-
tion network. We subsample Cit-HepPh to a much smaller
graph since we want to use this to perform exhaustive search
on all combinations of strategies to evaluate the scenario of
unknown opponent strategy. Since the edge-weights are not
given in the original datasets, we define the edge weight
in Ca-HepTh, Ca-GrQc and Cit-HepPh as the number of
co-authored papers, normalized by the sum of edge weight
incident to a node. The weights of the other graphs, P2P-
Gnutella and Facebook, are assigned randomly. The thresh-
olds in the CLT model are set randomly.

An episode in our model is defined as the parties choosing
seed nodes and influence being propagated for T = 7 rounds.
In each round, the occupation status of nodes in the network
is represented through the defined states. Our model then
learns which strategy is the best to apply in each state. We
use four heuristic algorithms, Degree, Weight, Blocking and
SubGreedy, as candidate strategies.
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• Degree: choosing a node with maximum number of
free neighbors as the seed.
• Weight: choosing a node with maximum sum of free

out-edge weight as the seed.
• Blocking: choosing among the blocking nodes (i.e. neigh-

bor nodes of the opponent) whose sum of free out-edge
weight is greatest.
• SubGreedy: A greedy strategy that chooses a node

which, after being activated, yields the most activated
nodes after two rounds of propagation, assuming the
opponent takes no action. The reason to choose Sub-
Greedy is that it is much more efficient than greedy
which requires performing propagation till no new node
can be activated.

We want to test how our model performs against differ-
ent types of opponents. The above four strategies are the
natural opponents we would like to compete with. Thus,
we have Degree, Weight, Blocking, and SubGreedy as four
fixed-strategy components. We also compare ourselves with
two meta-strategies which also use a fusion of these four can-
didate strategies. The ’Random’ meta-strategy randomly
chooses one of these four strategies to select the seed. The
’Voting’ meta-strategy let these four strategies vote for a
node as the seed node.

If not specifically mentioned, we have the following train-
ing setting for each STORM model. During training phase,
since the cost of data simulation is low, we independently
train five models each running 500 episodes and choose the
best one from the the results as our final model. It can be
considered as a validation process for learning to eliminate
the negative effects of poor initialization. The other param-
eters, initial learning rate α, initial ε-greedy probability ε ,
the decay of learning rate d, and discount factor γ are setted
as 0.5, 0.8, 0.998, and 0.98, respectively. All experiments are
conducted on a machine with Intel Core i7 3.4GHz 6 cores
64 bit processor and 64G RAM.

5.2 Experimental Results
In the first experiment, we assume that the opponent’s

strategy is given. We separately train STORM-Q against
the given six opponents to obtain six different models. Then
for each model we test it against six different opponents.
Conceivably if testing on the strategy not yet trained against,
the performance can be degraded. Table 3 shows the results
in five networks. Due to space limitation, we only show the
results of three networks with the average results of all five
networks. Each row represents our model trained with a cer-
tain strategy (in bracket). Each column represents an oppo-
nent. The value inside represents the difference between ac-
tivated nodes to the opponent in competition, coming from
averaging five repetitions of different threshold settings. In
our experiment we always train our model as the 1st-player
to act first, although there is no reason it cannot be trained
as the 2nd-player. Note that the learnt strategy for the
1st-player and 2nd-player can be different, thus the abso-
lute score here might be slightly biased since the 1st player
has some edge in the competition by choosing first. Never-
theless, the goal here is to show that our framework learns
well with given opponents’ strategies compared with train-
ing against arbitrary strategies. It generally outperforms the
2nd player if trained with the right strategy.

We can see that the score in the diagonal cells is usu-
ally the highest except for Random. This implies training

(a) P2P-Gnutella

XXXXXXXOurs
Opponent

DegreeWeightBlockingSubGreedyRandomVoting

ST-Q(Degree) 102.5 26.0 24.0 -27.0 42.5 44.5
ST-Q(Weight) 75.0 96.5 90.5 -32.5 67.5 94.5
ST-Q(Blocking) 91.0 60.0 123.0 -52.0 48.0 46.0
ST-Q(Subgreedy) 75.0 60.5 88.0 9.0 54.5 85.0
ST-Q(Random) 87.0 100.0 91.5 -29.0 70.5 68.0
ST-Q(Voting) 67.5 21.0 71.5 -51.0 47.5 106.5

(b) Ca-HepTh

XXXXXXXOurs
Opponent

DegreeWeightBlockingSubGreedyRandomVoting

ST-Q(Degree) 112.5 11.0 94.8 -48 20.3 39.5
ST-Q(Weight) 101.0 67.8 119.0 9.0 74.8 70.8
ST-Q(Blocking) 100.3 30.0 129.5 -12.8 42.8 59.5
ST-Q(Subgreedy) 94.5 55.0 105.3 17.0 94.8 65.3
ST-Q(Random) 107.8 62.0 121.0 6.8 71.5 63.8
ST-Q(Voting) 85.5 44.0 113.0 -14.8 54.0 86.5

(c) Cit-HepPh

XXXXXXXOurs
Opponent

DegreeWeightBlockingSubGreedyRandomVoting

ST-Q(Degree) 89.6 5.8 91.0 2.0 51.8 27.2
ST-Q(Weight) 60.6 35.2 97.2 17.4 57.4 47.2
ST-Q(Blocking) 59.2 3.2 146.4 2.6 44.6 17.6
ST-Q(Subgreedy) 77.2 32.6 92.0 30.6 43.0 34.6
ST-Q(Random) 75.2 34.6 116.6 32.8 71.2 42.4
ST-Q(Votin)g 56.6 29.0 107.0 16.6 50.8 49.6

(d) Average of Score in Six networks

XXXXXXXOurs
Opponent

DegreeWeightBlockingSubGreedyRandomVoting

ST-Q(Degree) 85.2 22.1 73.3 -10.8 37.0 27.0
ST-Q(Weight) 56.3 58.9 77.4 3.8 51.5 42.7
ST-Q(Blocking) 55.7 32.3 108.2 -12.8 30.8 28.6
ST-Q(Subgreedy) 55.9 37.1 73.6 18.5 50.0 45.5
ST-Q(Random) 70.8 46.4 95.9 11.5 66.4 44.9
ST-Q(Voting) 61.1 40.1 81.9 -1.4 42.2 60.3

Table 3: Each row represents STORM-Q trained
with a certain strategy (in bracket). Each column
represents an opponent.

a model against the strategy that will be used to compete
later on yields more effective results. Since Random strategy
yields unpredictable choices , it is generally harder to train
a good strategy against. Also we find that although Sub-
Greedy seems to be the strongest strategy, training against
it might not yield a killer model against all opponents. This
experiment Our findings from this experiment confirms hy-
potheses H1.

In the second experiment, we want to test how our model
performs when the opponent’s strategy is unknown but avail-
able for training. We focus on verifying H2. To do so, we
use STORM-Q to train against some unknown strategy for
500 episodes in five networks, and then report the results of
our model against it before and after training in Figure 5.
We average the outcomes of five networks in Figure 5(d).

The backslash and solid bars are the scores of STORM-Q
against different strategies before and after training with
these strategies. We notice that no matter which strat-
egy the unknown opponent uses, can STORM-Q eventually
learn an effective model to play against it, achieving higher
score after training. Even against the strongest strategy
SubGreedy, STORM-Q improves the score after training.

In the third experiment, we test the scenario that the op-
ponent’s strategy is unknown and unavailable for training.
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Figure 5: Score of STORM-Q training against dif-
ferent strategies before and after training

-2000.00

-1500.00

-1000.00

-500.00

0.00

500.00

1000.00

1500.00

2000.00

S
c
o
r
e

Competing algorithm

(a) P2P-Guntella
-1000.00

-800.00

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

S
c
o
r
e

Competing algorithm

(b) Ca-HepTh

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

S
c
o
r
e

Competing algorithm

(c) Facebook

-15

-10

-5

0

5

10

15

20

p
ro

p
o

rt
io

n
 o

f 
w

in
n

in
g

 n
o

d
e

 (
%

)

Competing algorithm

(d) Average five networks

Figure 6: Average scores of each competing algo-
rithms against six strategies and an average score
over five networks

It can also be regarded as that the opponents have freedom
on which strategy to choose. Thus the design goal of the
model becomes to optimize the influence given smart oppo-
nents. To evaluate such a goal, we design two scenarios.

The first scenario requests each competitor to compete
one by one against the six aforementioned strategies (i.e.
four fix strategies and two meta-strategies) and average the
results. Here again we only show the results of three graphs
and the average results of all graphs in Figure 6. The bar in
Figure 6(d) represents the average score normalized by the
node number in a network. Ideally an agent that obtains the
better score can be considered as more capable of handling
different types of opponent strategy.

In Figure 6, we observe that the best strategies among four
basis strategies for networks with different topology vary sig-
nificantly. In P2P-Gnutella and Ca-HepTh networks, De-
gree is the most effective strategy among four candidate
strategies. However, SubGreedy yields the best performance
in Facebook network. The results again reassure the need of
a topology-dependent strategy. Though the most effective
strategy is different for different networks, STORM-QQ and

-80

-60

-40

-20

0

20

40

60

80

100

S
co

re

Competing algorithm

Figure 7: The average performances of the compet-
ing algorithms against all possible combinations of
candidate strategies

STORM-MM generally perform better and both are able to
learn different policies given different networks. Figure 6(d)
reveals apparent advantage of our models while averaging
the results of five networks.

In the second scenario, we provide a thorough evaluation
on the generalization of the model. Using a smaller graph
Cit-HepPh, we tried all possible combinations of candidate
strategies in T rounds (in our experiments, T = 7, that
sums up to 47 combinations of fused strategies). We let
each competing algorithm play against all combinations and
average their outcomes. The result is shown in Figure 7. It
reveals that STORM-MM is the best strategy that has best
chance to defeat different opponent strategies.

In summary, the third experiment verifies H3. We con-
sider many types of strategies to model the possible un-
known opponents’ strategies. When the opponent’s strategy
is unknown and not available for training, STORM-QQ and
STORM-MM generally yields better performance than fixed
strategies and other types of meta-strategies.

5.3 Discussion
STORM can support more than two parties though we

apply the simple setting of two parties in Sections 4 and 5.
STORM updates the reward and makes decisions accord-
ing to two factors: the responses of other parties and the
influence propagation outcome. However, those factors are
modeled as the environment’s feedback from RL point of
view. That is to say, no matter how many parties are there,
their actions and consequent effects can be modeled jointly.
STORM-Q constructs a Q-table in which the values repre-
sent the difference between its reward and the sum of other
parties’ rewards. Thus there is no extra cost of learning for
more than two parties. The same reason applies to STORM-
QQ, in which each party constructs its own Q-table. The
complexity does not grow with the number of parties (not
even linearly). Only constant loading is added for node se-
lections and propagation.

STORM also supports the selection of more than one seed
node each round by letting each basis strategy in STORM
pick the top k nodes as the seed nodes. Similarly, the budget
constraints can be implemented in each basis strategy, while
the whole learning process remains the same.

6. CONCLUSION
The goal of this paper is not to design a new strategy

for IM, instead we design a framework that generalizes a
fused strategy that allows us to combine existing strategies
to produce better results. To our knowledge, this is the
first ever proposal that brings a marriage of reinforcement
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learning and game theory to network influence maximiza-
tion. Among the scenarios we have discussed, the more
practical yet challenging is the situation where the oppo-
nent is unknown and unavailable to train against. We thus
design a game-theoretic, learning-based framework to han-
dle such a situation with theoretical guarantee to reach Nash
equilibrium. Note that STORM can be exploited to handle
single party IM as well. We can simply assume the oppo-
nents exploit the strategy of ‘doing nothing’ to learn a fused
strategy adaptive to different networks.

Furthermore, STORM can be applied to solve more gen-
eral IM task. It can learn from different diffusion models,
even when the models are unknown as long as available dur-
ing training. It can be modified to consider a situation that
the network is not fully observed and can only be obtained
through sampling (i.e., exploration during seed selection).
In this situation, we have to model the expected gain of
exploration in STORM.

Currently STORM is trained given one specific environ-
ment setting including single network topology, single diffu-
sion model and single opponent strategy. In the future we
would like to investigate whether it is possible to quickly
transfer a learnt model to different settings, rather than
learning from scratch. We also want to investigate the partial-
observed MDP (POMDP) algorithms to handle the situation
when the diffusion or selection outcomes are stochastic.
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