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Abstract—This paper proposes to study a novel problem,
discovering a Smallest Unique Subgraph (SUS) for any node of
interest specified by user in a heterogeneous social network. The
rationale of the SUS problem lies in how a person is different
from any others in a social network, and how to represent the
identity of a person using her surrounding relational structure in
a social network. To deal with the proposed SUS problem, we
develop an Ego-Graph Heuristic (EGH) method to efficiently
solve the SUS problem in an approximated manner. EGH
intelligently examine whether one graph is not isomorphic to the
other, instead of using the conventional subgraph isomorphism
test. We also prove SUS is a NP-complete problem through doing
a reduction from Minimum Vertex Cover (MVC) in a
homogeneous tree structure. Experimental results conducted on
a real-world movie heterogeneous social network data show both
the promising efficiency and compactness of our method.

Keywords—unique subgraph; smallest; unique, heterogeneous
social network; subgraph isomorphism

L.

A social network is a graph in nature, where the nodes
stand for actors (e.g. authors) and the edges between two actors
represent their relationships (e.g. co-authorship). In social
network analysis (SNA), people have proposed different
measures for the graph structure to model general network
phenomena or to capture some hidden properties, such as the
six degree of separation and power-law degree distribution [2].
Analyzing a social network can not only assist experts in
under-standing the social phenomenon but also help laymen
manage their social circles. One of the most important topics of
SNA is to identify strange individuals whose behaviors are
anomalous, comparing to most of the usual nodes in the social
network. For example, in an online social network, one might
want to spot users who might be spammers or robots because
their behaviors of making friends are abnormal in terms of both
high frequency and large volume. In this paper, as a
complement to the anomaly detection problem, we propose to
study a novel problem, how to identify the uniqueness of a
node of interest from its surrounding social structure in a big
social network. Specifically, we aim to find a Smallest Unique
Subgraph (SUS) which best describes the difference between
itself and all the other nodes in a big social network.

INTRODUCTION

The proposed SUS problem targets at a heterogeneous
social network due to its power of representing diverse kinds of
social relationships and interactions. There are many successful
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proposals for SNA on homogeneous social network for
simplicity, where only single type of nodes and relations are in
the network. However, in the real world, different types of
objects can be connected through different kinds of
relationships; it is more natural to define multiple types of
entities and relations in a social network. In this sense,
heterogeneous social network [3] is proposed to describe the
complex relationships (i.e., typed edges) among entities. For
example, a heterogeneous movie network shown in Figure 1
takes movies (M), directors (D), writers (W), and actors (A) as
nodes, and their corresponding relationships as tuples such as
<D, direct, M;>, <M, has actor, A;>, <M, originate from,
Ms>, where the capital letter in the tuple stands for the type of
source nodes, and the second element for the type of relations.
We assume the behaviors of each node can be represented by
its surrounding relational structure. For example, in Figure 1,
consider the two-step neighboring relational structure as the
behaviors of a node, two of actor A;’s behaviors are: he is the
spouse of writer W, who had ever written the script for
movie M;. Al is also an actor of movie M3 which originated
from movie M.
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Fig 1. A heterogeneous movie social network. The capital letter on
each node stands for its type: M (movie), D (director), A (actor), and
W (writer). There are five relation types, including “write script”, “has

actor”, “spouse of”, “direct”, and “originate from.”

In this paper, given a node of interest, we aim to identify
the smallest unique subgraphs in a heterogeneous social
network. The underlying intuition is to find a subset of the
surrounding relational structure of the query node (as its
representative behaviors), such that the ego node can be
uniquely distinguished from other nodes in the network. In
more details, the desired subgraph describing the node of



interest should satisfy two requirements. The first is uniqueness,
which states that we require the mined subgraph is a unique
one with respect to the mined subgraphs of all the other nodes
in the social network. In other words, the identified subgraph
(i.e., behaviors) of a node cannot be identical to any of the
subgraphs of other nodes. The subgraph of the query node must
to be able to exhibit the difference of behaviors between itself
and all the other individuals. The second is compactness, which
states that using least information description (i.e., the smallest
unique subgraph) to represent the unique-ness of the query ego
node. The compactness ensures us to not only include the most
significant behaviors of the ego node, but also reduce both the
space and time complexity of advanced analysis tasks. In fact
we can easily find an arbitrary large unique subgraph
containing the query node to describe itself. However, such
large unique subgraph is less meaningful since (a) we need to
use too much effort to describe the node, and (b) the relational
structure far from the query node might be less irrelevant.

For anomaly detection, there are many relevant studies. For
example, to identify the outlier users, some local friendship-
based metrics are proposed to measure the differences from a
certain user to all the other users [4]. In addition, the similarity
among the friendship patterns is considered to match the users
from across multiple social networks [S]. To the best of our
knowledge, we are the first to deal with the task of identifying
smallest unique subgraphs in a heterogeneous social network.

Finding the smallest unique subgraphs can enable several
potential applications. For example, in the setting of social
team formation [12], the uniqueness of experts can be used to
find which ones are irreplaceable, and thus we can boost the
effectiveness of the management of team members. The mined
unique signatures of individuals can be also applied to identify
outliers as well as terrorists in a social network using the
egocentric abstraction technique [13], because the behaviors of
such kind of individuals tend to be quite peculiar to others. In
addition, one can put more efforts on the unique subgraphs of
nodes when anonymizing a social network [14], since their
special behaviors are more subject to be attacked to have
higher accuracy of re-identification.

Identifying smallest unique subgraphs in a heterogeneous
social network is a very challenging problem. The main reason
is that solving SUS problem needs to perform the subgraph
isomorphism tests between pairs of subgraphs. To make the
subgraphs unique, in a heterogencous social network G =
(V,E), for each node v € V, we have to find the smallest
connected subgraphS such that there is no subgraph in the
complement graph CoG = G — S isomorphic to S. In other
words, we have to compare each candidate subgraph to each of
the mined unique subgraphs and ensure the candidate does not
appear in the unique subgraphs of other nodes. As we know the
complexity of subgraph isomorphism is NP-complete [10], we
can further prove the hardness of the SUS problem to be NP-
complete as well. Consequently, the SUS problem has no
simple solution theoretically. We will provide the detailed
analysis of hardness in the following sections.

To solve the proposed SUS problem, we propose an Ego-
Graph Heuristics (EGH) approach, which is designed to be an
efficient and effective method that escapes from the subgraph
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isomorphism test. The central idea is two-fold. First, while the
subgraph isomorphism test is very time-consuming, it is much
easier to tell whether or not one graph Giis nota subgraph
isomorphic to the other graph G,.In other words, if G
possesses some relational features that cannot be found in the
set of relational features of G», we can say G is not isomorphic
to Ga. Second, if a subgraph is validated to be unique (i.e., is
not isomorphic to all the other possible subgraph candidates),
according to the Apriori property, any of its supergraph is
unique as well. Moreover, we will further show that the
proposed EGH approach can be more efficient when the graph
we target at is simpler, such as the tree structure. The EGH
approach consists of two major stages. The first stage aims to
find the smallest unique subgraphs for a small set of nodes.
The second stage is, for any given node of interest v, to create a
connection from node v to the nearest smallest unique subgraph
S* among the unique subgraphs derived at the first stage. The
subgraph that contains nodes in the connection path as well as
the subgraph S* is considered as the resulting smallest unique
subgraph for node v.

We summarize the contributions of this paper as follows.

We propose to deal with a novel problem of identifying the
Smallest Unique Subgraph (SUS) for any node of interest
in a heterogeneous social network, which can be viewed as
a complement problem of anomaly detection.

Technically we develop an Ego-Graph Heuristics (EGH)
approach to efficiently solve the SUS problem in an
approximated manner. EGH intelligently examine whether
one graph is not isomorphic to the other, instead of using
the conventional subgraph isomorphism test.

Theoretically we analyze the hardness of the SUS problem
in terms of subgraph isomorphism, and prove that solving
the SUS problem in a tree structure is NP-complete.

Empirically the evaluation conducted on a large-scale
movie heterogeneous social network shows the promising
performance for time efficiency and SUS size, which is
competitive to the optimal solution derived from the
exhaustive method.

II. PROBLEM STATEMENT AND ANALYSIS

Definition 1: Heterogeneous Social Network. A
heterogeneous social network H = (V,E, Ly, Lg, fy, fg) is an
undirected labeled graph, where V is a finite set of nodes, E <
(V x V) is a finite set of edges, Ly is a finite set of node types,
Lg € (L, X L) is a finite set of edge types. And that f,,: V —
Ly is the node label function which maps each node to its node
type, and fz: E — Lg is the edge label function which maps
each edge to its edge type.

Definition 2: Uniqueness. A subgraph S of graph His
unique if and only if when all the nodes and edges in S are
removed from Hand form the complement graph CoS, S is not
a subgraph of CoS. In other words, S = (V;, Eg, Ly, Lg, fy, fg) is
not a subgraph of CoS = H\S := (V\V;, E\Es, Ly, Lg, fy, f&)-

Problem Definition: Smallest Unique Subgraph (SUS)
problem. Given a heterogeneous social network H and a
particular node of interest v, the SUS problem aims to find a



subgraph S € H such that (a) v € S, (b) S is unique in H, and
(c) there is no other subgraph S’, whose size is less than S,
satisfying the previous two requirements. The last requirement
refers to that the mined unique subgraph S is preferable to be
as small as possible.

As a decision problem, the SUS problem is free from the
explosive number of the resulting wunique subgraph.
Nevertheless, SUS still suffers from the computational
complexity problem, since we should perform the subgraph
isomorphism test to determine whether or not there is a
mapping of a candidate subgraph in the complement graph. We
arrange the hardness of the isomorphism test in Table 1. It is
NP-complete to test both subgraph and subtree isomorphism in
a graph while it takes only polynomial time to complete the
subtree isomorphism test in a tree structure. We can apparently
find that the isomorphism test on tree structures seems to be
relatively trivial. However, even equipped with the compact
subtree isomorphism test, solving the SUS problem is still
impractical due to the NP-complete hardness. We further
provide the complexity of solving the SUS problem using
either the subgraph or subtree isomorphism test in Table 2.

Table 1. Complexity of subgraph and subtree isomorphism

Complexity Subgraph Subtree
Graph NP-complete [10] NP-complete [11]
Tree N/A Polynomial [1]

Table 2. Complexity of smallest unique subgraph and subtree

Complexity Subgraph Subtree
Graph NP-hard NP-hard
Tree N/A NP-complete (appendix A)

III. EGO-GRAPH HEURISTICS APPROACH

A. Algorithm Overview

As aforementioned, since the subgraph isomorphism
problem in a graph is NP-complete and is one of the
components in the proposed SUS problem, the SUS problem is
also NP-complete. To our knowledge, there is no efficient
algorithm to do the subgraph isomorphism, that says,
determine whether or not a subgraph is unique. In this work,
therefore, we alternatively propose a heuristic algorithm, Ego-
Graph Heuristics (EGH), which is developed to efficiently
identify the smallest unique subgraph in an approximate
manner. The proposed EGH algorithm consists of three steps.
First, we define and extract k-layer subgraphs which are
centered at all the nodes in H as the unique subgraph
candidates. Second, for each unique subgraph candidate, we
create an Egocentric Information Table (EIT), which
represents distinct kinds of relational behaviors of each node.
Third, we validate the uniqueness of each candidate by pair-
wisely comparing the entries of tables. Some candidates are
guaranteed to be unique while those candidates violating the
uniqueness are removed. Finally, for each node v whose k-layer
subgraph candidates violate the uniqueness, we connect node v
to a nearest discovered unique subgraph, identified in the third
step, as the corresponding final unique subgraph.
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B. Extracting k-layer Subgraph as Candidates

In a heterogeneous social network, we assume that the
behaviors of each node can be represented by its surrounding
relational structure. We define the i-layer subgraphs centered
at a node to capture its surrounding relational structure, as in
the following. Then such k-layer subgraphs of a node are
considered to be the candidates of unique subgraphs, which
will be further validated in the following sub-sections.

Definition 3: k-layer Subgraph. Given a node v in a
heterogeneous social network H = (V, E, Ly, Lg, fy, f&), the k-
layer subgraph of node v is the subgraph centered at v
expanding outward up to & steps using the BFS manner. The k-
layer subgraph of node v is denoted by S¥[v]=
(V¥[v], E*[v], Ly, Lg, fy, f5) , where V¥[v]={uluevV,
Length(path(v,u)) <k} , and EX[v]={ele€E,e€
path(v,u), Length(path(v, u)) < k}. Note that path(v,u)
is a path between node v and u in H, and Length(path(v, u))
is the length of path(v,u).

For example, in Figure 1, the 1-layer subgraph of node A,
is Sl[Al] = (Vl[Al],El[Al]), where Vl[Al] = {A1, Ml, M3,
Wsland E1[A;] = {(Mi, has_actor, A;), (M3, has actor, A)),
(A1, spouse_of, W»)}. The 2-layer subgraph of A isS?[A,]
(V?[A1], E?[A;]), where V2[A;] = {A1, My, M3, W2, Wy, Dy,
M., As} and E?[A;] = {(M,, has_actor, A), (M3, has_actor,
A1), (A1, spouse of, Wy), (W,, write script, Ms), (Wi,
write_script, M;), (Dy, direct, M;), (W, direct, Ms), (M3,
originate from, My), (M3, has_actor, As)}.

Smaller £ values refer to more essential behaviors of the
ego node while larger &k wvalues include less relevant
information. Note that in this work, we choose & to be 2. That
says, for each node of interest has only two candidates of
unique subgraphs, i.e., its l-layer subgraph and 2-layer
subgraph. Constraining the value k& that determines the
neighborhood of a node is reasonable since it is usually
assumed farer away nodes do not have as significant influences
as the closer ones. Moreover, since our goal is to find smallest
unique subgraphs, a smaller & is natural to be better.

C. Egocentric Information Table

The k-layer subgraphs of a node are considered as the
candidates of unique subgraph. Such candidates should be
further validated to be truly unique in the heterogeneous social
network. However, since it is infeasible to conduct the
subgraph isomorphism test with an acceptable execution time,
we alternatively resort to an approximate but efficient manner:
if a subgraph candidate cannot be guaranteed to be not unique
to any other candidates, then we do not identify it as a unique
subgraph. To realize such idea, we have to decompose a
subgraph candidate into a list of more fine-grained sub-
structures and keep track of the some statistics of the sub-
structures. We propose the Egocentric Information Table (EIT)
to fulfill the idea of sub-structures as well as the corresponding
statistics. Before introducing the idea of egocentric information
table, we need to define the relational path in a heterogeneous
social network.

Definition 4: Relational Path. A relational path, denoted by
rp =(ly, 1y, ..., lg), is an ordered sequence of edge labels (i.e.,



types) in a heterogeneous social network H = (V,E, Ly, Lg),
where [; € L. For example, in Figure 1, one of the relational
paths between A; and Dy is (has_actor, direct).

Definition 5: Egocentric Information Table. For each k-
layer subgraph S*[v] whose centering at node v, we create an
egocentric information table EIT¥*[v], which stores a list of
pairs of distinct feature and the corresponding feature value. A
feature is defined as a relational path rp while its feature value
is the number of occurrence of p in S¥[v]. Then an egocentric
information table of S¥[v] can be defined as EIT*[v] =
{(rp, freq,(rp))}, where rp is each of the length-z relational
paths (z = 1,2, ..., k) starting from node v, and freq,(rp) is
the frequency of rp in S¥[v]. Consequently, each node v will
have k EITs: EIT'[v], EIT?[v], ..., and EIT¥[v], which is
corresponding to the k-layer subgraphs S'[v], S?[v], ..., and
Sk[v].

Note that the number of distinct kinds of relational paths in
EIT*[v] is |Lg|*, where |Lg| is the number of edge types in
the social network. The total number of relational paths over all
the egocentric information tables is Y, |Lg|¥. Although the
space complexity grows exponentially with layer %, as
aforementioned, & is chosen to be 2, which reduce much space
concern.

We use the toy heterogeneous social network shown in
Figure 2 to illustrate the idea of Egocentric Information Table,
in which there are three kinds of edge types., Take node vs as
the ego node and assume k=2. The egocentric information
tables EIT(vs) and EIT?(vs) are shown in Figure 3. For
EIT*(vs), since all of the three relational paths(i.e., {l;), {l,),
and (l3)) occur only once in S'[vs], all their frequency values
equal tol. For EIT?(vs), for example, since the relational path
(I3, 13) occurs three times in S?[vs], i.e., (Vs, Vg, V3 ), {Vs, Vg, V7)
and (vs, Vg, Us), the corresponding frequency is 3.
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Figure 2: A toy heterogeneous social network.

E[TI(V5) E[TQ(V5)
Gl | 2 Ll | 1
(L) 1 () | 0 J(l3 )| O
() | 1 ply) | 0 ()| 0
() | 1 b | 1 1l | 3
) | 2

Figure 3. The egocentric information tables EIT(vs) (left) and
EIT?(vg) (right) for node vsin the toy heterogeneous social network.

The pseudo code in Algorithm 1 shows the procedure of
constructing EIT?[v] for each node v. We recursively call the
function (line 5 to line 12) to count each distinct type of length-
z relational path from each ego node v (line 2-3). We can
simply repeat the procedure for z=1, 2, 3... k to finish the
whole procedure of building all Egocentric Information Table.
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Besides, in fact we can build EIT [v], EIT?[v], ..., EIT*[v]
by only invoking recursive functions (with z=k) once to avoid
duplicated works, but in order to interpret the ideas of EIT
better, we choose to build one table per one time.

Algorithm 1. Construct EITs for z-layer Subgraphs
Input: H: a heterogeneous social network; z:layer
Output: EIT?[v]: egocentric information tables for z-layer
subgraphs of each nodev in H

1:  //EIT[v][z] is EIT*[v]

2:  forv «1to|V|do

3: recursive_count_path(EIT[v],H, v, z, Path={})
4:

5:  Function recursive_count_path(T, H, v, z, Path)
6: ifz=0do

7 T[Path.length].add_one path(Path)

8: for each n in H.neighbor _nodes(v) do

9: Path.add_node(n)

10: recursive_count path(T, H, n,z-1, Path)

11: Path.remove node(n)

12: return

D. Uniqueness Validation and Discovery

Equipped with the egocentric information table for each
candidate of k-layer subgraph, we develop an efficient
algorithm to validate the uniqueness of each candidate and
approximately find the unique subgraphs for some nodes in the
heterogeneous social network. The central idea is to that if all
the sub-structures (i.e., relational paths) of a subgraph
candidate S*[v] are contained by those of another candidate
S¥[u], node v can be considered to be subgraph isomorphic to
node u. In other words, if at least one of the relational paths of
S¥[v] is not covered by that of S¥[u], node v is said to be
unique to node u. Moreover, if S*[v] is unique to all the other
subgraph candidates, S¥[v] is considered to be the final unique
subgraph of node v. We fulfill this idea by devising a two-step
method. First, to find whether one candidate must not be
subgraph isomorphic to all the other subgraph candidates, we
compare the values of relational paths between their egocentric
information tables in a pairwise manner. Based on the proof at
bottom of this sub-section, we can ensure the proposed method
can truly answer the subgraph isomorphism between subgraph
candidates. Second, we store the pairwise validation results
into a validation topology, which is a directed graph. The goal
of the proposed validation topology is to examine if there is a
subgraph candidate guaranteed to be not subgraph isomorphic
to any other candidates, then this k-layer subgraph candidate
must be unique in the network. In the following we first define
the co-center subgraph isomorphism as well as the validation
topology. The former is used to represent the subgraph
isomorphism between two candidates centered at different
nodes, while the latter is used to formally define validation
topology.

Definition 6: Co-center Subgraph Isomorphism. Assume
that V and U are the sets of nodes of k-layer subgraphs
S¥[v;]and S¥[u;] respectively. S¥[v;] is co-center subgraph
isomorphic to S k[uj] if and only if there exists a subgraph
isomorphic mapping f:V - U such that f(v;) =u; and
f(w) =u Vv €V Au € U. That says, by enforcing the centers



of two k-layer subgraphs to be aligned, each of the remaining
nodes should be able to find a subgraph isomorphic mapping.

Definition 7: Validation Topology. The validation topology
is a directed graph T = (V,ET, fT), in which the node set V is
the same as the node set in the original heterogeneous social
network H, and ET € V X V is the set of directed edges. An
edge e = (vi,vj) € E" is a directed edge from node v; to v;,
and fT:ET - {1,2, ..., k} is a function mapping an edge e to a
number z,which is the minimum layer that makes S™[v;] must
not be a subgraph of S™[v;].

The first step of our method is uniqueness validation,
which aims at testing whether or not a subgraph candidate
S¥[v;] is co-center isomorphism to another candidate S k[vj],
in which their egocentric information tables are EIT*[v;] and
EITk[vj] respectively. By examining every relational path in
EIT*[] , if there exists a relational path 7rp such that
freq,i(rp) > freq,;(rp), we say that node v; is not co-
center subgraph isomorphic to node v; in their k™ layer
subgraphs. In other words, to ensure the k-layer subgraph
candidate of v; is unique to that of v;, there must have at least
one relational path rp of S¥[v;] that cannot be covered by
S k['l?j].

Lemma 1. EIT Examination. If there is a relational path rp
such that freq,;(rp) > freq,;(rp) in EIT*[v;] and EIT*|v;],
then S¥[v;] is not co-center subgraph isomorphic to S¥ [17]-].

Proof. This lemma is proved by contradiction. Assume that
S¥[v;] is co-center subgraph isomorphic to S¥[v;], and there
exists one kind of relational path rp such that freq,;(rp) >
freq,;(rp). Because S¥[v;] is co-center subgraph isomorphic
to S k[vj] , the frequency of every relational path (i.e.
freqy(rp)) starting from node v; in Sk [vj] must be larger
than or equal to the frequency of that kind of path (i.e.,
freq,;(rp) ) starting from node v; in S¥[v;], ie.,
freq,;(rp) < freq,;j(rp). It is obvious to contradict with
premise of the assumption .The proof is done. [ |

The second step of our method is uniqueness discovery,
which aims to find the unique k-layer subgraphs for some
nodes in the heterogeneous social network H. We perform the
uniqueness validation process on every pair of nodes in the
network, and capture the uniqueness between nodes into the
validation topology T.We create a node in T for each node in H,
construct an directed edge e = (vi, vj) from node v; to v; with
a number assignment f7 (e) = z if there exists a minimum z-
layer of subgraph such that v; is unique to v; (i.e,31p €
EIT?[], s.t.freq,;(rp) > freq,;(rp)), where z is increased
from 1 to k. If v; is not unique (i.e., co-center subgraph
isomorphic) to v; for all the layers of interest (i.e., from 1* to
k™ layer), no edge will be constructed between them. Based on
the validation topology T constructed, we can identify a set of
nodes, whose z-layer subgraphs S?[v;] are unique, by the
following two requirements: (a) outDegree(v;) = |V| — 1land

(b) rgy\”z f T((vi, vj)) = z. The first condition refers to that if
V]' Vi

S§%[v;] is not a subgraph of any other subgraph candidates in H,
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it must be unique. The second condition indicates that to have
smaller unique subgraphs, we select the subgraph candidates
with the minimum layer number z to be the result. It is
apparent that there could be only a small set Uof nodesin H
satisfying such two requirements, while we cannot find the
unique subgraphs for most of other nodes in V\U from their .-
layer subgraph candidates. We will deal with the discovery of
unique subgraphs for nodes in V\U in the next sub-section.

Lemma 2. Small Unique Subgraph Selection. Subgraph
candidates S*[v;] satisfying two requirements in the validation
topology T are small unique subgraphs: (a) outDegree(v;) =

- I T . . =
[V| =1 and (b) v]fg‘%]if ((vl,vj)) Z.

Proof. This lemma is proved by contradiction. Assume
S?#[v;] is a subgraph satisfying the two requirements but it is
not a unique subgraph. Therefore S?[v;] is subgraph
isomorphic to H — S#[v;] according to the definition of
uniqueness. As a result, there exists a subgraphS*[v,] in H —
S?#[v;] such that S#[v;] is co-center subgraph isomorphic to
and there a mapping such that f(v;) = v,. It means that all the
frequency values of rp in EIT?(v,) are larger than or equal to
those in EIT?#(v;). Consequently there will be no directed edge
from v; to v, in the validation topology. As a result, the fact
outDegree(v;) < |V| — 1 contradicts to the definition of
S?%v;). ]

Algorithm 2. Uniqueness Validation and Discovery

Input: H: a heterogeneous social network; EIT#[v]: egocentric
information tables for each node vin Hand for 1 <z < k.
Output: US: the list of seed unique subgraphs

1: T « an directed graph with the same node set V of H,
2: and edge set is empty

3:  forv, « 1to|V|do

4. v1NotUnique « true

5: for v, « 1to |V|do

6: for z <1 tok do

7: if table_compare(v1, v2, z)=true do
8: T.add edge(vl, v2, m=z)

9: v1NotUnique « false

10: break

11: if vINotUnique=true do

12: break

13:

14: Function table _compare(vl, v2, z)

15: for each rp in EIT?[v,] do

16: if freq v1(rp) > freq_v2(rp) do

17: return true

18: return false

19:
20: US=[]

21: for v that T.out-degree(v) = [V| - 1 do
22: m <« infinite
23: for each e in H.OutGoingEdges(v) do
24: m = min(m, T[e].m)
25: US.add( NLayerSubgraph(H, v, m) )
26: return US

The pseudo code in Algorithm 2 shows the procedure of
validating the uniqueness of each candidates. We compare two
EIT for each possible pairs of nodes (line 3-12) and add edges



in Validation Topology if some subgraph must be unique to
another subgraph. The procedure of comparing two EIT (line
14-17) is to compare the frequencies (i.e.times) of each
relational path rp in that layer. If there exist one kind of
relational path that the number of it in S#[v;] is larger than the
number of it in S?[v;], then S?[v;] must be unique to S*[v;].
After adding all necessary edges on VT, we can find out all
unique subgraphs seeds (line 21-26) by counting the out-degree
of certain node in VT. Having this unique subgraphs in hand,
we can further expand them in the next step.

Algorithm 3. Finding unique subgraph for query node q
Input: H: a heterogeneous social network; q: the query node;
US: the list of seed unique subgraphs

Output: USy: the unique subgraph containing query node q.
US.sort(key=us.numOfNodes(), ascending);

queue =[]

for each n in H.nodes() do
H.node[n][‘size’] = infinite

for each us in US do
for i <1 to [US| do
if H.node[n][ ‘size’] != infinite do
H.node[n][size’] = US[i].numOfNodes()
H.node[n][‘pre’] =1
queue.enq(n)

while(!queue.empty()) do

now = queue.deq()

size = H.node[now]][ ‘size’]

for each n in H.neighbor nodes(now) do

if(H.node[n][ ‘size’] > size + 1) do

H.node[n][‘size’] = size + 1
H.node[n][‘pre’] = H.node[now][ ‘pre’]
queue.enq(n);

N e E R NS S0 XN BwN—

23:  Function trace back subgraph(v)
24: g=graph()

25: pre = H.node[v][‘pre’]

26: if pre <= [US| do

27: g.extend(US[pre])

28: return g

29: else do

30: g.add_edge(v, pre)

31: return trace_back subgraph(pre)
32:

33: return US = trace_back subgraph(q)

E. Finding Unique Subgraphs

After testing the uniqueness of each subgraph candidates,
we can obtain unique subgraphs for some nodes. However,
those nodes which have unique subgraphs could find smaller
unique subgraph, and rest of nodes cannot directly find unique
subgraph. As a consequence, in this step, we not only aim at
finding smaller unique subgraph for those nodes which already
have unique subgraph, but also aim at finding unique subgraph
for those nodes which have no unique subgraph originally.

By the definition of uniqueness in this paper, it is not
difficult to prove that if we add nodes and edges to a unique
subgraph, the new graph is still a unique subgraph. As a result,
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we take those unique subgraphs found in previous step, and
adapt BFS (i.e. Breadth-First-Search) techniques to expand
those unique subgraph seeds to whole graph.

First, for each node v we store two number (p, s), where p
is the index of the unique subgraph that node v connect to, and
s is the current minimal size(i.e. number of node) of new
unique subgraph which contains the connected unique
subgraph seed and the path to the candidate. As initialization,
from largest to smallest unique subgraph seeds S%[v;], we set s
of each node in the seed graph to be Size(S#[v;]) and a to be v;,
where Size(g) is the number of nodes in graph g. Second, we
put all the nodes in unique subgraph seeds into the BFS’s
queue, and the order is from smallest subgraph seeds to largest
subgraph seeds. After pushing nodes into queue, we start to run
BFS algorithm. For each iteration, a node v is pulled from the
queue, and then we use node v to walk outward to update (a, s).

The pseudo codes in Algorithm 3 shows the procedure of
finding unique subgraph for each query node q. First, we
initialize the minimal size s for the nodes which are not
covered by unique subgraph seeds to be infinite and for the rest
nodes to be the minimal size of unique subgraphs (line 1-12).
Besides, we put the nodes of unique subgraphs into the queue
for later usage. Second, we deploy BFS algorithm to expand
unique subgraph seeds (line 14-21). Finally, we trace back the
path from query node q to certain unique subgraph as the final
result (line 23-33). Note that the subgraph which expands from
a unique subgraph seed is still a unique subgraph because of
the definition of uniqueness.

IV. SMALLEST UNIQUE SUBTREE

In this section, we aim to prove the hardness of the
proposed Smallest Unique Subgraph (SUS) problem in a
heterogeneous social network. We approach the proof through
relaxing the original SUS problem into a less complex graph
setting that leads to a simpler problem: finding Smallest
Unique SubTree (SUS-T) in a homogeneous social network. If
we can prove that solving the SUS-T problem in a
homogeneous network is NP-complete, since heterogeneous
newtorks are more complex than homogeneous, and the fact
that there is polynomial solution to determine whether a
subtree is unique, we can say solving SUS problem is NP-
complete as well. In the following we first define the SUS-T
problem. Then the proof is approached through a reduction
from Minimum Vertex Cover (MVC) problem.

A. Problem Statement

Problem Definition: Smallest Unique SubTree (SUS-T)
problem. Given a heterogeneous connected tree H' and a
particular node of interest v, the SUS-T problem aims to find
an induced subtree S € HT such that (a) v € S, (b) S is unique
in H', and (c) there is no other induced subtree S’, whose size
is less than S, satisfying the previous two requirements.

Since there exists an efficient algorithm to do the subtree
isomorphism test [1], which can be applied to determine the
uniqueness of subtree candidates, it might be natural to ask
whether or not SUS-T can be solved efficiently as well.
Unfortunately, in the following, we deduce that SUS-T is not a
sample problem in general. In fact, both determining whether
or not a subtree contains the query node and whether or not a



subtree is unique can be tackled in a polynomial time. However,
when it comes to finding the smallest subtree among the
candidates, there is no trivial solution. We validate such
deduction by doing a reduction from Minimum Vertex Cover to
SUS-T. Note that in fact SUS-T could be practical because
trees can be generated from models of information diffusion,
such as Independent Cascade (IC) model [18] and Linear
Threshold (LT) model [19], in a heterogeneous social network.
Hence, the mined smallest unique subtrees can be considered
as the most informative pathways of ego nodes of interest.

SUS-T is a NP problem since we can have polynomial-time
algorithms to determine both whether or not a subtree contains
the query node and whether or not a subtree is unique in a
heterogeneous connected tree. The former containment test can
be achieved through simply scanning nodes in the subtree with
linear time, while the latter uniqueness test needs to resort to
the subtree isomorphism algorithm between a subtree S and its
complement tree H™—S. Therefore, we can say that subtrees
satisfying the first two requirements can be found through non-
deterministically testing on every possible subtree candidates.
In other words, we can have polynomial-time solutions to
determine whether or not a subtree of an ego is unique.

On the other hand, it is trivial and apparent that solving the
SUS-T problem in a homogeneous social network (termed
homogeneous SUS-T) can be reduced into solving SUS-T in a
heterogeneous one termed heterogeneous SUS-T), through
adding types/labels to nodes and edges. Consequently, any
problems that can be reduced into homogeneous SUS-T can be
reduced into heterogeneous SUS-T as well. Our ultimate goal
aims to show that Minimum Vertex Cover (MVC), which had
been proven to be a NP-complete problem, can be reduced to
homogeneous SUS-T problem in a polynomial manner. If such
reduction can be made, we can indirectly conclude that the
original SUS problem is NP-complete.

B. Proof Sketch for the Reduction from MVC to SUS-T

Given an arbitrary MVC problem over a graph G with n
nodes and m edges, with loss of generality, we give an index
for each node v, to v,, such that each node can be uniquely
identified in the graph. We use G to construct a special
connected tree (termed by S-Tree), which is designed to
provide a mapping between MVC and homogeneous SUS-T.
Specifically, the special tree S-Tree is required to raise a
substitute solution to finding a minimum set of nodes such that
finding the smallest unique subtree in S-Tree can yield the
minimum set of nodes covering G. In the following we will
first describe the construction of S-Tree for homogeneous
SUS-T from the graph in the given MVC. Then based on the
constructed S-Tree, we will show the required structure that
has to be included in a unique subtree of homogeneous SUS-T.
Finally we elaborate how to create the mapping between the
given MVC and the SUS-T. Note that due to the space limit,
we do not provide the detailed description about all the lemmas
(lemma 3 to lemma 11).

1) S-Tree Construction

The S-Tree is constructed from the given graph G with n
nodes and e edges in the MVC problem. S-Tree is designed to
have two major components, family and arm. A S-Tree
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contains a number of families, where each of which is a tree
structure. Each arm is a long path connecting two families.
Family can be further divided into three categories of structures,
(a) target, (b) constraint, and (c) decision, with different
objectives. We will first introduce the basic components of a
family and describe such three categories of family.

e Family. A family is a tree structure that contains four
types of nodes root, point, chosen, and index. An
illustration is shown in Figure 4. Each family contains
one root node, at most n point nodes, at most nchosen
nodes, and less than or equal to n? + n index nodes.
First, among these four types of nodes, point nodes are
designed to have a mapping between S-Tree and nodes
in the given graph of MVC. Second, each chosen node,
which is connected to a point node, is used to mark
whether or not such point node is selected in MVC.
Third, the design of index structure is to provide a
unique signature for each point node, i.e., each node in
the given graph of MVC. The index structure of each
point node is a tree with at mostn + 1 nodes. Index
structures of a family are derived by varying the depth
from 1 to n and the branch from n to 1 at the same time.
An illustration is shown in Figure 4. Finally, the root
node is created to make those nodes in a family
structure be connected. There are three categories of
family structure, target, constraint, and decision, as
elaborated in the following.

Figure 4: An illustration to the basic structure of a Family, which
contains 41 nodes with 5 point nodes in MVC. In addition, there are
two arms which are used to connect this family to other families.

e Target. As the most important one of the families, a

target appears exactly the same as the original family
structure mentioned above. An illustration is shown in
Figure 4. A target family is the super-tree of any other
families. A target contains one root node, n point nodes,
nchosen nodes, and nindex structures. A S-Tree must
contain exactly one target. Note that the target family
could also be the smallest unique subtree in S-7ree.

Constraint. A constraint family is nearly the same as
target except for that one node is removed from the
index structures. The removed node is restricted to be
one of the leaf nodes in the index structure. Depended
on various ways of leaf removal, for a S-Tree, there is a
total of 2n — 2 constraints families. And these
constraints, though will not be considered as a part of
the unique subtrees, aim to help regulate the structure of
the potential unique subtrees.



e Decision. The goal of the design of decision is to reflect

all the possible selections of nodes in the MVC problem.

Therefore, each node in the given graph of MVC has a

one-to-one mapping to a point node in a decision family.

A decision family is nearly the same as target as well.
The only difference is that a pair of chosen nodes is
removed from the target family. A subtree of S-Tree
possessing a missing edge of a pair of chosen nodes
stands for that the edge of the corresponding point
nodes in MVC is covered. In other words, S-Tree needs
to contain m decision families that indicate all the
possible combinations of edges cover in the graph of
the MVC problem.

(a) (b)
Figure 5: An illustration to (a) the constraint family and (b) the
decision family, with respect to the farget family in Figure 4.

e Arm. An arm is a long path with 2 X N;,,- nodes, where

N¢qr 18 the number of nodes in a target. Both end nodes
of an arm are connected to the root nodes of two family
structures that could be target, constraint, or decision.
We create arms to connect all the families such that S-
Tree is constructed to be connected. Figure 6 shows a
snapshot illustration of using arms to connect families
ina S-Tree.

Figure 6: An illustration to arms connecting families in a S-Tree.
2) Minimum Required Subtree in S-Tree

Conceptually we intend to solve the homogeneous SUS-T
problem in the constructed S-7ree and to prove that finding the
smallest unique subtree in S-Tree is equivalent to selecting a
smallest set of nodes covering all the edges of the graph in
MVC. Here we aim to show that there is a minimum required

subtree R that must be included in any possible unique subtrees.

We first show the size and the required elements of the
minimum required subtree R. This can be done by proving that
the smallest unique subtree in S-7ree must not only have less
than or equal to N4, nodes and but also contain at least a node
in the target family (Lemma 3 and 4). Second, we show that
the minimum required subtree R must contain all the nodes of
root, point, and index in the target family, through subtree
matching among farget and constraint families (Lemma 5 and
6). Note that since both target and constraint families contain
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all the chosen nodes, chosen nodes are not included in R. In
addition, we also show that there is a restrict root-to-root,
point-to-point, index-to-index, and chosen-to-chosen mapping
between two subtrees (Lemma 7). Moreover, we show that it is
unnecessary to include arms in R (Lemma 8). Finally, we show
that any super-trees of the minimum required subtree have no
mapping to any subtrees in the constraint families (Lemma 9).
In other words, we do not need to worry about the potential
mapping from constraint families as long as we keep the
minimum required subtrees as a subtree of the smallest unique
subtree. Consequently, what we only need to investigate is the
mapping from subtrees, which are also the super-trees of the
minimum required subtree R, in the target family to those in
the decision families.

Figure 7. The rules of mapping from root to root, point to point,
chosen to chosen, and index to index.

3) Problem Mapping

We aim to show the equivalence mapping between the
given MVC and the homogeneous SUS-T in the constructed S-
Tree. Based on the analysis of the minimum required subtree R,
we need to come up with the subtree mappings from the target
family to the decision families such that the subtree is unique.
In other words, we aim to extend the minimum required
structure to be a certain subtree 7* by adding chosen nodes
such that 7% is unique. Recall the mapping restriction that
chosen nodes are required to be matched to the corresponding
chosen nodes from the target to a decision family (Lemma 7).
We can show that if we do not want the unique subtree 7* to
be a subtree of a decision family, 7* must contains at least one
of the missing chosen node of that decision family (Lemma 11).
In other words, if we are constructing a unique subtree 7 from
the minimum required structure R, 7~ is required not to be a
subtree of any other families of constraint and decision (i.e.,
have no mappings between 7 and any other families). Since
the unique subtree 7~ must be the super-tree of R, its mapping
to another family must follow the root-to-root, point-to-point,
chosen-to-chosen, and index-to-index rules, as shown in Figure
7. Therefore, if T’ contains a chosen node v., we will have no
mapping from 7 to the decision families without such chosen
node v.. Because the pair of missing chosen nodes in a decision
family can be mapped to the two nodes connected by an edge
in the graph of MVC, adding any of the missing chosen nodes
to R means at least one of the two nodes is selected in MVC,
and thus covering the edge (Lemma 10). Then since a chosen
node missed in a decision family refers to covering an edge in
the given graph of MVC, we can say that adding chosen nodes
into the minimum required structure R is identical to covering
edges in the graph of MVC. Eventually we turn to answer both
the problems of MVC and homogeneous SUS-T by examining
the rule that a chosen node in homogeneous SUS-T is added if
and only if the corresponding chosen node is selected in MVC.



As a result, in order to be unique and smallest, all the potential
mappings from subtrees in the target family to those in
decision families should be examined by adding the least one
chosen node. Such action is equivalent to finding a smallest set
of nodes that cover every edge in MVC.

V. EXPERIMENTS

We aim to exhibit the performance of the proposed EGH
approach. The main goal is to see (a) whether or not the run
time of EGH is efficient, and (b) whether or not the sizes of the
identified smallest unique subgraphs by EGH are small enough.
We compare EGH the brute-force approach with different
parameter settings. Details are provided in the following.

A. Dataset

The heterogeneous social network is constructed from
extracting entities and relations from UCI KDD Archive movie
dataset [13]. In this network, there are about 24,000 nodes
representing movies (9,097), directors (3,233), actors (10,917),
and some other movie-related persons (500) such as producers
and writers (the numbers in parentheses show the number of
different instances for each node type). We also extract
126,926 relations between these nodes. Totally, there are 44
different relation types in the movie network, which can be
divided into three groups: relations between people (e.g.
spouse and mentor), relations between movies (e.g. remake),
and relations between a person and a movie (e.g. director and
actor). The amount of diverse relations makes it a complicated
heterogeneous social network for humans to analyze.

B. Evaluation Settings

We compare the proposed EGH to a brute-force approach
which applies VF2 [17]. In brute-force approach, we
enumerate all the possible subgraph candidates whose size is
smaller than M (M=4 in our experiments), and employ VF2 for
the subgraph isomorphism test between each pair of subgraph
candidates. Due to the limitation of pages, details of the brute-
force approach are not provided here. Those identified to be
unique are sorted by their sizes, and the smallest one is
considered as the resulting smallest unique subgraph for node v.
Due to the high complexity, we restrict the size M of the
enumerated subgraph candidates to be 1, 2, 3, and 4. That says,
we compare the EGH with the number of layers L=1 and L=2
to the brute-forced approach with the size of subgraph
candidates M= 2, 3, and 4.

We evaluate the performance from two perspectives. The
first is the time efficiency (in second) that is required to
complete the process of smallest unique subgraph identification
by EGH and the brute-force methods. We expect the run time
of EGH is drastically shorter than the brute-force method. The
second is the size of the mined smallest unique subgraph. If the
size of identified subgraphs by EGH is close to those found by
the brute-force, the effectiveness of EGH can be guaranteed.

Also due to the high complexity of the brute-forced method,
it is infeasible for us to use the entire heterogeneous social
network for the experiments. Instead we sample connected
node-induced subgraphs from the original heterogeneous social
network, whose sizes range from 100 to 600 respectively. In
order to reduce the variance of performance incurred by
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sampling, we conduct subgraph sampling up 20 times and
report the average values for each evaluation measure.
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Figure 8: The average run time of EGH with L=1 and L=2 and the
brute-force method with M= 2, 3, and 4, by varying the number of
sampled nodes.
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C. Experimental Results

Figure 8 shows that the average run time of EGH is
apparently much lower than that of the brute-force approach, as
the number of sampled nodes grows. Since the y-axis of Figure
8 is log-scaled, the run time is not linear but exponential.
Therefore, EGH can be said to be singnificantly efficient,
comparing to the brute-force. On the other hand, as the size of
subgraph candidate increases, the run time of the brute-force
method raises drastically. The run time of our EGH with the
two-layer setting (L=2) is even competitive to the brute-force
method with single-node subgraph candidate (M=1). Since
EGH is very efficient, we wonder how the average run time
increases when the number of sampled nodes grows far away
from 600. We vary the number of sampled nodes from 1,000,
2,000, 3,000, ..., 28,000, and present the run time in Figure 9.
We can find that for L=1, the run time is nearly fixed no matter
how the number of sampled nodes goes up. As for L=2, though
the growth in run time is linear, it is still under 100 seconds
even when the sampling size is up to 28,000. Therefore, we can
say EGH is able to efficiently output the unique subgraphs.

We present the average size of the identified subgraphs by
EGH and the brute-force method, when the number of sampled



nodes increases. The results are shown in Figure 10. It is
natural to find that the average size of unique subgraphs found
by EGH is larger than that of the brute-force method.
Nevertheless, the size of uniques subgraph output by EGH is
around 10 to 20 in general. Such sizes are acceptable when we
would to visualize the the unique subgraphs. In addition,
though the unique subgraphs produced by the brute-force
method is smaller (around 4 to 7 in general), their run time is
much higher than EGH. The unacceptable run time of the

brute-force method makes the identification process inpractical.

Therefore, the proposed EGH can be an efficient alternative to
find the unique and smaller subgraphs for practical uses.
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Figure 10: The average size of the identified unique subgraphs for
EGH with L=1 and L=2 and the brute-force method with M= 2, 3, and
4, by varying the number of sampled nodes.

VI. RELATED WORK

MSUS can be seen as a satellite problem to graph pattern
mining (GPM). There are researches solving this problem in
perspective of collecting frequent or rare patterns and
separating collections of patterns [6]. For example in [7], a set
of frequent patterns are collected with a random sampling and
pattern clustering method. In [8] a pruning based system is
constructed to filter out the less useful patterns from the
pattern set. And in [9], a measurement is introduced to help
cluster the patterns from different classes. However, as MSUS
only want to decide whether any mapping of the pattern exists
or not instead of building a pattern set, most of the systems in
those previous works cannot be applied onto this problem.

For the goal of MSUS is to identify the anomalous pattern
from an identity, it makes a similar idea to anomalous structure
mining in anomaly detection (AD). In [15], the system collects
the patterns which are similar to some predefine extreme
structures. And in [16], a similarity measurement is setup in
purpose to allocate the patterns far from the general cases.
However in MSUS, what we want to find is the exact
mappings of the patterns but not some similar cases. So there
should be a more precise but still efficient measuring to the
difference of each identities in the social network.

VII. CONCLUSION

In this research, to analyze the potential of obtaining of
uncommon social structure around any identity, we invest into
studying the unique patterns in a social network. In sight of
compactness, the unique patterns are preferred to be smaller
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better. But we verify that finding the smallest unique patterns is
hard as long as it is still connected even if the social network is
simplified through removing the less important connections.
We then propose an ego-graph heuristic method which can
gather small unique patterns efficiently. In our experiment on a
real movie heterogeneous social network, it is shown that the
heuristic method can remain efficient even when the scale of
data is up to about 30,000 nodes, while the average size of the
pattern is only about a constant factor to the brute-force system.
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