
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 551

Bandwidth-Efficient Distributed k-Nearest-Neighbor Search with Dynamic Time
Warping

Chin-Chi Hsu∗, Perng-Hwa Kung†, Mi-Yen Yeh∗, Shou-De Lin‡ and Phillip B. Gibbons§
∗Institute of Information Science, Academia Sinica, Taiwan
Email: chinchi@iis.sinica.edu.tw, miyen@iis.sinica.edu.tw
†The Media Lab, Massachusetts Institute of Technology

Email: pernghwa@media.mit.edu
‡Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

Email: sdlin@csie.ntu.edu.tw
§Computer Science Department and Electrical & Computer Engineering Department, Carnegie Mellon University

Email: gibbons@cs.cmu.edu

Abstract—We study the fundamental k-nearest neighbor
(kNN) search problem on distributed time series. A server has
constantly received various reference time series Q of length
X and seeks the exact kNN over a collection of time series
distributed across a set of M local sites. When X and M are
large, and when the amount of query increases, simply sending
each Q to all M sites incurs high communication bandwidth
costs, which we would like to avoid. Prior work has presented
a communication-efficient kNN algorithm for the Euclidean
distance similarity measure. In this paper, we present the first
communication-efficient kNN algorithm for the dynamic time
warping (DTW) similarity measure, which is generally believed
a better measure for time series. To handle the complexities
of DTW, we design a new multi-resolution structure for the
reference time series, and multi-resolution lower bounds that
can effectively prune the search space. We present a new
protocol between the server and the local sites that leverages
multi-resolution pruning for communication efficiency and
cascading lower bounds for computational efficiency. Empirical
studies on both real-world and synthetic data sets show that
our method reduces communication bandwidth by up to 92%.

I. INTRODUCTION

This paper studies the kNN problem for distributed time

series. The system model is shown in Figure 1. Here we

have a server that can communicate to all M geographi-

cally distributed sites, each of which collects multiple data

readings from the sensors it monitors. The server, acting

like a time-series search engine, accepts query references Q
in a time series form from users and for each single query

searches for the k nearest time series across all sites. Taking

a large-scale environment monitoring system for example, it

is composed of a central server and many local stations with

many sensors detecting certain environmental level. Suppose

a scientist detects several unusual and potentially dangerous

events such as the dramatic oscillation of CO2 level or

the increasing ambient concentration of some hazardous

material, he or she may want to issues warnings to the

location where similar events had happened.

P1 Server

Q

P2

PM

sensor readings

sensor readings
sensor readings

local site

many local sites

Figure 1. The system model

Under the system model, the main goal is to answer

exact kNN queries in a communication efficient manner. Our

primary cost metric is the total number of bytes exchanged

between the server and the local-to-the-sensors sites to

answer the query. An obvious solution is to send the entire

reference Q to all M local sites. After receiving Q, each

local site computes the distances of all the candidate time

series it monitored to the reference and sends these values

back to the server. The server can then determine the global

k nearest and further retrieve those time series. However, in

real applications, the number of sites M can be huge. For

example, a city-wide environment monitoring system can

have thousands of sensors distributed in different locations.

Also, the length of the reference time series Q can be long

as well. For example, a short period of observations can

have hundreds to thousands of readings if the sampling rate

is high. More importantly, the server usually will receive

many requests, i.e., the number of queries will be large.

Under such conditions, sending all Qs to all the local sites,

which then respond with distances for all the candidates for

all these Qs, will consume huge bandwidth.

People might argue that one can always compress the

query before sending it. We will show through experi-

ments that our method is non-exclusive to any loseless

compression, and thus brings further bandwidth saving after

compression.

552

Prior work has considered exact kNN search for the same

system model, presenting a communication-efficient ap-

proach for the Euclidean distance similarity measure [1][2].

In the work, the server decomposes the reference time series

into multi-resolution Haar wavelet coefficients and sends

these coefficients from the coarsest level to the finest to

the distributed sites. As more levels are transmitted, an

increasingly tighter similarity range, bounded by upper and

lower bounds, can be derived for each candidate to the

reference at either the server or the local sites, until the

exact kNN are determined. Although Haar wavelet is good

for decomposing the query reference, their solution is very

much tied to the Euclidean distance measure.

In this paper, we consider the dynamic time warping

(DTW) distance, which is generally believed a better mea-

sure for the similarity between two time series. It is widely

applied in many applications such as speech recognition,

information retrieval on music and motion, and various

mining tasks [3], [4], [5], to name but a few. In essence,

the DTW distance finds the optimal match between two

time series by warping them non-linearly, both stretching

and shifting, in the time dimension. Although the DTW

measure is powerful, its computation complexity is quadratic

in the length of the time series. To accelerate the task of

finding kNN using the expensive DTW measure, a common

way is to do early pruning of unqualified candidates using

computationally cheaper lower bounds [6], [7], [8], [9],

[5], [10]. Rakthanmanon et al. [5] have pointed out several

important lower bounds for the DTW distance and discussed

the tradeoff between their tightness and computational com-

plexity. They further proposed a cascading lower bounding

technique to prune the unpromising candidates more effi-

ciently: loose but computationally-cheap bounds are used to

do the initial pruning, followed-by tight but computationally-

costly bounds. To our knowledge, all existing work is

based on a centralized computing environment, where all

candidates are in the same location.

We present the first communication-efficient distributed

kNN algorithm for the DTW similarity measure. We cannot

leverage the Haar wavelet approach of the prior work

for the Euclidean distance measure, because Haar wavelet

coefficients can only be used to compute the approximate

DTW distance without any bound guarantee [11]. To handle

the complexity of DTW, we instead present a framework

based on the following insights. First, we design a new
multi-resolution structure for the reference time series. At

the coarsest level, the time series is divided into several

disjoint segments, each of which records only its maximum

and minimum values. Then, each segment is further divided

into a fixed number of segments to become the finer level

to represent more detailed information of the reference time

series. Based on the multi-resolution structure, the server

iteratively sends the information of Q in a level-wise manner

starting with the coarsest resolution (fewest bytes sent) and

continuing with increasingly finer resolutions (more bytes

sent). Second, we further derive three lower bounds to

be used for cascaded pruning. Two of them are multi-

resolution versions of existing DTW lower bounds, while

the third is a newly designed lower bound. We prove that

all three bounds will become tighter and close to the exact

DTW distance as we move from the coarser level to the

finer one. Third, we design a new protocol between the
server and the local sites that leverages multi-resolution

pruning for communication efficiency and cascading lower

bounds for computational efficiency. Experiment results on

both real-world and synthetic data show that our solution

significantly saves the total bandwidth consumption in a

variety of different setups for searching kNN using the DTW

distance. Note that all the supplemental materials, including

test data and codes, can be downloaded from [12].

Our main contributions can be summarized as follows. (1)

We present a communication-efficient framework to process

the exact kNN query using the DTW distance in a distributed

environment. To our knowledge, this is the first solution

proposed for such purpose. (2) We propose a new multi-

resolution structure for decomposing the query reference.

Based on the structure, cascading lower bounds, including

the existing lower bounds and our newly designed one, can

then be exploited to prune candidates for more efficient

search without compromising correctness. (3) We conduct

extensive experiments that demonstrate the significant band-

width savings of our framework.

II. PRELIMINARIES

Dynamic Time Warping. Suppose we have a reference

Q = {q1, q2, ..., qX} of length X and a candidate time

series C = {c1, c2, ..., cY } of length Y , their dynamic time
warping (DTW) distance is computed as follows.

DTW (Q,C) = f(X,Y), (1)

where

f(i, j)

=

⎧
⎪⎨

⎪⎩

0, if i = j = 0,
∞, if i = 0 or j = 0,
d(qi, cj) +min{f(i, j − 1),
f(i− 1, j), f(i− 1, j − 1)}, otherwise,

(2)

d(qi, cj) = (qi − cj)
2, i = 1, 2, ..., X, and j = 1, 2, ..., Y.

In essence, the DTW distance finds the optimal match

between two time series by warping them non-linearly in the

time dimension with the quadratic computation complexity

of O(XY).

III. METHODOLOGY

A. Overview

Figure 2 demonstrates the outline of our framework. Our

key ideas of reducing the bandwidth consumption for the

distributed kNN query with the DTW distance contains

three parts: first, we quickly identify a good initial threshold

553

Figure 2. Big picture of the framework

for pruning unpromising candidates; second, we send the

current threshold and only the partial information of the

reference, i.e., the coarse Q(l) at certain resolution l, to a

portion of local sites at each communication round; third,

we let local sites to compute the lower bounds of the

DTW distance between each candidate and the reference

reconstructed by the Q(l) they have received so far so that the

candidate pruning can be achieved without causing any false

dismissals. By few iterations of the second and third steps,

the candidate time series and even the local sites can be

quickly pruned and thus the final k can be obtained without

consuming much bandwidth.

In the following, we first describe the concept of multi-

resolution structure used for our framework in Sec. III-B.

Then we depict how the multi-resolution data are commu-

nicated between the server and the local sites in Sec. III-C,

how the lower bounds, which are used to prune candidates,

are computed based on the multi-resolution representation of

Q in Sec. III-D, and finally the entire flow of the proposed

framework in Sec. III-E.

B. Multi-Resolution Segmentation and Reconstruction

Here we introduce the way of decomposing the reference

Q into a multi-resolution representation at the server and

the way of constructing the reference given the partial

information of Q at a local site.

Basically, we transform Q into multiple levels of dis-

joint segments. Each segment is denoted as seg(l,p) =
[max,min, len], where l represents the level number, p
represents its position number in that level, max (min) are

the maximum (minimum) values of the original time series

covered by the segment, and len is the length of the segment.

A predefined number N determines the number of segments

at the first level. Then, we cut each segment evenly into R
disjoint equal-size ones and get the next level. An example

given in Figure 3, where N = 2, and R = 2, shows the

multi-representation of Q={5,2,4,3,4,7,1,3}. Without loss

of generality, in the following examples we always show

Q 5 2 4 3 4 7 1 3

l = 1 seg(1,1)=[5,2,4] seg(1,2)=[7,1,4]

l = 2 seg(2,1)=[5,2,2] seg(2,2)=[4,3,2] seg(2,3)=[7,4,2] seg(2,4)=[3,1,2]

l = 3 seg(3,1)=
[5,5,1]

seg(3,2)=
[2,2,1]

seg(3,3)=
[4,4,1]

seg(3,4)=
[3,3,1]

seg(3,5)=
[4,4,1]

seg(3,6)=
[7,7,1]

seg(3,7)=
[1,1,1]

seg(3,8)=
[3,3,1]

Figure 3. The multi-resolution representation of Q, where the triples are
[max,min, len]

Q {5,2,4,3,4,7,1,3}

QU(1)
QL(1)

{5,5,5,5,7,7,7,7}
{2,2,2,2,1,1,1,1}

QU(2)
QL(2)

{5,5,4,4,7,7,3,3}
{2,2,3,3,4,4,1,1}

QU(3)
QL(3)

{5,2,4,3,4,7,1,3}
{5,2,4,3,4,7,1,3}

Figure 4. Reconstructed upper and lower query references at different
levels

N = 2 and R = 2 for ease of exposition. However, our

framework also works when N and R equal to other values.

Please refer to [12] for these possible cases.

There are some constraints on the relations of different

resolution levels. First, segments at the same level are all

disjoint, i.e., no data point belongs to more than one segment

at the same level. Second, every boundary between two

segments at the resolution level-l has to be preserved at

the resolution level-(l + 1) as shown in Figure 3. Third,

the length/size of the segments at the first level can be

either equal or unequal. For ease of exposition, we show

the equal size case in Figure 3. However, we may also apply

an existing time series segmentation algorithm such as [13].

The intuition of unequal-sized segmentation is to minimize

the different between the maximum and minimum value of

each segment so that we can have a better lower bounding

effect and thus save more bandwidth. We will show different

pruning effects of equal and unequal segmentations in the

experiments. Finally, for the N value, we can set it as

N =
√

|Q|
2 as a rule of thumb.

Given the level-l representation, we can reconstruct the

query reference at resolution l, denoted as Q(l), which is

composed of an upper bound Q
(l)
ub = {q(l)ub,1, ..., q

(l)
ub,X} and

a lower bound Q
(l)
lb = {q(l)lb,1, ..., q

(l)
lb,X}. Basically, Q

(l)
ub and

Q
(l)
lb are constructed by repeating the max and min values

by len times of each segment at level l, respectively. For

example, given the level-1 representation shown in Figure 3,

Q
(1)
ub is constructed by repeating the max = 5 value len = 4

times for seg(1,1) and the max = 7 value len = 4 times for

seg(1,2). The reconstruction results for all levels is shown in

Figure 4.

Obviously, Q
(l)
ub and Q

(l)
lb have the same length as the

original reference Q and we have

q
(l)
lb,i ≤ qi ≤ q

(l)
ub,i, ∀1 ≤ i ≤ X and ∀1 ≤ l ≤ L,

554

where L is the number of levels of the multi-resolution

representation. In addition, the two sequences form an

envelope of Q, which leads to the following several theorems

about the lower bounding distance between data points of

Q and a candidate time series C. For ease of exposition, let

q
(l)
i = (q

(l)
lb,i, q

(l)
ub,i) and we have the following theorems.

Theorem 1. The width of envelope is more narrow at a
higher resolution level. That is,

q
(l+1)
lb,i ≥ q

(l)
lb,i and q

(l+1)
ub,i ≤ q

(l)
ub,i (3)

for any resolution level l.

Proof: Suppose q
(l+1)
lb,i and q

(l+1)
ub,i are in seg(l+1,px)

and q
(l)
lb,i and q

(l)
ub,i are in seg(l,py). According to our seg-

mentation, seg(l+1,px) at the level l + 1 is contained in

seg(l,py) at the level l. Therefore the min and max values of

seg(l,py) are lower and upper bounds of the min and max

values of seg(l+1,px), respectively. Since q
(l+1)
lb,i and q

(l+1)
ub,i

are the duplications of min and max value in seg(l+1,px)

and q
(l)
lb,i, q

(l)
ub,i are the duplications of min and max values

of seg(l,py), the inequalities hold.

Theorem 2. There is a lower bound dlb of the square
difference between qi, the i-th data point of Q, and cj , the
j-th data point of a candidate time series C. That is,

dlb(q
(l)
i , cj) =

⎧
⎪⎨

⎪⎩

(q
(l)
ub,i − cj)

2, if q(l)ub,i < cj ,

(q
(l)
lb,i − cj)

2, if q(l)lb,i > cj ,

0, otherwise.
≤ (qi − cj)

2

= d(qi, cj)

(4)

for any resolution level l.

Proof:
⎧
⎪⎨

⎪⎩

(q
(l)
ub,i − cj)

2 ≤ (qi − cj)
2, if qi ≤ q

(l)
ub,i < cj ,

(q
(l)
lb,i − cj)

2 ≤ (qi − cj)
2, if qi ≥ q

(l)
lb,i > cj ,

0 ≤ (qi − cj)
2, otherwise.

(5)

Theorem 3. The lower bound distance between two data
points is increasing at higher resolution levels. That is,

dlb(q
(l+1)
i , cj) ≥ dlb(q

(l)
i , cj). (6)

Proof: By Theorem 1, we have q
(l+1)
lb,i ≥ q

(l)
lb,i and

q
(l+1)
ub,i ≤ q

(l)
ub,i. The following cases prove the inequality.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(q
(l+1)
ub,i − cj)

2 ≥ (q
(l)
ub,i − cj)

2, if q
(l+1)
ub,i ≤ q

(l)
ub,i < cj ,

(q
(l+1)
lb,i − cj)

2 ≥ (q
(l)
lb,i − cj)

2, if q
(l+1)
lb,i ≥ q

(l)
lb,i > cj ,

(q
(l+1)
ub,i − cj)

2 ≥ 0, if q
(l+1)
ub,i < cj ≤ q

(l)
ub,i,

(q
(l+1)
lb,i − cj)

2 ≥ 0, if q
(l+1)
lb,i > cj ≥ q

(l)
lb,i,

0 ≥ 0, if q
(l+1)
lb,i ≤ cj ≤ q

(l+1)
ub,i .

(7)

Figure 5. Data encoding in the server

Figure 6. Data decoding in sites

C. Multi-resolution Transmission

The transmission of the query reference Q starts from

level 1 to level L. At level 1, the server sends seg(1,p) =
[min,max, len], where 1 ≤ p ≤ N . When sending the

reference from level-l to level-(l+1) to the same site, where

l ≥ 1, we can find there are redundancies between the two

levels. For example, in Figure 3, the max = 5 and min = 2
are shared between seg(1,1) and seg(2,1). In this case, we

only need to send the additional information between two

consecutive levels. Therefore, we propose how to encode

the information between different levels at the server and

the way of encoding it at the local sites.

To encode the multi-resolution representation of Q at level

l+1, here we introduce a �log2 R�-bit signal sig to indicate

that the max and min values in the segments at level l
should be copied to which newly generated segments at level

l + 1. We first encode R signals and then the sequences of

new max and min values. We show an example of encoding

level 2 of Q in Figure 5, where R = 2 and �log2 R� = 1.

In this case, as one segment at level 1 is divided into two

segments at level 2, sig = 0 indicates the first such segment

and sig = 1 indicates the second. As the seg(2,1) segment

shares the same max and min value from seg(1,1), the first

two signals in the sequence is all zero, followed by the new

values max = 4 and min = 3. As the max and min values

in seg(1,2) are shared with the first divided segment seg(2,3)
and the second one seg(2,4), the next two signals are 0 and

1, followed by the new values max = 4 and min = 3.

Suppose for each data value we use B bits to encode it,

say 32 bits in usual, we save much space for encoding each

555

(a) (b)

Figure 7. LBMS (a) is a lower bounding function, (b)increases as the
level increases

duplication from B = 32 bits to �log2 R� = 1 bit.

Suppose a site can know the R,N and B values at the first

time when it communicates with the server. After receiving

the encoded data sequence at level l, the local site can decode

the sequence by reading it in a sequential way. Continue the

last example, the decoding is shown in Figure 6. As the site

attempts to split seg(1,1) into seg(2,1) and seg(2,2), it reads

two �log2 R� = 1-bit signals, all equals to 0, and knows

to assign the max = 5 and min = 2 to corresponding

sub-segments seg(2,1). Then the site continues to read two

data points of B bits to fill in the unknown values of

seg(2,2). In addition, lengths of segments at level 2 can be

easily calculated given the lengths of segments at level 1.

Consequently, the site can obtain and reconstruct the level-2

query reference.

D. Lower Bounding Functions

In this section, we show how to derive various lower

bounds using the query reference at different resolution

levels at the local sites. First, we introduce a DTW-based

multi-resolution distance function of the query reference

at resolution l and a candidate C, denoted as LBMS =
(Q(l), C), as follows.

LBMS(Q
(l), C) = Dlb(q

(l)
X , cY)

Dlb(q
(l)
i , cj) = dlb(q

(l)
i , cj) + min

⎧
⎪⎨

⎪⎩

Dlb(q
(l)
i−1, cj)

Dlb(q
(l)
i , cj−1)

Dlb(q
(l)
i−1, cj−1)

,

(8)

where dlb(q
(l)
i , cj) is defined in Eq. (4).

Theorem 4. LBMS(Q
(l), C) is a lower bound of

DTW (Q,C). That is,

LBMS(Q
(l), C) ≤ DTW (Q,C), ∀1 ≤ l ≤ L (9)

, where L is the total level number of the multi-resolution
representation of Q.

Proof: Suppose W ∗
DTW is the optimal warping path

for computing DTW (Q,C) and we copy the same path

to the warping table of LBMS(Q
(l), C) and denote it as

WLB as shown in Figure 7(a). Let LBMS(WLB) denote the

summation of dlb(q
(l)
i , cj) of all cells on the warping path

WLB and DTW (W ∗
DTW) denote the summation of d(qi, cj)

of all cells along the warping path W ∗
DTW . Apparently,

LBMS(WLB) ≤ DTW (W ∗
DTW) (10)

because dlb(q
(l)
i , cj) ≤ d(qi, cj) for each corresponding pair

(qi, cj), by Theorem 2, on the warping path.

Let W ∗
LB be the optimal warping path for

LBMS(Q
(l), C). Clearly,

LBMS(Q
(l), C) = LBMS(W

∗
LB)

≤ LBMS(WLB)
≤ DTW (W ∗

DTW)
= DTW (Q,C)

(11)

Theorem 5. LBMS(Q
(l), C) is increasing as l increases.

That is,
LBMS(Q

(l), C) ≤ LBMS(Q
(l+1), C) (12)

Proof:
As shown in Figure 7(b), let W ∗

l be the opti-

mal warping path for LBMS(Q
(l), C), and W (l+1)∗ for

LBMS(Q
(l+1), C). In addition, let W (l) be the same

path copied from W (l+1)∗ to the warping table of

LBMS(Q
(l), C). Then we have

LBMS(W
(l)) ≤ LBMS(W

(l+1)∗), (13)

because dlb(q
(l)
i , cj) ≤ dlb(q

(l+1)
i , cj) for each correspond-

ing pair (qi, cj), by Theorem 3, on the warping path.

Therefore,

LBMS(Q
(l), C) = LBMS(W

(l)∗)
≤ LBMS(W

(l))

≤ LBMS(W
(l+1)∗)

= LBMS(Q
(l+1), C)

(14)

Theorem 5 guarantees that LBMS is increasing and thus

close to the exact DTW distance if higher resolution data of

Q are transmitted.

In fact, the LBMS bound is a special case of LBFTW

proposed by Sakurai et al. [10]. There is a main difference

between these two bounds. We do the multi-resolution

segmentation on the query reference only, while in [10]

both the reference and the candidate are decomposed to

a coarse version. Since we are allowed to access all data

points of candidates in local machines, LBMS utilizing full

candidate information has higher chance to achieve a tighter

bound than LBFTW that does not exploit all data points

of candidates. Under the main goal of bandwidth saving,

we have to prune candidates as many as possible at a given

resolution level of query reference, and hence a tighter lower

bounding function is what we need.

The computation cost of LBMS is O(XY), which is high.

Rakthanmanon et al. [5] suggested to use cascading lower

bounds to save the computation cost. The idea is to leverage

lower bounds that are loose but have low computation

costs to do the early pruning first, and then to use lower

556

Figure 8. LBKeoghEQ and LBKeoghEC

bounds that are tight but have high computation costs to

do subsequent pruning. According to [5], LBKeogh and

LBKimFL are two other possible choices of lower bounds,

of which the computation cost is O(X + Y) and O(1),
respectively.

In the remainder of this section, we show that the lower

bounds LBKeogh and LBKimFL can be used in our multi-

resolution Q framework. The required condition is that

LB(Q(l), C) is a lower bound for DTW (Q,C) that in-

creases as the resolution of Q gets higher. We prove that

both lower bounds satisfy this condition.

According to [5], LBKimFL of the query reference Q at

level l and the candidate C can be computed as follows.

LBKimFL(Q
(l), C) = max{dlb(q(l)1 , c1), dlb(q

(l)
X , cY)}. (15)

We prove that LBKimFL(Q
(l), C) is a lower bound of

DTW (Q,C) and it increases as l increases. Due to page

limits, please refer to our supplemental material [12].

To compute LBKeogh, an envelope, composed of an

Upper sequence and a Lower sequences, should be built

around the query reference, denoted as LBKeoghEQ, or

the candidate, denoted as LBKeoghEC . We show how to

compute these two values using Q(l) and C, which is

illustrated in Figure 8.

The computation of LBKeoghEQ is as follows.

upper
(l)
i = maxt=i−r...i+r q

(l)
ub,t

lower
(l)
i = mint=i−r...i+r q

(l)
lb,t

LBKeoghEQ(Ql, C)

=
∑X

j=1

⎧
⎪⎨

⎪⎩

(cj − upper
(l)
j)2 if upper

(l)
j < cj

(cj − lower
(l)
j)2 if lower

(l)
j > cj

0 otherwise

=
∑X

j=1 dlb(qe
(l)
j , cj), where qe

(l)
j = (upper

(l)
j , lower

(l)
j)

(16)

The computation of LBKeoghEC is as follows.

LBKeoghEC

upperj = maxt=j−r...j+r ct
lowerj = mint=j−r...j+r ct
LBKeoghEC(Q(l), C)

=
∑X

i=1

⎧
⎪⎨

⎪⎩

(q
(l)
lb,i − upperi)

2 if upperi < q
(l)
lb,i

(q
(l)
ub,i − loweri)

2 if loweri > q
(l)
ub,i

0 otherwise

=
∑X

i=1 dlb(q
(l)
i , cei), where cei = (upperi, loweri)

(17)

The parameter r is related to constraints and the detail is

referred to the paper [7]. Similarly, we prove that LBKeogh

can be well included in our framework in [12].

Finally, we merge the two versions of LBKeogh into one:

LBKeogh = max{LBKeoghEQ, LBKeoghEC} (18)

E. The Communication Protocol

Now we can describe the flow of our proposed framework

to solve the distributed kNN queries using the DTW dis-

tance. The pseudocode of our framework is given in Table

I. We will introduce the communication protocol between

the server and the local sites in two parts, the initialization

and the pruning by cascade lower bounds.

Initialization. Steps 1–5 in Table I initialize the algo-

rithm. To find an initial threshold, denoted as θ, for pruning

the candidates, we propose to sample the k actual DTW

distances from the candidates and use the largest value, i.e.,

the kth smallest, as the threshold. The intuition of sampling

the exact DTW distance is to avoid choosing a too loose

lower bound that hardly has a pruning power. To achieve

this, we let the server select just a limited number (at most

k) of the sites and transmit the entire reference Q to them.

The selection of these sites can be done by sending segments

of Q(1), of which the size is much smaller compared to

Q, to all sites. Each local site can reconstruct Q(1) and

computes LB(Q(1), C) for every candidate time series C.

For LB(Q(1), C) here, we can just use LBMS . The server

gathers these lower bound distances from all sites and selects

the sites having the top k smallest lower bound distances.

These selected sites will then receive the exact query Q from

the server, and thus have the ability to compute the exact

DTW distances DTW (Q,C) for every candidate time series

they have. After collecting the exact DTW distances from

these initially selected sites, the server assigns the k smallest

DTW distance as the threshold θ.

Pruning by cascade of lower bounds. Steps 6–12 per-

form the pruning until the exact kNN is determined. Recall

that the server has the lower bound distance LB(Q(1), C)
of all candidate time series C to Q(1) after the initialization.

If all the lower bound distances from a site are greater than

the threshold θ, it means that all candidates in that site will

never be the final kNN for the query. Therefore, the server

no longer needs to transmit any further data to the site. In

other words, the site is pruned. The server searches through

all the sites until every site has either received the entire Q
or has been pruned. It does this in a series of rounds with m
sites per round. At each round (steps 6–11), the server sends

to a set of m local sites the current θ and the reference level-

by-level. For each level, the local site performs a cascade of

lower bounds computation for LB(Q(l), C), which is set to

LBKimFL(Q
(l), C) first, then LBKeogh(Q

(l), C), and then

LBMS(Q
(l), C). For each candidate, as soon as a lower

bound value exceeds θ, the corresponding candidate will be

557

Table I
PSEUDOCODE OF THE FRAMEWORK

Procedure: kNN search on distributed time series with the DTW distance
Input: k, the query reference Q, a set of M sites
Output: k most similar time series to Q

Server Sites

1. Do multi-resolution segmentation on Q. Transmit encoded Q(1) to
all sites.

2. Reconstruct Q(1). Compute lower bounds LBMS(Q
(1), C) for

each candidate time series C and return to the server.
3. Sort the lower bounds. Select a set of initialization sites, Minit,
that contain candidates with the k smallest lower bounds. Transmit Q
to the sites in Minit.

4. If receive Q, compute the exact DTW distances DTW (Q,C) for
each candidate time series C and return them to the server.

5. Sort the DTW distances, initialize kNN, and set the k-th smallest
DTW distance as the threshold θ.

6. Prune candidates whose LBMS(Q
(1), C) > θ. Select m sites that

are not pruned and have not received the entire Q yet. Transmit θ to
these sites. For level l = 2, 3, ..., L{
7. Transmit encoded Q(l) to the m sites simultaneously, ignoring sites
that have dropped out.

8. If receive encoded Q(l), reconstruct it. Do cascade of
lower bounds pruning for LB(Q(l), C)={LBKimFL(Q

(l), C) then
LBKeogh(Q

(l), C) then LBMS(Q
(l), C)}: Compute LB(Q(l), C)

for each candidate time series C and prune candidates whose
LB(Q(l), C) > θ.
9. If all candidates are pruned, inform the server and drop out.
10. If l = L and there exist unpruned candidates, then compute their
exact DTW distances and return them to the server.

11. If exact DTW distances are returned from local sites, update kNN
and θ.
}
12. Repeat step 6 until all sites are searched.

pruned. At the end of each level except for the final level L,

the local sites will return a 1-bit signal indicating whether it

has dropped out. At the final level L, if there are still some

candidates left, the local site computes their DTW (Q,C)
distances and sends these values back to the server. After

receiving these values, the server can update the current kNN

list and set the threshold θ as the current k smallest DTW

distance, completing the round. When all sites have either

been pruned or reported their exact DTW distances of any

unpruned candidates, the kNN can be reported.

IV. EXPERIMENTS

A. Data Description and Experiment Setup

In the experiments, we would like to verify the following

hypotheses: (1) The overall bandwidth saving: Can our

framework saves significant bandwidth usage comparing to

the baseline approach? (2) The effect of query reference
length: Is our framework in favor of long query refer-

ence? i.e., |Q| = X is large. (3)Equal-size or unequal-
size segmentation on Q: Does the unequal-size segmentation

yield a more power pruning effect in our framework? (4)

Initialization: Can the design of our initialization improve

the bandwidth saving ratio? (5) Cascade of Lower bounding
functions: How effective is the designed cascade of lower

bounding technique? Can LBMS provide better pruning

power? (6) The bandwidth saving with compressing Q:

Still obtain decent bandwidth saving if the compression is

performed on the query Q?

We use both real datasets and a synthetic dataset in our

experiments. For real datasets, we use the data from the

UCR Time Series Classification/Clustering Page [14], where

the statistics of each data set are given in details. For each

dataset in the archive, we simply merge both the training

and testing sets into a single dataset for kNN search. For

the synthetic dataset, we apply the random walk generator

as in [5], where the authors claimed that the random walk

can well model the real-world financial data and are often

used for similarity search. Each data point in a synthetic

time series is generated by a random variable of standard

normal distribution. We generate 12,500 time series of length

12,500, which follows the same way used in [1].

To our knowledge, there has not yet been any prior work

dealing with the exact kNN queries with the DTW distance

in the distributed environment, thus in the experiment we

propose a simple baseline to compare with. In the baseline

approach, the server sends the entire query reference to

all local sites, and the local sites transmit the exact DTW

distances of candidates back to the server. The server then

sorts the distances to identify the exact kNN solutions.

We exploit the Bandwidth ratio to measure the bandwidth

consumption. Bandwidth ratio represents the total number

of bits transmitted in our framework divided by those

transmitted in the baseline strategy. The smaller bandwidth

ratio implies the better performance of our framework. We

assume that a data point occupies B = 32 bits for all

conducted experiments.

Without further specification of the parameters, we have

the following settings by default. We use the bottom-up

algorithm proposed in [13] to do the unequal-size segmen-

tation on Q and set the number of segments at the first level

558

150

100

50

1500

1000

500

0

0.2

0.4

0.6

0.8

1

B
a
n
d
w

id
th

 r
a
ti
o

500 1000 1500
0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9. (a) Bandwidth ratio on the UCR datasets, k = 10; (b) Corresponding average rate of left candidate sites of (a) at different resolution levels;
(c) Bandwidth ratio on the synthetic dataset, k = 30 and S = 12499; (d) Corresponding average rate of left candidate sites of (c) at different resolution
levels.

as N = Round(
√

|Q|
2) according to the rule of thumb in

[15]. For the R value, we have tried 2,4, and 8 but found

no significant difference on the bandwidth usage. Thus,

we report the results of R = 2. In addition, by default

k = 10, S = 500,M = 50 where S is the number of

time series and M is the number of sites. In addition, as

suggested in [16], [5], we do z-normalization on the time

series before running any kNN similarity search and we do

apply the Sakoe-Chiba constraint with 5% width.

We select (S + 1) time series extracted from the dataset

for experiments. We use each of them as a query while the

rest as the candidates, evenly distributed in all sites. Finally

we report the average of the bandwidth consumed for these

(S + 1) cases.

B. Results

Overall Bandwidth Consumption. Figure 9(a) shows

the average bandwidth ratio on all the real UCR datasets,

where the number of time series varies S is set to {500,

1000, 1500} and the number of sites M is set to {50,

100, 150}. The bandwidth ratio is always smaller than one,

indicating the bandwidth saving capability of our framework.

As the site number increases, the saving becomes even more

significant. Our framework can save up to 65% of bandwidth

usage (as the bandwidth ratio less than 35% when the site

number is 150). Also, we can see that the bandwidth ratio

is not highly correlated to the number of time series.

Figure 9(b) shows the corresponding site pruning effect

at different level of query resolutions. We can see that

on average about a half of candidates sites can be pruned

after within three levels of Q and about 90% of them are

pruned within the first six level communications. The results

demonstrate that our framework can already prune many

candidate sites with only the coarse information of Q.

On the synthetic dataset, the results of bandwidth ratio at

M = {500, 1000, 1500} and k = 30 are shown in Figure

9(c). We report the average results of 100 random queries.

The results on the synthetic dataset demonstrate that our

framework can save even more bandwidth on the larger-scale

data, where the bandwidth ratio is less than 20%. Similarly,

Figure 9(d) demonstrates that a half of candidate sites are

Inl
ine

Ska
te

CinC
_E

CG_to
rso

Yog
a

12
8

12
8

12
8

13
1

13
1

13
6

15
2

16
6

17
6

27
0

27
0

30
0

30
0

30
0

31
5

31
5

31
5

39
8

42
6

75
0

75
0

1,
02

4
1,

02
4

1,
63

9
1,

88
2

0

0.25

0.5

0.75

1

Time series length

B
an

dw
id

th
 ra

tio

CBF
Swed

ish
 Le

af

Two P
att

ern
s

Fac
e (

all
)

Fac
es

UCR

ECGFive
Day

s

W
afe

r
Chlo

rin
eC

on
ce

ntr
ati

on

Adia
c

W
ord

sS
yn

on
ym

s

50
W

ord
s

Cric
ke

t_X
Cric

ke
t_Y

Cric
ke

t_Z
uW

av
eG

es
tur

eL
ibr

ary
_X

uW
av

eG
es

tur
eL

ibr
ary

_Y

uW
av

eG
es

tur
eL

ibr
ary

_Z

Sym
bo

ls
Non

-In
va

siv
e F

eta
l E

CG Tho
rax

1

MALL
AT

Star
Lig

htC
urv

es

Non
-In

va
siv

e F
eta

l E
CG Tho

rax
2

Figure 10. Bandwidth ratio at different time series length on the UCR
datasets, where k = 10, S = 500 and M = 150

pruned given only one level transmission of Q, and 90%

of them are pruned within the first five levels. This shows

the powerful pruning effect of our proposed framework on

large-scale datasets.

The effect of query reference length. In Figure 10, we

list the average bandwidth ratio when k = 10, S = 500, and

M = 150 on the UCR datasets. Datasets with time series

length smaller than 100 are excluded. The results show that

the performance of our work tends to be better when the

time series becomes longer.

Equal-Sized or Unequal-Sized Segmentation. Previous

experiment results are all based on the unequal-size seg-

mentation at the first level. Here we would like to compare

the outcome of unequal-size segmentation to the outcome of

the equal-size segmentation. Figure 11 shows the bandwidth

ratios of two different segmentations on Q at the first level,

given the same number of segments. In general, the unequal-

size segmentation can save 10% more bandwidth compared

to the equal-size segmentation. This is because the unequal-

size segmentation makes Q(1) is even closer to Q so that

the lower bound is tighter.

Initialization. In the initialization step, we need to select

some sites to transmit the exact query reference to obtain an

559

Figure 11. Bandwidth ratio for unequal-size/equal-size segmentations on
the UCR datasets, k = 10

Figure 12. Bandwidth ratio with three initialization methods using oracle
selection, default selection(our proposal for the framework) and random
selection on the UCR datasets

initial threshold θ. The initialized sites are determined using

the order of the level-1 lower bounds. We believe that this

initialization does benefit the bandwidth savings.

Here we compare three possible ways of initialization.

First, the oracle initialization assumes that we assume there

is an oracle revealing which sites have the exact kNN, thus

we can simply select these sites in the initialization step

for the server to transmit the entire Q to them. It is the

ideal situation as there is no need to consume bandwidth to

perform the follow-up level-by-level pruning steps. On the

opposite, we do the random initialization, which simulates

the unfavourable scenario that we have no idea where the

exact kNN locate and the server can only randomly pick k
sites to transmit the entire Q. The default initialization is

Table II
AVERAGE DISTRIBUTION OF CANDIDATE TIME SERIES HANDLED BY

THE FRAMEWORK ON THE UCR DATASETS, k = 10, S = 500

M = 50 M = 100 M = 150
Used for initialization 18.43% 9.64% 6.65%
Pruned by the level-1
query in the server

18.59% 30.03% 37.63%

Pruned by LBKimFL 2.79% 2.45% 2.03%
Pruned by LBKeogh 24.99% 20.86% 17.08%
Pruned by LBMS 34.44% 36.13% 35.65%
Unable to be pruned 0.76% 0.90% 0.96%
Sum 100% 100% 100%

Table III
COMPARISON OF BANDWIDTH CONSUMPTION BETWEEN COMPRESSING

Q AND NOT, k = 10, S = 500, M = 50

B: baseline, F: our framework, +c: with compressing Q
Bandwidth ratio CinC ECG torso Yoga ChlorineConcentration
F / B 0.2834 0.5203 0.8447
F+c / B+c 0.1768 0.4377 0.9696

our proposed method by sending the level-1 coarse query

reference to estimate where the possible kNN could be.

Figure 12 demonstrates the bandwidth ratio for our frame-

work with three different initializations. Apparently, the

oracle initialization consumes the least bandwidth. How-

ever, our framework only consumes 20% more bandwidth

compared to the optimal approach. On the other hand, our

initialization wins the random initialized by saving around

10% bandwidth usage, which shows the advantage of our

initialization.

Cascade of lower bounding functions. Here we show

how the cascade of lower bounds prune the candidates. In

Table II, we present the average distribution of candidate

time series processed in different steps of our framework

on the UCR datasets. For example, at M = 50, there

are 18.43% of candidates processed (i.e. either pruned or

retained) in the initialization steps, 2.79% candidates are

pruned by LBKimFL, then 24.99% candidates are pruned

by LBKeogh, and lastly 34.44% candidates are pruned

by LBMS . The results show that all the lower bounding

functions in the cascade structure have chances to prune time

series. Also, LBMS has the best pruning power, LBKeogh

comes second, and LBKimFL has the least pruning power.

Compressing Q. Here we show the bandwidth consump-

tion of both our framework and the baseline approach with or

without compressing Q (or each level of Q) before sending

it. We try only the lossless compression to ensure to get

the exact kNN, but it shall be clear that similar range

of saving can be derived with lossy compression. In the

Unix environment we use the zip command to compress

Q for the baseline approach or each level of Q for our

framework. The local sites may unzip what they receive

and continue the same original process. Table III shows the

bandwidth ratio of two approaches on three datasets, where

our framework significantly outperforms or works closely in

saving bandwidth compared to baseline. The results show

that our model is still very effective under compression.

V. RELATED WORK

Papadopoulos and Manolopoulos [17] analyzed four

schemes to tackle the k-nearest neighbor queries in the

distributed environment. They mainly considered how to

reduce the bandwidth usage for returning candidate objects

from the local sites while ignoring the huge bandwidth

usage for the server to send many queries to many local

sites. Yeh et al. [2] consider the same problem on the

560

time series objects. They proposed a level-wise approach by

leveraging the multi-resolution property of Haar wavelets

on decomposing the query reference. In such a way, only

rough information about the query reference need to be sent

to local sites for pruning candidates. Wang et al. [1] further

extended the same problem to multiple query references.

Both studies provided distance bounds for candidate pruning

without causing any false dismissals and showed the pro-

posed approaches were very bandwidth-efficient. However,

their distance bound designs based on the Haar wavelet de-

composition work only for the Euclidean distance. Although

Chan et al. [11] showed the approximate DTW distance

computation based on Haar wavelets, they failed to provide

a theoretical bound guarantee.

To accelerate the task of finding similar time series using

the DTW distance, of which the computation complexity is

quadratic to the time series length, a common way is to use

lower bounds that require less computation to early prune

unqualified candidates [9], [7], [10], [5]. Rakthanmanon et

al. [5] further proposed the cascade of lower bounds so

that the early abandoning of unpromising candidates can be

achieved. However, to our knowledge, all these studies focus

on saving the computation cost in a centralized environment.

They did not consider the bandwidth consumption required

to exchange data between the server and local sites in a

distributed environment.

VI. CONCLUSION

With the coming of the big-data era, there will be more

and more data gathered and stored in a distributed manner,

thus demanding different types of analysis techniques that

take bandwidth cost into account. Different from several

existing works on approximated DTW matching, here we do

not want to sacrifice the matching quality for efficiency, and

thus concentrate our efforts on kNN matching for DTW that

finds the exact solution with theoretical guarantees. Further-

more, our framework can seamlessly integrate the existing

research on lower-bounding DTW for better performance,

as well as combine data compression techniques to enjoy

further saving.

ACKNOWLEDGEMENT

This work was supported in part by the Ministry of

Science and Technology, National Taiwan University, and

Intel Corporation under Grants MOST 103-2911-I-002-001,

NTU-ICRP-104R7501, and NTU-ICRP-104R7501-1

The work was done while the 5-th author was with Intel

Labs.

REFERENCES

[1] J.-P. Wang, Y.-C. Lu, M.-Y. Yeh, S.-D. Lin, and P. B. Gib-
bons, “Communication-efficient distributed multiple reference
pattern matching for m2m systems,” in Proc. of IEEE ICDM,
2013.

[2] M.-Y. Yeh, K.-L. Wu, P. S. Yu, and M.-S. Chen, “Leewave:
Level-wise distribution of wavelet coefficients for processing
knn queries over distributed streams,” Proc. VLDB Endow.,
vol. 1, no. 1, pp. 586–597, Aug. 2008.

[3] M. Müller, “Dynamic time warping,” in Information Retrieval
for Music and Motion. Springer Berlin Heidelberg, 2007,
pp. 69–84.

[4] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recog-
nition. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1993.

[5] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista,
B. Westover, Q. Zhu, J. Zakaria, and E. Keogh, “Addressing
big data time series: Mining trillions of time series subse-
quences under dynamic time warping,” ACM Trans. Knowl.
Discov. Data, vol. 7, no. 3, pp. 10:1–10:31, Sep. 2013.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh, “Querying and mining of time series data: Experi-
mental comparison of representations and distance measures,”
Proc. VLDB Endow., vol. 1, no. 2, pp. 1542–1552, Aug. 2008.

[7] E. Keogh and C. A. Ratanamahatana, “Exact indexing of
dynamic time warping,” Knowledge and Information Systems,
vol. 7, no. 3, pp. 358–386, 2005.

[8] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and P. Pro-
topapas, “Supporting exact indexing of arbitrarily rotated
shapes and periodic time series under euclidean and warping
distance measures,” The VLDB Journal, vol. 18, no. 3, pp.
611–630, Jun. 2009.

[9] S.-W. Kim, S. Park, and W. Chu, “An index-based approach
for similarity search supporting time warping in large se-
quence databases,” in Proc. of IEEE ICDE, 2001, pp. 607–
614.

[10] Y. Sakurai, M. Yoshikawa, and C. Faloutsos, “Ftw: Fast sim-
ilarity search under the time warping distance,” Proceedings
of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 326–337, 2005.

[11] F. Kin-Pong Chan, A. Wai-chee Fu, and C. Yu, “Haar wavelets
for efficient similarity search of time-series: With and without
time warping,” IEEE Trans. on Knowl. and Data Eng., vol. 15,
no. 3, pp. 686–705, Mar. 2003.

[12] https://www.dropbox.com/sh/u6xl96jnd9azt3m/
AAAp7lF5pASOEqobyNuXYLOFa.

[13] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting
time series: A survey and novel approach,” in In an Edited
Volume, Data mining in Time Series Databases. Published by
World Scientific. Publishing Company, 1993, pp. 1–22.

[14] E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and Ratanama-
hatana, “The ucr time series classification/clustering home-
page,” 2011, http://www.cs.ucr.edu/∼eamonn/time series
data/.

[15] K. M. et al., “Multivariate analysis,” in Academic Press, 1979.

[16] E. Keogh and S. Kasetty, “On the need for time series data
mining benchmarks: A survey and empirical demonstration,”
Data Min. Knowl. Discov., vol. 7, no. 4, pp. 349–371, Oct.
2003.

[17] A. N. Papadopoulos and Y. Manolopoulos, “Distributed pro-
cessing of similarity queries,” Distrib. Parallel Databases,
vol. 9, no. 1, pp. 67–92, Jan. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

