
LambdaMF: Learning Nonsmooth Ranking
Functions in Matrix Factorization Using Lambda

Guang-He Lee
Department of Computer Science and

Information Engineering

National Taiwan University

b00902055@csie.ntu.edu.tw

Shou-De Lin
Department of Computer Science and

Information Engineering

National Taiwan University

sdlin@csie.ntu.edu.tw

Abstract—This paper emphasizes optimizing ranking measures
in a recommendation problem. Since ranking measures are non-
differentiable, previous works have been proposed to deal with
this problem via approximations or lower/upper bounding of
the loss. However, such mismatch between ranking measures
and approximations/bounds can lead to non-optimal ranking
results. To solve this problem, we propose to model the gradient
of non-differentiable ranking measure based on the idea of
virtual gradient, which is called lambda in learning to rank. In
addition, noticing the difference between learning to rank and
recommendation models, we prove that under certain circum-
stance the existence of popular items can lead to unlimited norm
growing of the latent factors in a matrix factorization model.
We further create a novel regularization term to remedy such
concern. Finally, we demonstrate that our model, LambdaMF,
outperforms several state-of-the-art methods. We further show in
experiments that in all cases our model achieves global optimum
of normalized discount cumulative gain during training. Detailed
implementation and supplementary material can be found at
(http://www.csie.ntu.edu.tw/∼b00902055/).

I. INTRODUCTION

With the prosperous emergence of e-commerce, recommen-

dation system has played a big role in online stores. In general,

users might prefer a recommendation system that selects a

subset of candidate items for them to choose. In this sense

the top-N recommended list is commonly adopted to evaluate

a ranking-oriented recommendation system. Such evaluation

consists of an Information Retrieval (IR) measure, i.e. ranking

measure, and a cut-off value N. For example, Precision@5

specifies the precision value given top 5 recommended items.

However, the commonly used ranking measures are either

indiscriminate or discontinuous over certain model space. Fig.

1 illustrates this behavior: adding a small Δs to the score

of document c, s(c) cannot alter the ranking of c. Thus

a derivative equal to 0 appears in the measuring objective

function. However, adding a larger value Δs′ to the score

of c can cause the ranking of document c to immediately

jump from 3rd to 2nd, which leads to discontinuity on the

ranking measure due to the swapping of two documents. The

property of zero or discontinuity gradient discourages the

usage of common gradient descent optimization techniques,

which usually leads to non-optimal solutions.

To handle such drawback, researchers have designed novel

loss function for optimization. They are usually derived from a

Figure 1. Ranking based on different model score

smooth approximation [1] or a bound [2] of the original rank-

ing measures. However, there is a concern that the mismatch

between the loss function and the ranking measure would

result in a gap between the optimal and learned models [3].

In the field of learning to rank, lambda-based methods [4]

have been proposed to bypass converting challenging ranking

measures into loss functions, by using a proxy of the gradient

for ranking measures. The required ranking and sorting in

ranking measures are then incorporated into the model by

calculating the virtual gradient, a.k.a lambda, after sorting.

Inheriting the idea of lambda, we design a new recommenda-

tion model named Lambda Matrix Factorization (LambdaMF)

to combine the idea of lambda with the highly-successful

matrix factorization model in collaborative filtering. To our

knowledge, LambdaMF is the first ranking matrix factoriza-

tion model to achieve global training optimum of a ranking

measure: the Normalized Discount Cumulative Gain (NDCG).

Our experiment also shows that LambdaMF directly optimize

NDCG 98.4% of time during the optimization process.

Moreover, we have observed an interesting effect while

learning LambdaMF. Sometimes the norm of some latent

parameters can grow unlimitedly due to the lack of suppres-

sion power to constrain the effect of popular items during

learning. In this paper we prove that such phenomenon can

always happen with the existence of some popular items and

some ranking-oriented matrix factorization models that satisfy

certain criteria. We further purpose a novel regularization term

to combat norm growing and empirically show the numerical

stability of our solution.

2015 IEEE International Conference on Data Mining

1550-4786/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDM.2015.108

823

Finally, we conduct experiments with MovieLens and Net-

flix datasets. Empirical comparison shows that our method

outperforms several state-of-the-art models. In a nutshell, our

main contribution in this paper can be listed as follows:

• We create a new matrix factorization algorithm modeling

the gradient of ranking measure. To our best knowledge,

LambdaMF is the first model to show that it empirically

achieves global optimum of training data.

• We prove that some ranking-oriented matrix factorization

model would suffer from unlimited norm growing due to

popular item effect.

• We create a novel regularization term to deal with the

popular item effect on recommendation systems.

• We conduct experiments to show that the model is scal-

able to large recommendation datasets and outperforms

several state-of-the-art models.

The remaining sections are organized as follows. Section

II presents several related works and comparative discussion.

In Section III, the proposed LambdaMF and some related

discussion are presented. Afterwards, experiment results and

conclusion are in Section IV and Section V.

II. RELATED WORK

The designed model is strongly related to researches on both

collaborative filtering and learning to rank. We discuss them

briefly below.

A. Learning to Rank

In the context of Learning to Rank (LTR), the problem

is usually formulated with queries Q, documents D and

relevance levels R for documents in respect to each query. A

feature vector is often given for each document-query pair as

the focus is on optimizing the ranking measure for each query.

The essential difference from a recommendation model is thus

revealed: there is no queries or features in a collaborative

filtering task. Nevertheless, people usually evaluate the results

of Top-N recommendation by correlating users to queries and

items to documents. To be general, we would use the same

user to query and item to document analogy to describe the

LTR task in the remaining paragraphs.

There are several different LTR measures that can be simply

divided into explicit feedback and implicit relevance settings.

For explicit feedback, for each observed item, users explicitly

provide a specific score for it. In this scenario, the performance

is often evaluated using normalized discounted cumulative

gain (NDCG) with a cut off value K. Given relevance level

Ri and predicted ranking li for every recommended item i in

the sorted list based on sorted model score, the NDCG@K
is generated as follows:

NDCG@K =
DCG@K

max(DCG@K)
, DCG@K =

K∑

li=1

2Ri − 1

log2li + 1

B. Collaborative Filtering

Classically, the recommendation task is equivalent to the

task of rating prediction. Well-known examples can be found

in competitions such as the Netflix Prize. Common methods

can be divided into memory based and model based methods.

The major distinction between memory based and model based

methods lies in whether the process of learning a model is

conducted. Both methods can be regarded as collaborative

filtering methods, as they meet the basic assumption that

similar users tend to share similar interests.

However, recently the ranking-oriented CF methods [1],

[5]–[8] attract more attention because ranking prediction can

better capture the activity of personal preference ordering of

items. Example can be found in CLiMF [1], optimizing an

approximation of mean reciprocal rank (MRR), and CoFi Rank

[2], optimizing a bound of NDCG. However, in CLiMF, the
1

ranking of an item is approximated as the sigmoid function of

its model score. It only considers the actual value of the model

score and rather than the ordinal ranking of the model score.

In contrast, LambdaMF directly deals with actual ranking due

to is incorporation of sorting. For CoFi Rank, the loss function

is derived from a bound of NDCG. However, there is no

guarantee about the distance between the bound and actual real

ranking function. Conversely, LambdaMF directly formulate

the ranking function into its gradient and therefore there is no

need to worry about the similar extent of approximation or

bound. Comparing to the above models, LambdaMF is more

general; it presents a template model which can be fine-tuned

for different types of ranking functions given sparse data.

III. LAMBDA MATRIX FACTORIZATION

This section first introduces the background of lambda, then

discusses how lambda gradient can be incorporated into a

matrix factorization model. To reflect the difference between

learning to rank and recommendation system, a novel regular-

ization term is created to address the concern of overflow from

using lambda. Finally, a time complexity analysis is presented

to demonstrate the efficiency of the model

A. RankNet and LambdaRank

In a series of researches on learning to rank [4], RankNet

[9] was first proposed to handle the problem using gradient. In

this model, given a query q, for every pair of documents i and

j with different relevance level Rq,i > Rq,j , RankNet aims

to promote the relative predicted probability of these pair in

terms of their model score si, sj . Then the relative probability,

document i ranked higher than document j, generated from

this model is defined as (1)

P q
i,j =

1

1 + exp(−σ(si − sj))
(1)

σ is simply a parameter controlling the shape of sigmoid

function. Finally, the loss function is defined as the cross

entropy between the pair-wise preference ordering of the

training data and the relative probability of the model. Given

the same assumption with relevance level Rq,i > Rq,j , the

824

probability of pairwise real preference ordering between i, j
is defined as P̄ q

i,j = 1. Finally, the loss function and gradient

for the query q, document i, j is defined as (2), (3)

Cq
i,j =− P̄ q

i,j logP
q
i,j − (1− P̄ q

i,j) log(1− P q
i,j) (2)

= log(1 + exp(−σ(si − sj)))

∂Cq
i,j

∂si
= − σ

1 + exp(σ(si − sj))
= −∂Cq

i,j

∂sj
(3)

Based on the idea of RankNet, formulating pair-wise rank-

ing problem into gradient descent for a pair of documents,

LambdaRank [3] is proposed to formulate gradient of a list-

wise ranking measure, which is called λ. Several possible λs

have been tested in [3], while the authors report the best λ
used for optimizing NDCG as (4) with |ΔNDCG| defined as

the absolute NDCG gain from swapping documents i and j

∂Cq
i,j

si
= λq

i,j =
σ|ΔNDCG|

1 + exp(σ(si − sj))
= −∂Cq

i,j

sj
(4)

∂Cq
i,j

w
=

∂Cq
i,j

∂si

∂si
∂w

+
∂Cq

i,j

∂sj

∂sj
∂w

= λq
i,j

∂si
∂w
− λq

i,j

∂sj
∂w

B. Lambda in Matrix Factorization

To introduce λ into a collaborative filtering model, the first

thing to notice is that we do not assume the existences of user

or item features due to privacy concern. Hence, we adopt MF

as our latent factor model representing features for users and

items. Given M users and N items, there is a sparse rating

matrix RM,N , in which each row represents a user while each

column represents an item. The values in the matrix are only

available when the corresponding ratings exist in the training

dataset, and the task of MF is to guess the remaining ratings.

Similar to Singular Value Decomposition, the idea behind MF

is to factorize the rating matrix RM,N into two matrices UM,d

and VN,d with pre-specified latent factor dimension d. Given

a ∈ [1,M] and b ∈ [1, N], Ua represents the latent factor of

the ath user while Vb represents the latent factor of the bth

item. Finally, the rating prediction can be formulated as the

matrix product below. The inner-product of Uu, Vi represents

the predicted score for each (u, i) pair:

R̄ = UV T

Using MF as the basis of our latent model, now we are

ready to introduce LambdaMF. Suppose the goal is to optimize

a ranking measure function f , we first construct users and

items latent factors of dimension d as our model basis. Then

we assume that there is a virtual cost function C optimizing

f , and the gradient of C in respect to model score is defined

as λ,
∂Cu

i,j

∂si
= λu

i,j (5)

However, to obtain the gradient in respect to model pa-

rameters, we need to first discuss the differences between

LambdaRank and LambdaMF. First, given a user u, when a

pair of items (i, j) is chosen, unlike in LTR which only model

weight vector is required to be updated, in a recommendation

task we have item latent factors of i and j and user latent

factor of u to update. Second, in the original LambdaRank

model, the score of the pair (u, i) in the model is generated

from the prediction outputs of a neural network, while in MF

such score is generated from the inner-product of Uu and Vi.

Hence, we have ∂si
∂Uu

= Vi and ∂si
∂Vi

= Uu.

Here we are ready to describe how to apply SGD to learn

model parameters. Given the first difference described above,

it is apparent that there are 2 item latent factors and 1 user

latent factor to be considered when generating the stochastic

gradient. Moreover, given the second difference, we can ex-

ploit the chain rule during the derivation of gradient. Finally,

given a user u, a pair of item i and j, with Ru,i > Ru,j , the

gradient can be computed as (6):

∂Cu
i,j

Vi
=

∂Cu
i,j

∂si

∂si
∂Vi

= λu
i,jUu (6)

∂Cu
i,j

Vj
=

∂Cu
i,j

∂sj

∂sj
∂Vj

= −λu
i,jUu

∂Cu
i,j

Uu
=

∂Cu
i,j

∂si

∂si
∂Uu

+
∂Cu

i,j

∂sj

∂sj
∂Uu

= λu
i,j(Vi − Vj)

The specific definition of λu
i,j is not given in this section.

In contrast, we want to convey that the design of λu
i,j can

be simple and generic. In [10], to deal with LTR problems,

several λ have been proposed for optimizing corresponding

metrics. In our opinion, any function with positive range can

be viewed as an legitimate lambda as long as it can promote

the preferred item and penalize the less relevant item. Here we

emphasize the positive values of lambda as positive gradient

which can always enlarge the gap between each pair of items

with different relevance levels and leads to faster optimization.

C. Popular Item Effect

As would be shown later, we found the existence of popular

items can cause a serious problems while trying to apply the

concept of Lambda in MF. Moreover, we will show that the

phenomena is universal for MF models with positive gradient
∂Cu

i,j

∂si
> 0 for all j with Ru,i > Ru,j such as BPRMF [5].

Suppose that there exists a popular item î liked by all users

who have rated it, then for each user u among them, the rating

for item î would keep climbing during the optimization process

as
∂Cu

i,j

∂si
is positive: it pushes the score of UuV

T
i upwards.

Moreover, if the latent factors among all users observing the

item are similar, the increasing of predicted score of î for every

user u observing î would not cause the decrease of predicted

score of î for the other users who observe î. Hence, the latent

factor of item î would keep growing and soon cause overflow.

Formally speaking, let us first denote the set of users

observing î in the training set as Rel(̂i), the rating of î for

user k as Rk,̂i, the latent factors in the iteration t as U t/V t.

Then the above discussion yields the Theorem 1, whose proof

is shown in supplementary materials.

Theorem 1 (Popular Item Theorem): If there exists an item

î, such that for all users k ∈ Rel(̂i), Rk,̂i ≥ Rk,j for all

other observed item j of user k. Furthermore, if after certain

iteration τ , latent factors of all users k ∈ Rel(̂i) converge to

certain extent. That is, there exists a vector Ū t such that for all

825

k ∈ Rel(̂i) in all iteration t > τ , inner-product(U t
k, Ū

τ) > 0.

Then the norm of Vî will eventually grow to infinity for any

MF model satisfying the constraint that
∂Cu

î,j

∂sî
> 0 for all j

with Ru,̂i > Ru,j , as shown below:

limn→∞ ‖V n
î
‖2 =∞

Note that the existence of item î can be easily satisfied

since the set size of Rel(̂i) can be arbitrary (even with

only one user). The other condition in Theorem 1, namely

the convergence of latent factors of users observing î, can

also happen frequently in CF since we generally believe

that users with similar transaction history, i.e. buying the

same item î, shall have similar latent factors. Furthermore,

since the theorem only requires
∂Cu

î,j

∂sî
> 0 for all j with

Ru,̂i > Ru,j , it is not restricted to LambdaMF but applies to

all other matrix factorization models satisfying such constraint.

Empirical evidences will also be shown in the experiment

section.

D. Regularization in LambdaMF

To address the above concern, an intuitive solution is to

add a regularization term to the original cost C (we call this

new cost Ċ). For example, a commonly used L2 regularization

term, i.e. weight decay, can confine the norm of the matrix U
and V and thus restrict the complexity of model. Then the

new cost function Ċ can be formulated as

Ċ =
∑

all(u,i,j)∈data
Cu

i,j −
α

2
(‖U‖22 + ‖V ‖22) (7)

However, since the norm of Vî can grow very fast, the L2

regularization term may not effectively stop the norm of Vî

from going to infinity when the effect of weight decay is not

significant. On the other extreme, if α is large, the capability

of the model is strongly restricted even when the norm of

all parameters are small. Hence, we argue that the utilization

of norm restriction based method is blind; it cannot adapt its

regularization intensity for different magnitudes of parameter

norms.

Here, we propose another regularization to confine the

inner-product of UuV
T
i (which is the prediction outcome of

the model) to be as close to the actual rating Ru,i for every

observed rating u, i as possible, as defined in (8)

Ĉ =
∑

all(u,i,j)∈data
Cu

i,j −
α

2

∑

all(u,i)∈data
(Ri,j − UuV

T
i)2

(8)

∂Ĉu
i,j

∂Vi
= λu

i,jUi + α(Ru,i − UuV
T
i)Uu (9)

∂Ĉu
i,j

∂Vj
= −λu

i,jUi + α(Ru,j − UuV
T
j)Uu

∂Ĉu
i,j

∂Uu
= λu

i,j(Vi − Vj) + α(Ru,i − UuV
T
i)Vi

+ α(Ru,j − UuV
T
j)Vj

We choose the square error between Ru,i and UuV
T
i

because it is differentiable and thus can be optimized easily.

This equation is known as mean-square-error (MSE), which

is often adopted in a rating prediction task as an objective

function [11]. There are two advantages in adopting the MSE

regularization term.

1) Intensity-adaptive regularization term: It can be derived

from (8) that the gradient of C with respect to parameters

is (9). Such regularization can adapt its intensity to

the difference between the predicted score and the real

rating using (Ru,i − UuV
T
i). When the predicted score

varies, the regularization power also adjust linearly.

In conclusion, we would like to point out that the

adaptation power of MSE regularization is automatic

with no manipulation of value α needed.

2) Inductive transfer with MSE: Inductive transfer [12]

is a technique to use some source task TS to help

the learning of target task TT . In our scenario, TS

corresponds to MSE while TT is corresponds to the

ranking measure f . Moreover, MSE presents a way to

model learning to rank with point-wise learning. An

optimal MSE=0 also suggests an optimal NDCG=1.

Hence, the proposed regularization can be viewed as

adopting an inductive transfer strategy to enhance the

performance of LambdaMF.

E. 3.5 Algorithm and Complexity Analysis

Once the lambda gradient and regularization term are de-

rived, we are ready to define the algorithm and analyze its

time complexity. In the previous sections we have provided

a general definition of λ, but how to choose λ remains

unsolved. In [9], the λ is defined as (4); however, we argue

that the multiplication with RankNet gradient is irrelevant to

the target function. In addition, the computation of RankNet

gradient includes exponential function, which is time consum-

ing. Therefore, given a user u, ranking measure f , and an item

ranking list ξ, for every pair of items i and j with Ru,i > Ru,j ,

we adopt the absolute ranking measure difference between ξ
and ξ′, the same list as ξ except that the rankings of i and j
are swapped. That is,

λu
i,j = |f(ξ)− f(ξ′)| (10)

The ranking measure can be applied to certain ranking

measures. To be concrete, applying NDCG as the ranking

measure and denoting the ranking of i as li, (10) will be:

|f(ξ)− f(ξ′)| = |
(2Ri − 2Rj)(1

log(1+li)
− 1

log(1+lj)
)

max(DCG)
| (11)

Let us assume that the computation of inner-product of

latent factors takes O(1) time to simplify the following deriva-

tion. Given N̄ observed items for a user u, the computation

of ξ takes O(N̄ log N̄) time since it requires sorting, so as

the computation of λu
i,j . Hence, if SGD is applied, updating a

pair of items for a user takes total O(N̄ log N̄) time, which is

expensive considering only a single pair of item is updated.

To overcome such deficiency, we propose to conduct the

mini-batch gradient descent. After sorting the observed item

list for a user, we compute the gradient for all observed

items. As a result, O(N̄ log N̄) time is still needed to do

826

the sorting and max(DCG). Finally, the computation of

λu
i,j takes constant time with O(N̄2) pairs. Hence, the total

computation of updating O(N̄2) pairs takes O(N̄2) time.

Effectively, updating each pair of items takes O(1) time as the

sorting time is shadowed with mini-batch learning structure.

To sum up, the whole algorithm is depicted in Algorithm 1.

Algorithm 1: Learning LambdaMF

input : RM,N , learning rate η, α, latent factor

dimension d, # of iterations n iter, and

target ranking measure f

Initialize UM,d,VN,d randomly;

for t← 1 to n iter do
for u← 1 to M do

∂Ĉu

∂Uu
← 0;

for all observed i ∈ Ru do
∂Ĉu

∂Vi
← 0;

ξ = observed item list of u sorted by its

predicted scores

for all observed pair i, j ∈ Ru, Ru,i > Ru,j

do
ξ′ = ξ with i, j swapped
∂Ĉu

∂Uu
+=

∂ ˆCu
i,j

∂Uu
as Eqation(9),(10)

∂Ĉu

∂Vi
+=

∂ ˆCu
i,j

∂Vi
as Eqation(9),(10)

∂Ĉu

∂Vj
+=

∂ ˆCu
i,j

∂Vj
as Eqation(9),(10)

Uu+= η ∂Ĉu

∂Uu

for all observed i ∈ Ru do
Vi+= η ∂Ĉu

∂Vi

return U, V

Since there are enormous amount of items in a recommender

system, the O(N̄2) time complexity seems to be unignorable.

However, the sparsity of data does compensate this drawback.

Due to data sparsity, the number of observed items per user

N̄ is negligible compared to the number of total items N . For

example, with 99% sparsity, the computation of all pairs takes

10−4N2 � N2. In [7], each λ is computed through all N
items, leading to the failure of applying lambda.

IV. EXPERIMENT

In this section, we evaluate the performance of LambdMF

comparing to other state-of-the-art recommendation methods.

Furthermore, we demonstrate the optimality of LambdaMF

and the stability of regularization.

A. Comparison Methods

In this work, we adopt NDCG as the target ranking func-

tion to demonstrate the performance of LambdaMF; applying

LambdaMF to other ranking functions is also possible but not

included in this paper. We compare LambdaMF with several

state-of-the-art LTR recommendation system methods.

Table I
STATISTICS OF DATASETS

Netflix MovieLens

of users 480,189 943

of items 17,770 1,682

sparsity 98.82% 93.70%

• PopRec: Popular Recommendation (PopRec) is a strong

non-CF baseline. The idea of PopRec is to give users non-

personalized recommendation according to the popularity

of items in the training set. That is, the more times an

item appears in training, the higher ranking the item gets.

• CoFi Rank: CoFi Rank is a state-of-the-art MF method

minimizing a convex upper bound of (1-NDCG) [2]. CoFi

Rank presents the choice of formulating an upper bound

as the learning function, which differs from our choice

of formulating gradient. In their work, several other loss

functions are also evaluated for NDCG. We compare with

the NDCG loss function (denoted as CoFi NDCG) and

the loss function with the best performance (denoted as

CoFi Best) reported in the original paper.

• ListRank MF: ListRank MF is another state-of-the-art

MF method optimizing cross-entropy of top-one proba-

bility [6], which is implemented using softmax function.

Though the top-one probability seems to be irrelevant to

NDCG, the experiment shows the superiority over CoFi

Rank in some experiments.

B. Experiment Results

We conduct experiments on MovieLens 100K and Netflix

dataset as in [2]. The statistics are illustrated in Table I. For

each dataset, we apply weak generalization [2], [6] to produce

the experimental data. That is, we first remove users who rated

less than 20, 30, and 60 items (such as movies). Then for the

remaining users, we sample N = 10, 20, 50 ratings for each

user in the training dataset and put the remaining ratings in

testing dataset. As a result, a user will have at least 10 relevant

items in testing set, which favors the usage of NDCG@10 as

our evaluation function.

Similar to [2], [6] which fixed all model parameters in

their experiment, we tune 5 set of parameters in MovieLens

100K N = 20 dataset and set η = 0.001, α = 0.5 and

n iter = 250 for our experiments. For N = 10, 20, 50,

we construct different experimental dataset 10 times for each

N to avoid bias. Finally, in each experimental dataset, we

run LambdaMF 10 times for MovieLens 100K and once for

Netflix, following the same setting as [2]. Finally, we report

average result of NDCG@10 across 10 experimental datasets

for N = 10, 20, 50.

The experiment results for MovieLens 100K and Netflix

are shown in Table II and Table III, respectively. Note that

for LambdaMF, we report two experiment results of adopting

different regularization terms, L2 and MSE. For L2 regular-

ization, we apply the weight decay for each related latent

factors once while updating a single user. For all experiment,

827

Table II
(MEAN,STANDARD DEVIATION) OF NDCG@10 IN MOVIELENS100K

N=10 N=20 N=50

PopRec (0.5995,0.0000)∗ (0.6202,0.0000)∗ (0.6310,0.0000)∗

CoFi NDCG (0.6400,0.0061)∗ (0.6307,0.0062)∗ (0.6076,0.0077)∗

CoFi Best (0.6420,0.0252)∗ (0.6686,0.0058)∗ (0.7169,0.0059)

ListRank MF (0.6943,0.0050)∗ (0.6940,0.0036)∗ (0.6881,0.0052)∗

LambdaMF L2 (0.5518,0.0066)∗ (0.5813,0.0074)∗ (0.6471,0.0074)∗

LambdaMF MSE (0.7119,0.0005) (0.7126,0.0008) (0.7172,0.0013)

Table III
(MEAN) OF NDCG@10 IN NETFLIX; THE RESULTS OF COFI RANK FOR

N=50 AND LISTRANK MF IS NOT AVAILABLE SINCE THE AUTHORS DO

NOT REPORT ITS RESULTS AND DISCLOSE THE COMPLETE PARAMETERS

N=10 N=20 N=50

PopRec (0.5175) (0.5163) (0.5293)

CoFi NDCG (0.6081) (0.6204) (Not available)

CoFi Best (0.6082) (0.6287) (Not available)

LambdaMF L2 (0.7550) (0.7586) (0.7464)

LambdaMF MSE (0.7171) (0.7163) (0.7218)

LambdaMF MSE best (0.7558) (0.7586) (0.7664)

we found that LambdaMF with MSE regularization achieves

superior performance comparing to all other competitors. In

Netflix, as LambdaMF with L2 regularization yields better

result than MSE regularization, it seems to be due to the toler-

ability of strong regularization power in large Netflix dataset,

but MSE regularization performs better in general for all

experiments. Moreover, we found that LambdaMF with MSE

regularization using fewer iterations achieves the best result

in all Netflix experimental settings using the same parameters

(LambdaMF MSE best). Finally, we conduct unpaired t test on

the LambdaMF MSE with the other models. With two tailed

p value smaller than 0.0001, we add ∗ to show extremely

significant improvement. Besides, we also run experiments for

LambdaMF without regularization, and it lead to overflow after

certain iterations in all cases.

C. Optimality of LambdaMF

Even with superior performance, one may still argue that

the learning of LambdaMF is only an approximation of

optimizing ranking measure, but not a real optimization of

ranking measure. The question has once been answered in

[10] using Monte-Carlo hypothesis testing of the weighting

vectors of the underlined model. The result of testing shows

that LambdaRank has achieved a local optimum with 99%
confidence. However, in this work, we notice that LambdaMF

with MSE regularization is capable of achieving a global

optimum in all our experimental datasets given long enough

iterations. That is, the training performance of NDCG@10
achieves 1.0. Furthermore, the NDCG@10 is nondecreasing

for all iterations until convergence in Netflix dataset and non-

decreasing for at least 98.4% of the iterations in MovieLens

100K dataset before reaching an optimum.

V. CONCLUSION

In this work, we purpose a novel framework for lambda

in a recommendation scenario. After deriving a model in-

corporating MF and lambda, we further prove that ranking-

based MF model can be ineffective due to overflow in certain

circumstances. To deal with this problem, an adjustment of

our model using regularization is proposed. Note that such

regularization is not emphasized in a typical LTR problem.

In addition, the update step for each pair of items takes

effectively O(1) time in LambdaMF. We empirically show

that LambdaMF outperforms the state-of-the-arts in terms of

NDCG@10. Extended experiments demonstrate that Lamb-

daMF exhibits global optimality and directly optimizes target

ranking function. The insensitivity of MSE regularization

in the experiments also demonstrates the stability of MSE

regularization.

ACKNOWLEDGMENT

This work is supported by Taiwan government MOST

funding number 103-2221-E-002 -104 -MY2 and 102-2923-

E-002 -007 -MY2

REFERENCES

[1] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Han-
jalic, “Climf: learning to maximize reciprocal rank with collaborative
less-is-more filtering,” in Proceedings of the sixth ACM conference on
Recommender systems. ACM, 2012, pp. 139–146.

[2] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, “Maximum
margin matrix factorization for collaborative ranking,” Advances in
neural information processing systems, 2007.

[3] C. Quoc and V. Le, “Learning to rank with nonsmooth cost functions,”
Proceedings of the Advances in Neural Information Processing Systems,
vol. 19, pp. 193–200, 2007.

[4] C. J. Burges, “From ranknet to lambdarank to lambdamart: An
overview,” Learning, vol. 11, pp. 23–581, 2010.

[5] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.
AUAI Press, 2009, pp. 452–461.

[6] Y. Shi, M. Larson, and A. Hanjalic, “List-wise learning to rank with
matrix factorization for collaborative filtering,” in Proceedings of the
fourth ACM conference on Recommender systems. ACM, 2010, pp.
269–272.

[7] W. Zhang, T. Chen, J. Wang, and Y. Yu, “Optimizing top-n collaborative
filtering via dynamic negative item sampling,” in Proceedings of the 36th
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2013, pp. 785–788.

[8] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proceedings of the fourth
ACM conference on Recommender systems. ACM, 2010, pp. 39–46.

[9] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in Proceed-
ings of the 22nd international conference on Machine learning. ACM,
2005, pp. 89–96.

[10] P. Donmez, K. M. Svore, and C. J. Burges, “On the local optimality of
lambdarank,” in Proceedings of the 32nd international ACM SIGIR con-
ference on Research and development in information retrieval. ACM,
2009, pp. 460–467.

[11] P.-L. Chen, C.-T. Tsai, Y.-N. Chen, K.-C. Chou, C.-L. Li, C.-H. Tsai,
K.-W. Wu, Y.-C. Chou, C.-Y. Li, W.-S. Lin et al., “A linear ensemble of
individual and blended models for music rating prediction,” KDDCup,
2011.

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, 2010.

828

