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Abstract—We consider a novel distributed learning problem:
A server receives potentially unlimited data from clients in a
sequential manner, but only a small initial fraction of these data
are labeled. Because communication bandwidth is expensive, each
client is limited to sending the server only a small (high-priority)
fraction of the unlabeled data it generates, and the server is
limited in the amount of prioritization hints it sends back to the
client. The goal is for the server to learn a good model of all
the client data from the labeled and unlabeled data it receives.
This setting is frequently encountered in real-world applications
and has the characteristics of online, semi-supervised, and active
learning. However, previous approaches are not designed for the
client-server setting and do not hold the promise of reducing
communication costs.

We present a novel framework for solving this learning prob-
lem in an effective and communication-efficient manner. On the
server side, our solution combines two diverse learners working
collaboratively, yet in distinct roles, on the partially labeled data
stream. A compact, online graph-based semi-supervised learner
is used to predict labels for the unlabeled data arriving from the
clients. Samples from this model are used as ongoing training for
a linear classifier. On the client side, our solution prioritizes data
based on an active-learning metric that favors instances that are
close to the classifier’s decision hyperplane and yet far from each
other. To reduce communication, the server sends the classifier’s
weight-vector to the client only periodically. Experimental results
on real-world data sets show that this particular combination of
techniques outperforms other approaches, and in particular, often
outperforms (communication expensive) approaches that send all
the data to the server.

Keywords—big data; semi-supervised learning; online learning;
distributed system;

I. INTRODUCTION

Distributed data acquisition is at the heart of the big data
explosion. Smartphones, surveillance videos, wearable sensors,
and a variety of smart devices (Internet of Things) generate
data at geographically distributed points, and the goal is to
learn valuable insights from these massive data streams. This
paper considers such a setting where a set of distributed clients
each generate an ongoing stream of data and a server seeks to
learn a model of the data. We impose two practical limitations
on the setting. First, because of the costs of having humans

label large quantities of data, we assume that only a small
fraction of the data are labeled. In particular, we focus on a
setting where only the first, e.g., 2% of the training data are
labeled. Second, because communication bandwidth is often
expensive and battery-draining (e.g., a mobile device on a
cellular network), we seek communication-efficient solutions
such that each client is limited to sending to the server only a
small fraction of the unlabeled data it generates, and limited
in how much information it receives from the server.

As a motivating example, consider an intelligent traffic
management system comprised of a set of surveillance cameras
and a server. The server analyzes images from cameras and
provides applications such as helmet violation, high-occupancy
vehicle detection, and wrong-way vehicle alarms. To develop
such a system, the model on the server needs to be configured
by teaching it baseline images. Traditionally, it requires each
camera to constantly upload images, and human annotators
to manually label those uploads on the server. In practice,
however, the network bandwidth is restricted and the labeling
effort is limited. Therefore, a workable solution would be
training an initial model with limited labels on the server, and
selectively transmitting only the most informative images from
each camera.

As another example, consider wearable devices (e.g.,
smartwatches) that measure sensory data, which is increasing
dramatically both temporally and in fidelity. However, the de-
vice does not offer heavy computing power and may just serve
as a front end for a remote system. To utilize the sensory data
for intelligent tasks (e.g., recognizing human activities), the
collected data on the device need to be transmitted wirelessly
to a more powerful device (e.g., a smartphone or laptop).
However, due to the bandwidth and battery limitations, it
is unrealistic for the device to transmit every measurement.
Often, the connection is only established at set intervals or
manually by users, at which time only a selective subset of
the measurements may be transmitted.

An elegant solution to these problems will face many
challenges. First, the amount of data generated by clients can
be huge, and even potentially unlimited. As a result, the vast
majority of data on the server are unlabeled. Typically, it is
not sufficient to train a model with a good generalization
ability based merely on limited labeled data. Second, when
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Fig. 1. An illustration of the proposed framework. The server contains two
learners: a graph-based semi-supervised model and a linear classifier. They
collaborate together to learn from a partially labeled data stream. At any
point in time, the linear classifier can be used as a standalone component
for predicting labels for new test data. The communication flow between each
client and the server is represented by red arrows.

the volume and velocity of data is high, it is very costly and
impossible to store all data either on clients or the server.
Thus, traditional approaches that first store data and then train
on a static collection are not appropriate in this case. Third,
transmitting massive data on the network is discouraged in
practice, especially when the network bandwidth is restricted
or the communication cost is expensive (e.g., on a cellular
network). It may also be mis-classified as a denial-of-service
attack, and dropped/blocked.

At first sight, this learning problem seems to share some
characteristics of online, semi-supervised, and active learning,
which have been extensively studied in the machine learning
community. However, it should be noted that our setting
differs from these traditional learning settings and may require
evolutionary changes to existing algorithms. Unlike online
learning problems where all training data are assumed to be
labeled, there is only a limited amount of labeled data in our
setting. It also differs from typical semi-supervised learning
where all labeled and unlabeled data is available ahead of
time. Moreover, it differs from standard active learning in that
there is no oracle available for providing feedback. Although
both settings involve selective sampling, their intentions are
different: active learning aims to save labeling efforts, whereas
we attempt to reduce the bandwidth consumption between the
server and clients (while also keeping the labeling effort to
only a small fraction of the data). By considering online,
semi-supervised, and active learning jointly, our goal is to
develop a modular framework for learning from a remote
partially labeled data stream while reducing the bandwidth
consumption.

We present a novel framework for solving this learning
problem in an effective and communication-efficient manner
(see Figure 1). On the server side, our solution combines
two diverse learners working collaboratively, yet in distinct
roles, on the partially labeled data stream. A compact, online
graph-based semi-supervised learner is used to predict labels
for the unlabeled data arriving from the clients. Specifically,
we adapt the Harmonic Solution learner to online use via an
incremental k-center clustering approach that maintains the

graph structure solely on a set of k centroid nodes. Random
samples are then repeatedly drawn from the model according
to the confidence of its prediction, and used to train a second
learner on the server, a linear classifier (specifically, a soft
confidence-weighted classifier). The second learner updates
its hypothesis based on these samples and their predicted
labels. We show how these two learners can be combined
in an optimization problem. On the client side, our solution
prioritizes data based on an active-learning metric that favors
instances that are more uncertain (i.e., close to the classifier’s
decision hyperplane) and yet far from each other (as measured
by covariance). To reduce communication, the server sends the
classifier’s weight-vector to the client only periodically. At any
point in time, the classifier can be used as a standalone model
for predicting labels for new test data.

The main contributions of the paper are:

• We introduce a novel learning setting motivated by many
big data applications, and present a general framework
that surmounts the challenges inherent in this setting. The
proposed framework is modular in design, flexible, and
can be practically incorporated into a variety of useful
systems.
• We devise new algorithms that are well-suited to provid-

ing high classification accuracy with reduced communi-
cation and labeling costs.
• Our experimental results on real-world data sets show

that this particular combination of techniques outperforms
other approaches, and in particular, often outperforms
(communication expensive) approaches that send all the
data to the server.

II. RELATED WORK

Online learning, semi-supervised learning and active learn-
ing are three different problem settings, which have been stud-
ied both separately and jointly. Perhaps the earliest exploration
in combining semi-supervised learning with active learning is
by McCallum et al. [1], where they combined an expectation-
maximization algorithm with an active learning algorithm.
Recently, many extensions of semi-supervised methods (e.g.,
S3VM [2], harmonic solution [3] and co-training [4]) to the
active learning setting have been proposed (e.g., [5], [6], [7],
[8]). In practice, active semi-supervised learning has a wide
range of applications, from spoken language understanding [9]
to document clustering [10] to content-based image retrieval
[11], [12], [13]. Unfortunately, these methods do not meet the
requirements of our problem setting, in which data items arrive
in an online fashion, not in batch.

Another line of research is combining online learning
with semi-supervised learning, which is extremely useful for
adaptive systems with partially labeled input. Most of the
algorithms in this line rely on indirect forms of feedback,
such as a model’s own prediction and the structure of data,
to incrementally improve themselves. Grabner et al. [14] used
a heuristic method to greedily label unlabeled examples in an
object tracking application. Goldberg et al. [15] extended the
online SVM [16] to the semi-supervised setting by adding a
regularization term to the objective function of SVM. Valko
et al. [17] extended the graph-based semi-supervised learning
method [3] to the online setting, by computing the harmonic



solution on an approximate similarity graph in an incremen-
tal fashion. In our setting, this family of methods can be
adapted for the server’s use. However, it does not reduce
communication costs because no selection is performed prior
to transmission to the server.

The intention of online active learning was to extend the
traditional active learning from the pool-based setting to the
stream-based setting [18]. Zhu et al. [19] introduced a minimal
variance principle to guide instance selection from a data
stream. Bifet et al. [20] presented a weighted ensemble clas-
sifier and cluster model to handle large data stream volumes.
Chu et al. [21] designed optimal instrumental distributions for
allowing unbiased sampling in data streams. However, such
methods are not applicable to our setting, as they cannot learn
from unlabeled instances.

Finally, the idea of integrating online learning, semi-
supervised learning, and active learning into one framework
can be traced back to Shen et al. [22]. They extended the
self-organizing incremental neural network [23] with semi-
supervised learning and active learning. On each round, the
algorithm selects some “teacher” nodes from each cluster and
uses them to label all unlabeled nodes in the corresponding
cluster. Later, Goldberg et al. [24] provided a Bayesian model
for this learning setting. The model maintains a posterior
distribution of weights through particle filtering and sequential
Monte Carlo techniques. Instances that are highly disagreed
according to the current particles are queried for labeling.

Unlike these prior works [22], [24], which intended to
reduce the labeling effort for adaptive systems, our goal is to
reduce the communication and labeling costs in a distributed
client-server system. Moreover, the following three obstacles
limit the possibility of adapting previous methods to our
problem setting. First, the prior methods are not applicable
to the client-server model, where the concerns of client and
server must be well-separated. Most previous methods are
developed in a bottom-up manner, by gradually extending the
availability of original supervised learning methods to give
rise to more complex settings. Thus, they are not modular in
design. For example, Shen et al. [22] used the self-organizing
incremental neural network [23] as the “seed” model. Their
active learning and semi-supervised learning extensions work
exclusively with the seed model, making it difficult to isolate
each component. In a distributed setting, it is important to
elucidate each subsystem for addressing a separate concern,
as they may be deployed in different physical locations with
different configurations.

Second, prior methods are not communication-efficient.
More precisely, there is no efficient way to transmit the
selection criterion to the clients. For example, Zhu et al. [6]
selected instances based on their estimated risk on a graph,
which would require each client to maintain a graph locally.
Similar difficulty can be found in Goldberg et al. [24], where
the uncertainty score is computed based on a set of particles
(parameterized by a set of vectors), thereby requiring each
client to maintain a set of vectors. High communication costs
are incurred in keeping a client’s set up-to-date.

Third, prior methods are computationally demanding. For
example, Goldberg et al. [24] used a sequential Monte Carlo
technique to update the model, requiring a number of iterations

for learning a new datum. In the distributed setting, algorithms
on both client and server should be lightweight and avoid time-
consuming computations. This is because clients usually have
few resources other than essential input and output functions.
The server, though, offers more resources, and must respond
agilely so that the new selection criterion can be quickly
generated and distributed without forcing clients to wait.

III. PRELIMINARIES

Let us denote by X an instance domain and by Y a set
of labels. Let H be a hypothesis class, where each h ∈ H
is a mapping from X to Y . In this paper, we concentrate on
the confidence-rated binary classification problem, where H is
the class of linear separators. In this case, X is a subset of the
Euclidean space Rd, Y = {+1,−1}, and each hypothesis in H
is a linear function parametrized by a weight vector w ∈ Rd.
For each x ∈ X , define h(x) = x>w. In practice, we can
handle a bias term by adding a dummy feature to all x and
set d = d + 1. We interpret sign(h(x)) as the actual binary
label predicted by h, and |h(x)| is a degree of confidence in
this prediction. The quality of a prediction is measured by
a loss function `(h; (x, y)), which represents the penalty of
predicting sign(h(x)) when the correct label is y ∈ Y . Two
common choices of loss function are zero-one loss and hinge
loss.

For the sake of simplicity, we will present the techniques
in this paper assuming there is only a single client. The
framework can be readily generalized to multiple clients, as
discussed in Section VIII. Denote the set of unlabeled instances
on the client by V = {xt}vt=1, where each xt ∈ X . The
client selects instances for uploading. On the server side,
we have a small set of labeled data L = {(xt, yt)}lt=1
only at the beginning, followed with a set of unlabeled data
U = {xt}nt=l+1 uploaded from the client. We assume the
server receives incoming data one-by-one. The total number
of instances received by the server is n, and in our setting
l � n, and n � v. Starting from an initial hypothesis h0,
the server incrementally constructs a sequence of hypotheses
h1, h2 . . . , hn according to L and U . Ultimately, the goal of the
server is to find a hypothesis that will exhibit high classification
accuracy (e.g., under zero-one loss) on some unseen test set.

IV. GENERAL FRAMEWORK

We present a general framework for communication-
efficient online semi-supervised learning in the client-server
setting. The framework will be described in a way that the
modules can be easily understood in isolation, and changes or
extensions to functionality would be easily localized. Specifi-
cally, we start in this section with a big picture by describing
the philosophy behind the system design, and a high-level
overview of the framework. Later, Section V and Section VI
will drill down on the techniques on the server and client,
respectively.

A. Design Philosophy

When it comes to a practical framework, several pressing
concerns have to be kept in mind. First, it requires careful
coordination and control of data being passed between the
server and clients. In particular, the server sends a criterion to



guide the client to select instances. The client sends selected
instances to the server, which may affect the selection criterion
of next rounds. In both directions, the transmission must be
efficient. We use a windowed pool-based method wherein each
client maintains a small bounded-size buffer of its most recent
data. When the buffer fills, a subset of the data is chosen for
uploading to the server. After that, the buffer is emptied so
that new data can be accommodated. The selection criterion
is only updated every time the buffer is emptied. This enables
a fine-grained control over the communication bandwidth by
simply changing the buffer size and the size of the uploaded
subset.

On the server side, the employed learning algorithm should
be efficient enough to perform (near) real-time online learning,
and be flexible enough to be a standalone module for predicting
labels on a new set of test data. Moreover, the selection
criterion should be represented in a way that the server can
transmit it to the client with a low communication cost.
Fortunately, existing state-of-art machine learning algorithms
already have many lightweight and flexible aspects that can
serve as a good start.

In the context of online semi-supervised learning, it is
natural to train a model using labels obtained by the model’s
own predictions [13], [25]. However, this approach may suffer
significantly from the accumulation of wrongly predicted la-
bels over many rounds, resulting in an inaccurate hypothesis.
For this reason, it is preferable to update a hypothesis conser-
vatively, thereby alleviating the fluctuations in the performance
of the hypothesis.

B. Proposed Framework

Our framework (Figure 1) is designed based on the above
considerations. It can be decomposed into several components
that drive different functionalities. On the client side, we per-
form data triage by selecting instances from a candidate pool,
where the selection criterion is controlled by the server. On
the server side, an online semi-supervised learning algorithm
is employed to handle unlabeled submissions. The key is to
maintain two learners—a graph-based semi-supervised model
and a linear classifier—and let them collaborate to exploit
unlabeled data. Specifically, incoming instances are added to
the training set of the first learner, which is represented by
a graph. The nodes of the graph are instances, and the edges
between nodes reflect the similarity between the corresponding
instances. Then, the first learner predicts labels for all unla-
beled instances in the graph, and randomly samples an instance
according to the confidence of its predictions in order to teach
the second learner. The second learner updates its hypothesis,
and delivers a new selection criterion to the client. At any
time, the second learner can be used as a standalone model
for predicting new test data.

While different machine learning algorithms can be used
as a part of this framework, some techniques lend themselves
to our problem setting better than others. In this work, we
use the harmonic solution (HS) [3] as the first learner and
the soft confidence-weighted classifier (SCW) [26] as the
second leaner. Our choice offers several advantages. First,
SCW is simple, fast and enjoys state-of-the-art performance
on classification. Second, SCW performs a conservative update

especially with noisy labels. Third, SCW can be parameterized
by a weight vector and a covariance matrix, allowing the
server to deliver the selection criterion to the client with a
low communication cost. In this work, we simply transmit
the weight vector of SCW to the client. On the other hand,
HS nicely complements SCW by providing feedback using
the data manifold. It can leverage the similarities between
instances, which is something that SCW overlooks, to deter-
mine labels of unlabeled data. By peering these two models
together, we enjoy the best of both worlds, efficient learning
and simple parameterization due to SCW, and the ability to
exploit manifold information disclosed by unlabeled examples
due to HS. Moreover, SCW and HS can be incorporated into
a single optimization problem.

One may find it is debatable whether a two-learner structure
is really a preferable choice compared to a single learner. For
example, one of the alternatives is to train a linear classifier
using its own predicted labels without leveraging data manifold
information [25]. Unfortunately, such an idea is not effective
according to our experiments. Sometimes, the results are even
worse than not using any unlabeled data. The reason is twofold.
First, a single unlabeled instance can hardly provide any useful
information. Second, most of the online linear classifiers only
return a single hypothesis on each round, precluding any other
possible hypotheses. Hence, some previous work employed
Bayesian methods to update a (posterior) distribution over
the hypothesis [27], [24]. Unfortunately, the posterior is often
complicated. It is not known how to perform the update
analytically. Therefore, the learning process can be easily
misled and stuck in a wrong direction. Another alternative
is to use a graph-based method solely. However, due to
the nonparametric nature of graph-based methods, it is not
straightforward to deliver the server’s model to clients with a
low communication cost (for the same reason, nonparametric
methods are not favorable in our problem setting). Moreover,
graph-based methods are also less efficient for predicting
new data, as they usually involve matrix inversion. A two-
learner structure, in contrast, surmounts the above problems
by complementing each other’s drawbacks. The choice of two
learners with different underlying mechanisms is a key for
good performance.

If we define the communication cost as the total number
of vectors in Rd transmitted over the network, then a straight-
forward implementation of our proposed framework incurs a
cost of at most

l + bv − l
q
cω + min ((v − l) mod q, ω)︸ ︷︷ ︸

client to server

+ bv − l
q
c︸ ︷︷ ︸

server to client

,

(1)
where l is the number of labeled instances on the server; v
is the total length of the unlabeled sequence on the client; q
is the size of the pool on the client; and ω is the number of
uploaded instances every time the pool gets full. By ignoring
rounding issues, this can be approximated as l + v−l

q (ω + 1).

In the rest of the paper, we shall refine each component
of the proposed framework, presenting their technical details
and describing how they cooperate with each other to meet
our global goal.



V. ONLINE SEMI-SUPERVISED LEARNING ON THE
SERVER

In this section, we describe the server’s two learners. First,
we review the two standard learners we adapt to our setting,
and then we show how to adapt and combine them to handle
a partially labeled data stream.

A. Soft Confidence-Weighted Classifier

We first describe the soft confidence-weighted (SCW)
classifier for constructing hypotheses h1, h2, . . . , hl in an in-
cremental fashion. In a nutshell, the SCW algorithm maintains
a Gaussian distribution parameterized by a mean w ∈ Rd and
a full covariance matrix Σ ∈ Rd×d. The mean w corresponds
to the current linear function as described in Section III. The
covariance matrix Σ captures the uncertainty and correlation of
each feature in w. Given a new labeled instance (xt, yt) ∈ L,
SCW sets the new distribution to be the solution of the
following optimization problem,

(wt,Σt) :=arg min
w,Σ
{DKL (N (w,Σ) ‖N (wt−1,Σt−1))

+ C max(0, φ
√

x>t Σxt − ytx>t w)}, (2)
where the hyperparameter φ controls the confidence of each
update, and C balances between passiveness and aggressive-
ness. Intuitively, the optimization problem trades off between
two requirements. The first term forces the Kullback-Leibler
divergence DKL between the new weight distribution and the
old one to be small, so that the parameters do not change
dramatically per instance. The second term requires that the
new vector wt should perform well on (xt, yt).

This optimization problem has a closed-form solution:
wt = wt−1 +αtytΣt−1xt, Σt = Σt−1−βΣt−1xtx

>
t Σt−1.

(3)
The updating coefficients are calculated as follows:

α = min{C,max{0, 1

υζ
(−mψ +

√
1

4
m2φ4 + υφ2ζ)}}, (4)

β =
αφ√

u+ υαφ
, (5)

where u = 1
4 (−αυφ +

√
α2υ2φ2 + 4υ)2, υ = x>t Σt−1xt,

m = ytx
>
t wt−1, ψ = 1 + φ2

2 and ζ = 1 + φ2.

Compared to other online linear algorithms such as passive-
aggressive [28], confidence-weighted [29] and adaptive regu-
larization of weights [30], SCW enjoys the adaptive margin
property and reduces the total number of updates over rounds.
Most importantly, SCW performs a more conservative update
when dealing with a mislabeled instance [26]. In fact, in our
experiments SCW outperformed other alternatives on many
real-world data sets with noise. For this reason, we later use
SCW to learn the instances with “noisy” labels predicted by
the first learner.

B. Harmonic Solution

Harmonic solution (HS) is a graph-based semi-supervised
learning method, which assumes that labeled data and unla-

beled data are available in advance. Specifically, let ỹ =

[
yL
ỹU

]
where yL = [y1, y2, . . . , yl]

> and ỹU denote the estimated

values on unlabeled data instances. The goal of HS is to
minimize the quadratic objective function,

ỹ∗ = min
ỹ

ỹ>∆ỹ, (6)

where ∆ = D − S is the graph Laplacian of the similarity
graph, which is represented by a matrix S of weights si,j that
encode pairwise similarities, and D is a diagonal matrix whose
entries are given by

∑
j si,j . HS can be computed in a closed

form, which has three representations as follows:
ỹ∗U = (DUU − SUU )−1SULyL (7)

= −∆−1
UU∆ULyL (8)

= (I−PUU )−1PULyL, (9)
where P = D−1S is the transition matrix on the graph.

In HS, the confidence of using labeled instances to predict
unlabeled instances can be achieved in two ways. One way is
to regularize ∆ in Eq. (8) as ∆+λI where λ is a scalar and I
is the identity matrix. When λ = 0, the solution turns into the
ordinary harmonic solution. When λ = ∞, the confidence of
labeling unlabeled instances decreases to zero. Alternatively,
one can incorporate the knowledge given by hl = {wl,Σl},
i.e. the hypothesis constructed by SCW on labeled instances
alone, back into HS. This is illustrated by the dashed line
in Fig. 1. Specifically, denote by gU the soft labels in [0, 1]
on unlabeled data produced by hl, each element of which
is computed by Φ( |x>wl|√

x>Σlx+1
), where Φ is the cumulative

function of the normal distribution. Similar to Eq. (9), the
harmonic solution after incorporating hl is given by

ỹ∗U = (I− (1− η)PUU )−1((1− η)PULyL + ηgU ), (10)
where η is a scalar in [0, 1]. Setting η = 0 would reduce the
solution to the ordinary harmonic solution. At another extreme,
setting η = 1 would ignore the data manifold and completely
rely on the predictions of hl to train SCW.

C. Efficient Online Adaptation of HS

Note that we need an efficient online version of HS to fit it
into the framework. We assume the server receives instances
one-by-one. An obvious method is taking each new unlabeled
instance, connecting it to its neighbors, and recomputing the
harmonic solution. However, the matrix inversion involved has
the computational complexity O(n3) when the graph contains
n nodes. Consequently, this naive solution quickly becomes
impractical as more and more instances are added to the graph.

To address this problem, we restrict the size of the graph
by substituting the vertices with a smaller set of k distinct
centroids. Specifically, we make use of a doubling algorithm
for incremental k-center clustering, which assigns points to
centroids in a near optimal way [31]. The original algorithm
maintains a set of centroids such that the distance between any
two centroids in is at least R.

In our framework, the algorithm is adapted as follows.
For initialization, we set R to a small positive number, k
to be larger than l, and V0 = {x1, . . . ,xl}. On round t, a
new instance xt is directly added to the set of centroids if
|Vt−1| < k. If |Vt−1| = k, then we first try to greedily remove a
centroid from Vt−1\{x1, . . . ,xl} such that every two centroids
in the remained set are no closer than R. If such attempt is
not successful, then we double R and do the removal again.
Finally, Vt is obtained by adding xt to the modified Vt−1.
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Fig. 2. Adapted doubling algorithm in our framework. © is labeled point, × is centroid and � is the current point on the tth round. Color indicates the
partition of the space according to the centroids. For this example, we set l = 2, k = 5 and R = 0.1. (a) Initially, the centroid set V0 contains only two labeled
points. (b) In the first three rounds, each new point is directly added to the centroid set. (c) On the 4th round, as Vt−1 is already full, we have to remove a
centroid from it. We double R to 0.2, remove the centroid corresponding to the red region from the 3rd round, and add the current point to the centroid set.
(d) We double R again, remove the centroid of the green region from the 4th round, and add the new point. (e) The centroid set after 20 rounds.

Figure 2 illustrates this procedure. Note that on each round t,
Vt ⊆ {x1, . . . ,xt} and xt ∈ Vt. Moreover, unlike the original
version, the modified algorithm only guarantees that every two
centroids in Vt \ {x1, . . . ,xl,xt} are no closer than R.

After restricting the size of the graph, the remaining
bottleneck of HS includes updating S and inverting a k × k
matrix. While the incremental update of S can be easily done
with a block matrix, speeding up the matrix inversion is less
straightforward [32]. In this work, we use conjugate gradient
descent to solve an equivalent linear system and therefore avoid
the expensive inversion. Note that the solution of ỹU in Eq. (8)
is equivalent to the solution of the following linear system,

∆UU ỹU = −∆ULyL. (11)
The hope is that each iteration is O(k) and convergence can
be reached in relatively few iterations, in contrast to the naive
inversion that costs O(k3). To ensure fast convergence, we
use the Jacobi preconditioner, which is simply the diagonal of
∆UU ; and set the initial guess of ỹU to be the solution of the
last round.

D. Combining HS with SCW

We now show the construction of hypotheses hl+1, . . . , hn
from unlabeled data U by combining HS with SCW. Intu-
itively, we let HS teach its most confident predictions to SCW.
To see that, we first rewrite Eq. (9) so that each element of
ỹU is given by
ỹi =

∑
j:yj=1

(I−PUi)
−1PUj −

∑
j:yj=−1

(I−PUi)
−1PUj

= p1
i − p−1

i , (12)
where p1

i and p−1
i can be interpreted as the probability of

instance xi belonging to the positive and negative class,
respectively. Therefore, we can use |ỹi| ∈ [0, 1] to represent
the confidence of predicting the label sign(ỹi) to the instance
xi.

Though SCW and HS are conceptually separated, they can
now be combined in an optimization problem as follows,
(wt,Σt) := arg min

w,Σ
{DKL (N (w,Σ) ‖N (wt−1,Σt−1))

(13)

+ C max(0, φ
√

x>j Σxj − ỹjx>j w)}
s.t. j ∼ categorical(p̄l+1, p̄l+2, . . . , p̄k)

p̄i =
|ỹi|∑
i |ỹi|

, where ỹi is given by Eq. (12).

The combined algorithm works as follows. On round t, the
new unlabeled instance xt is added to Vt−1 to construct Vt. The
training instances fed to SCW are sampled according to HS
confidence into labels of Vt. The highly uncertain predictions
are likely to be excluded from learning.

Note that on round t the current instance xt is always
learned by HS (because xt is added to Vt−1 for constructing
Vt), but it is not necessarily learned by SCW. Depending on
the confidence of HS, SCW may be fed with any instance in
Vt. More precisely, there are three outcomes of an unlabeled
instance: (i) it is taught to SCW by random sampling; (ii) it
is retained in the centroids set V ; or (iii) it is removed from
V by the clustering algorithm in Section V-C.

One can observe some similarity between Eq. (13) and the
objective function of online manifold regularization [15]. The
latter used the manifold constraint as a regularization term in
the objective function. While both methods attempt to learn a
large margin separator using manifold information, the major
difference is in the search space. In particular, online manifold
regularization searches on a class of hypotheses to find one
that is smooth on the graph. But when the hypothesis space
is severely restricted, such as linear functions, the manifold
regularization term simply turns into a penalty on the weight-
vector, preventing the algorithm from harnessing any useful
information about the manifold. Our method, in contrast,
learns a linear function conditioned on labels induced by the
manifold, providing better performance and flexibility.

E. Predicting New Data

At any point in time, the learned SCW on the server can be
used as a standalone component for predicting the labels for
new (test) data. An obvious way is to use the last hypothesis
directly returned by SCW as the output classifier. However,
the training set could happen to be such that we end up with
a bad last hypothesis. To promote robustness and stability, we
employ the cutoff averaging technique to build an ensemble
as the output classifier [33], rather than committing to a single
online hypothesis.

In cutoff averaging, each distinct online hypothesis is
associated with a survival time, which is defined as the number
of consecutive rounds the corresponding hypothesis survives
before SCW replaces it with a new hypothesis. On the last
round n, we have observed a sequence of online hypothesis
{ht}n−1

t=0 . Let Θν ⊆ {ht}n−1
t=0 be the set of distinct hypotheses



whose survival time is greater than ν. The cutoff averaging
technique defines the output hypothesis h∗ as a weighted
average over the hypothesis in Θν , where the weight of a
hypothesis with survival time r is proportional to r − ν.
The cutoff parameter ν sets the bar for acceptance into the
ensemble. Define the sequence of binary variables {Bt}n−1

t=0
as follows

Bt =

{
1 if t = 0 or if t ≥ ν and ht−ν = . . . = ht
0 otherwise (14)

The optimal ν∗ can be determined by solving the following
optimization problem:

ν∗ = arg min
ν:Θν 6=∅

¯̀+

√
γ ¯̀∑
Bt

+
7γ

2
∑
Bt

 (15)

s.t. ¯̀= (
n∑
t=0

Bt)
−1

n∑
t=0

Bt−1`(ht−1; xt, ỹt),

where γ is a constant with respect to ν. This solution ensures
a large ν and a sparse ensemble if a few online hypotheses
stand out with significantly long survival times. If most of
the hypotheses have short survival times, then a small ν is
preferred and the output ensemble is dense. Note that the
maximal number of distinct survival times in a sequence of
n hypotheses is O(

√
n). Thus, the search space of ν∗ is small

enough for efficient computation.

VI. SELECTIVE SAMPLING ON CLIENTS

Given a communication budget, the client needs to select
instances from an unlabeled candidate pool such that the
model on the server might be improved by learning these
instances. Random selection is a simple approach, but a better
selection criterion should meet the current demands of the
server’s model. To design such a criterion, the client needs
(full/partial) information about the model currently on the
server. Although we have two learners on the server, we
transmit only the weight-vector of SCW from the server to
the client because SCW directly determines the performance
that we are interested in (while HS serves to reduce the
uncertainty of SCW) and transmitting only the weight-vector
is communication-efficient.

Two important aspects of a good criterion are the utility and
redundancy. The Utility measures the potential improvement of
SCW associated with each instance. The Redundancy measures
the degree of information sharing by the selected instances. For
a candidate pool Q = {x1, . . . ,xq}, let the utility score be the
sum of their individual utilities, i.e., fu(Q) =

∑q
i=1 fu(xq).

The redundancy is denoted by fr(Q). The desired selections
should be optimal in terms of both utility and redundancy.
Formally, given a communication budget ω for processing the
pool Q, the goal is to select a subset T from Q such that

T = arg max
T⊆Q:|T |=ω

fu(T )− fr(T ). (16)

Previous research on active learning has proposed several
choices for fu and fr [34], [35]. We use function value
based scores, namely 1

1+|x>w| , as fu [36], and the sample
covariance of instances as fr [37]. As fu is linear and −fr
is submodular, Eq. (16) turns into a submodular function,
which satisfies a diminishing returns property. A near-optimal
solution of Eq. (16) can be found efficiently using a greedy
algorithm [38]. Intuitively, we favor the instances that are close

to the decision hyperplane of the current SCW and far away
from each other. Note that the submitted instances are of low
confidence according to SCW, and by querying HS for their
labels, they may offer some supervision to SCW.

VII. EXPERIMENTS

We conducted a series of experiments to verify the ef-
fectiveness of the proposed framework in the context of
communication-efficient online semi-supervised distributed
learning. The first experiment focuses on the server’s model
and compares the proposed two-learner method against several
baselines including its single-learner counterparts. The second
experiment focuses on the client’s selection criterion.

A. Experimental Setup

Experiments were conducted on seven data sets down-
loaded from either the UCI ML repository (wearable, skin) or
the LIBSVM website (mushroom, mnist, webspam, gisette,
ijcnn1). The motion recognition data set wearable and digit
recognition data set mnist were converted into a set of bi-
nary problems, respectively, where each class is discriminated
against every other class. Totally, we produced 10 problems
from wearable and 45 from mnist. For each data set, we
balanced the number of instances of each class and linearly
rescaled the feature values into the range [−1, 1].

We evaluated the algorithms using a set of trials with
different partitions of the training and test data. In each
trial, we randomly held out half of the data for testing; all
instances in the test set were labeled by the algorithms. The
remaining data was used for training, of which only a small
amount was labeled. Both training and test sets were class-
balanced. Next, we randomly permuted the training data and
kept labeled data always at the beginning. All algorithms were
then incrementally trained with the same permutation in each
trial. For evaluation, we paused the training at regular intervals,
computed the output hypothesis so far, and calculated its test
accuracy. We used the first trial to tune the hyperparameters
(e.g., C, φ in Eq. (13)), and the best choice for its hyperpa-
rameter is then fixed in the remaining trials. We used η = 0 in
Eq. (10). The reported results were averaged over 100 trials.

In all experiments, we used a 5-nearest neighbor graph
as the similarity graph of HS on the server. The edges were
weighted as si,j = exp(−‖xi−xj‖2

2dσ2 ), where d is the number of
features and σ denotes the mean of their standard deviations.
The maximum number of centroids in the graph was 300.
In Sections VII-B and VII-C, the initial 2% of the training
instances are labeled. The size of the candidate pool on the
client was 50, from which 10 instances were submitted to the
server (a 20% sampling rate). Our code is public available at
https://db.tt/eMeD6nlp.

B. Comparison of Server’s Model

We first compare different models on the server and show
the effectiveness of the proposed method. To focus on the
server side, we let the client randomly select instances to
upload. In particular, the following methods were evaluated
in this experiment.
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Fig. 3. Test accuracy of different models on the server. The x-axis represents the number of unlabeled instances on the client. The origin corresponds to the
point where the initial 2% of the data has been labeled and learned and the first unlabeled instance comes in. The client randomly selected 10 instances from
every 50 instances. full is an idealized approach in which an oracle labels all selected instances. none does not upload any unlabeled instance to the server,
so the corresponding test accuracy is constant. A tournament result between algorithms on all problems of mnist and wearable are presented in Tables I(a)
to I(b).

none No unlabeled instances are uploaded to the server.
The server stops learning right after labeled instances.
Assuming that unlabeled instances can provide useful
information, then this approach should give the worst
performance.

full All uploaded instances are labeled by an oracle. Intu-
itively, this approach should give the best result due to
the availability of full information. This is an idealized
case with 10x (20% vs. 2%) more labeled data.

knn The server employs k-nearest neighbors algorithm, where
k = 5. The training set is built by first including all
labeled instances, and then adding unlabeled instances
with its corresponding predicted labels. The maximum
number of allowed training examples is 300.

knn+scw The server consists of a two-learner model: knn
followed by scw. The prediction of knn is used for
training scw.

scw The server consists of an SCW model only, which
“learns” each unlabeled instance using its own prediction.

hs+scw Proposed two-learner model on the server.
hs+scw+cut Proposed hs+scw model with cutoff averag-

ing for predicting test data.

Note that, none and full are essentially standard online
learning, in which models are trained with labeled data. We
also implemented a baseline containing HS only on the server.
However, we had to terminate it due to its poor efficiency.
A comparison of the above methods is shown in Fig. 3. In
Tables I(a) to I(b) we computed the number of problems for
which one algorithm achieved a higher test accuracy than
another algorithm in t-test.

It can be observed that proposed hs+scw and
hs+scw+cut enjoy superior performance on 8 out of
10 problems compared to other partial label competitors.
On 45 mnist problems, hs+scw and hs+scw+cut yielded
on average 0.966 and 0.971 accuracy, respectively. On 20

TABLE I. PERFORMANCE COMPARISON OF DIFFERENT SELECTION
STRATEGIES. THE VALUE IN THE TABLE DENOTES THE NUMBER OF TIMES

THAT THE ROW ALGORITHM ACHIEVED SIGNIFICANTLY BETTER
ACCURACY THAN THE COLUMN ALGORITHM UNDER THE t-TEST WITH

p = 0.05.
(a) Different server’s models on mnist (45 problems).

nonefullknnknn+scwscwhs+scwhs+scw+cut

none - 0 12 9 6 0 0
full 45 - 39 35 35 30 34
knn 20 0 - 10 13 4 3
knn+scw 13 0 3 - 10 0 1
scw 2 0 3 2 - 1 1
hs+scw 31 1 15 22 24 - 3
hs+scw+cut 30 1 15 21 23 2 -

(b) Different server’s models on wearable (10 problems).
nonefullknnknn+scwscwhs+scwhs+scw+cut

none - 0 6 6 5 0 0
full 10 - 10 10 10 10 10
knn 0 0 - 1 0 0 0
knn+scw 0 0 2 - 0 0 0
scw 0 0 3 2 - 0 0
hs+scw 6 0 9 8 8 - 1
hs+scw+cut 6 0 8 8 7 0 -

(c) Different selection strategies on mnist (45 problems).
nonefullallrandcertainuncertainsubmod

none - 0 0 9 6 0 0
full 45 - 45 45 45 45 45
all 30 0 - 2 27 2 1
rand 30 0 1 - 1 0 0
certain 34 0 9 2 - 0 0
uncertain 35 0 15 22 24 - 0
submod 38 0 17 25 25 6 -

(d) Different selection strategies on wearable (10 problems).
nonefullallrandcertainuncertainsubmod

none - 0 0 0 0 0 0
full 10 - 10 10 10 10 10
all 3 0 - 0 1 1 0
rand 3 0 0 - 1 0 0
certain 3 0 0 0 - 0 0
uncertain 5 0 2 2 2 - 0
submod 6 0 3 2 2 0 -

wearable problems, hs+scw and hs+scw+cut gave 0.699



and 0.714 accuracy, respectively. They are consistently better
than the single-learner counterpart scw on all data sets. This
indicates the effectiveness of leveraging manifold information
of the graph. In fact, on webspam, ijcnn1 and wearable,
scw is even worse than none. On webspam, its test accuracy
starts with 0.658, decreasing over time and finally yielded
0.637. This is due to the fact that scw completely relies on its
own prediction for learning. When the labeling rate is small,
the initial hypothesis constructed by labeled data may not be
accurate enough. As a consequence, the prediction of scw on
the new instance is likely to be wrong, which in turn might
mislead the learning procedure. The knn-based approaches,
which employ majority voting based on local information, did
not show consistent performance. On gisette, webspam, and
ijcnn1, the test accuracy of knn decreases until the maximum
number of training instances is reached, whereas on mnist
it increases. This indicates that a simple bootstrapping for
knn is not robust. Also note that, it is not straightforward
to formulate a communication-efficient selection policy for
knn due to its nonparametric nature. The idea of using
the prediction of knn to teach scw is not effective, often
resulting in degraded performance of scw over time. One
may note that knn enjoys superior performance on skin. This
is probably due to the characteristics of this data set. Each
instance in skin has only three features, representing red,
green, and blue color, respectively. The task of distinguishing
skin from non-skin on such data is particularly suitable for
knn.

C. Comparison of Selection Strategy

Fixing the model on the server as hs+scw+cut, we study
the following strategies on the client side.

all All unlabeled instances are uploaded without selection.
This incurs 5x the communication costs versus other
approaches.

rand Randomly selects instances for uploading.
certain The most certain instances according to the current

server model w are uploaded. The score is defined as
|x>w| . This method is similar in spirit to [25].

uncertain The most uncertain instances are uploaded. The
score is defined as 1

1+|x>w| .
submod Selection is done by optimizing the submodular

function described in Section VI. It simultaneously con-
siders the uncertainty and redundancy.

Note that there are many ways to wrap |x>w| into a selection
criterion, such as transforming it into a probability value [24],
[21]. However, despite introducing extra hyperparameters into
the model, they are not significantly different in essence. For
the sake of clarity, we concentrate on the above five strategies.
The result is shown in Fig. 4, in which none and full
are as defined in Section VII-B. In Tables I(c) to I(d) we
computed the number of problems for which one selection
strategy achieved a higher test accuracy than another algorithm
in t-test with p = 0.05.

It is interesting to see that all, which transmits all
unlabeled data, does not lead to better performance. In fact,
on mnist, mushroom, and gisette, all yields worse test
accuracy compared to selective transmission. This confirms
the intuition that not all unlabeled instances are useful. It also

suggests the necessity of using a selective sampling strategy
on the client. Not only the communication costs can be saved,
but also a better model might be learned. Moreover, it can
be observed that uncertain and submod show significant
improvements over rand. They often converge faster than
rand and lead to better optimal hypotheses. On the contrary,
selecting most certain instances is not beneficial. On ijcnn1
and skin, the accuracy decreases over time (the accuracy of
certain on skin drops to under 80% at 4000 instances,
and is not shown to better see the other results), showing
that a bad client selection strategy can have negative impact
on the performance of the server’s model. On mnist and
mushroom, submod further improves over uncertain,
while uncertain is better for gisette and ijcnn1.

VIII. DISCUSSION AND CONCLUSION

This paper poses a new learning problem on the client-
server design, which is motivated by real-world applications
such as intelligent traffic systems and wearable devices. To
solve this problem, we have presented a framework that pro-
vides communication-efficient online semi-supervised learning
in the client-server setting. The framework consists of two
parts. On the server side, two learners work collaboratively
to learn from a partially labeled data stream. The two-learner
structure can effectively exploit the data manifold to determine
labels for unlabeled data. It is also efficient in the sense
that it does not require storing all the data. The proposed
method enjoys superior and stable performance on several real-
world data sets. On the client side, we investigated several
selection criteria and showed how the server communicates
with the client. We showed that a selection criterion based on
uncertainty and redundancy is effective. It is worth highlighting
that intelligent sampling on the client not only saves commu-
nication costs, but, perhaps surprisingly, also may result in a
better model on the server compared to uploading all instances.

While for simplicity we considered the case of a single
client, our framework can be readily extended to learn a model
across multiple clients. Because a client’s candidate pool is
discarded once its selection has been made (i.e., there is
no per-client history), processing a full pool of data is the
same regardless of which client processes it (assuming iid
data streams). Thus, as long as the server sends the current
weight-vector to the client who is about to send data next,
the processing and hence the accuracy is effectively the same
as in the single client case, with the same overall sampling
rate. If the data generation rate (data instances per second)
increases linearly with the number of clients, though, two
issues arise. First, the aggregate weight-vectors per second that
the server sends increases linearly. This can be mitigated by
having the server operate in rounds such that instances from
multiple clients are processed in each round, and an updated
weight-vector is sent only at the end of the round. This implies
that clients select instances based on a less-frequently-updated
uncertainty measure. Note also that in this case, one would
like to apply the redundancy measure across the clients, which
would require additional communication and coordination.
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Fig. 4. Test accuracy of different selection strategies for a fixed communication budget. The client selected 10 instances from every 50 instances, except for
all, which selected all instances and hence incurs 5x the communication costs. The server used hs+scw+cut. The labeling rate was 2%, except for full,
which labeled all selected instances using an oracle. A tournament result between algorithms on all problems of mnist and wearable are presented in Tables I(a)
to I(b).
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