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Abstract—Datasets gathered from sensor networks often suffer
from a significant fraction of missing data, due to issues such
as communication and sensor interference, power depletion,
and hardware failure. Many standard data analysis tools
such as classification engines, time-sequence pattern analysis
modules, and statistical tools are ill-equipped to deal with
missing values—hence, there is a vital need for highly-accurate
techniques for imputing missing readings prior to analysis.
This paper presents novel imputation methods that take a
“recommendation systems” view of the problem: the sensors
and their readings at each time step are viewed as products and
user product ratings, with the goal of estimating the missing
ratings. Sensor readings differ from product ratings, however,
in that the former exhibit high correlation in both time and
space. To incorporate this property, we modify the widely
successful matrix factorization approach for recommendation
systems to model inter-sensor and intra-sensor correlations and
learn latent relationships among these dimensions. We evaluate
the approach using two sensor network datasets, one indoor
and one outdoor, and two imputation scenarios, corresponding
to intermittent readings and failed sensors. Next, we consider
sensor networks with multiple sensor types at each node. We
present two techniques for extending our model to account
for possible correlations among sensor types (e.g., temperature
and humidity) with promising results. Finally, we study how
the imputed values affect the result of data analysis. We
consider a popular data analysis task—building regression-
based prediction models—and show that, compared to prior
approaches for imputation, our method leads to a much higher
quality prediction model.
Keywords-Missing Data Imputation, Wireless Sensor Network,
Recommendation Systems, Matrix Factorization, Tensor Fac-
torization

I. INTRODUCTION

Wireless sensor networks (WSNs) are especially susceptible
to interference, battery depletion, hardware failures, and
other environmental and communications ailments that lead
to data loss. Datasets gathered from sensor networks1 are
often missing a significant fraction of the possible readings
(e.g., the Intel Berkeley Research lab dataset [2] is missing
roughly 50%). These missing values are problematic for data
analysis tools such as classification engines, time-sequence
pattern analysis modules, and other machine learning tasks,
which are often ill-equipped to deal with missing values.
Support vector machine (SVM) and multiple regression

1We consider the common setting where sensor readings are collected in
order to perform centralized analysis.

(MR) analysis, to name but a few examples, require com-
plete datasets with no missing values. Popular statistical
packages such as SAS, Stata, and R provide a few default
options for handling missing data, as a preprocessing step,
because the core algorithms require that all data be filled in.
Typical options are (i) remove the entire “column” if there
is a missing value or (ii) fill in the missing value (called
imputation) using either simple defaults like the average
of neighboring values or utilizing user-written code. The
first option discards otherwise useful data, and in fact, may
discard most of the columns in datasets with high data
loss. Thus, imputation is a vital tool in the preparation of
sensor data for subsequent analysis. Because the accuracy
of the target data analysis depends on the accuracy of the
imputation, improvements in sensor data imputation better
serve sensor network deployment objectives.

A. Our Approach: Collaborative Filtering

Figure 1: Bridge from recommendation systems to sensor
data imputation

Unlike prior work in sensor data imputation [1], [9]–[11],
[13], [15], [16], [23], [24], [26], this paper presents a col-
laborative filtering (CF) approach to sensor data imputation,
inspired by the field of recommendation systems. In typical
collaborative filtering approaches, the elements of interest
are users and items (e.g., products), and the values are
user ratings of those items (as in the left-hand side of
Figure 1). Typically, most of the ratings are missing, and
the goal is to predict (impute) the missing ratings in order
to “recommend” items to users. By viewing sensors as items,
users as time steps, and readings as ratings (as illustrated in
Figure 1), we can apply collaborative filtering techniques to
perform sensor data imputation. In particular, we focus on
the widely successful matrix factorization (MF) technique
for collaborative filtering.
Sensor readings differ from user ratings, however, in that
the former often exhibit high correlation in both time and
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space. To incorporate this property, we first modify MF to
model temporal correlations and learn latent relationships
among sensors. Specifically, we add temporal-proximity
terms to MF—we call this temporally-regularized MF (TR-
MF) —to reflect the fact that readings in neighboring
time steps are similar. Similarly, we can to this also add
spatial-proximity terms—yielding what we call spatially-
temporally-regularized MF (STR-MF). Second, we consider
sensor networks with multiple sensor types at each node.
We are readily able to exploit such heterogeneous sensor
information in our solution, in contrast to most prior im-
putation methods that use more ad hoc means. We present
two techniques for extending TR-MF to account for possible
correlations among sensor types: multivariate-TR-MF and
temporally-regularized tensor factorization (TR-TF).
We evaluate our approaches using two environmental sensor
network datasets, one indoor and one outdoor. We study
two patterns for missing data: (i) covering random readings
(modeling intermittent reading failures) and (ii) covering
consecutive readings for some sensor nodes (modeling long
temporal gaps such as with failed sensors). Our study shows
that TR-MF provides significantly higher estimation accu-
racy than both (i) state-of-the-art recommendation models
and (ii) state-of-the-art sensor data imputation approaches
(discussed in Section II). Furthermore, our study shows that
STR-MF, which adds spatial coordinate information into
TR-MF, does not lead to much improvement over TR-MF.
This is because TR-MF has effectively learned the latent
relationships among sensors from data, including any spatial
correlations, while avoiding the pitfalls of spatial-proximity
biases (Section II-B). For the heterogeneous setting, our
study shows that both multivariate-TR-MF and TR-TF can
significantly improve the accuracy over TR-MF, and each
has its strengths, depending on the observed variance in
the readings. Finally, we consider a popular data analy-
sis task—building regression-based prediction models—and
show that, compared to prior approaches for imputation,
using TR-MF leads to a much higher quality prediction
model.
Here we proposed a data-driven imputation model that cor-
relations are captured by grouping correlated sensor nodes
and correlated time steps—unlike prior sensor data im-
putation approaches, our collaborative filtering approaches
use this latent information to impute values, and optimize
the evaluation metrics directly. Moreover, our collaborative
filtering approaches are global, taking into account all col-
lected observations, and not overly tied to spatial-proximity
correlations.

B. Contributions
In summary, the main contributions of this paper are:

• We propose viewing sensor data imputation as a recom-
mendation problem, and modify state-of-the-art collab-
orative filtering methods of recommendation systems as
the solution.

• We augment collaborative filtering with temporal reg-
ularization and multi-sensor signals, and provide effi-

cient optimization methods to learn the inherent model
parameters effectively.

• We present an empirical study on two sensor datasets,
considering two missing data patterns corresponding
to intermittent readings and failed sensors. The results
show superior estimation accuracy, and moreover, such
accuracy improvements can result in the generation of
higher-quality prediction models.

II. RELATED WORK

Imputation techniques applied to sensor data can be divided
into three categories by the information utilized: temporal
methods, spatial methods, and spatio-temporal methods.
They can be further categorized as hot-deck imputation
and prediction models [8], as shown in Table I. Hot-deck
imputation methods directly fill in the missing values using
either neighbor values or historical self records such as
the last-seen method, while the prediction models exploit
a function to estimate the missing values.

Table I: Sensor data imputation methods

Hot-Deck Imputation Prediction Models
Temporal Last-seen [9], Mean Linear Interpolation
Spatial WARM [15], FARM [10] DEPM [16], MI [26]
Spatio- STI [11] DESM [16], ImM [18],
Temporal AKE [24], BGP [23],

EOF [1], [13]

A. Temporal Methods

Temporal methods leverage the temporal correlation among
readings by the same sensor node; salient methods include
observed data mean [20], last seen [9], and linear interpo-
lation. These methods suffer, however, when there are long
temporal gaps in observations for a given sensor; such gaps
can be frequent in WSNs due to power depletion in energy-
harvesting sensors, long-lived communication ailments, etc.
As a result, the usefulness of temporal methods drops rapidly
as the number of consecutively missing readings increases.

B. Spatial Methods

Spatial methods leverage the spatial correlation among read-
ings by nearby sensor nodes; salient methods include asso-
ciation rule mining (e.g., WARM [15] and FARM [10]) and
weighted functions of nearby sensors (e.g., DEPM [16] and
MI [26]). Window association rule mining (WARM) [15]
and freshness association rule mining (FARM) [10] study
the estimation of missing data based on the association rules
among spatially-correlated neighbors. Such methods enjoy
the advantage of being able to handle categorical sensor data,
but the estimation quality is limited in continuous sensor data
by the association rules’ requirement to first quantize the
data. The data estimation using physical model (DEPM) [16]
method employs the basic laws of physics to design its
prediction function. However, such models are applicable
only to limited types of signals and environments, and gen-
erally require an accurate three-dimensional distance among
sensors. The multiple imputation (MI) method [26] imputes
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the missing data by replacing each missing value with a set
of plausible values. Methods used in MI for plausible values
include multiple linear regression, propensity score method,
and Markov chain Monte Carlo method. This model suffers
from high computation cost because multiple models have
to be learned.
Generally speaking, there are two ways to obtain the spatial
correlation: from the spatial coordinates or from the data
itself. However, the former requires accurate spatial coordi-
nates, and more importantly, it suffers when ailments arise
that affect entire spatial regions (such as large, temporary
obstacles to sensing and/or communication). It also fails to
account for barriers or other sources of sharp environmental
gradients. For example, two nearby sensors, one near a
stove and one beside a window, can produce very different
values if the stove is in use and the outside temperature
is low. In the end, using spatial coordinates can often lead
to worse imputation results as non-existent or time-varying
correlations are imposed between nearby sensors.

C. Spatio-Temporal Methods
Spatio-temporal methods consider both the temporal and
spatial correlation; salient methods include STI [11],
DESM [16], ImM [18], AKE [24], BGP [23], and EOF [1],
[13].
The spatial and temporal imputation (STI) method [17] fa-
vors spatial information over temporal information. For each
missing reading, STI first checks if any nodes are within the
sensing neighborhood (i.e., within a threshold distance), and
utilizes the average of these neighbors to impute the missing
value. If no sensors are within the neighborhood, the last
seen value of the missing sensor is used for imputation.
In data estimation using statistical model (DESM) [16], a
missing reading is predicted using the linear combination of
the previous reading of the sensor and the current reading of
the neighboring sensor, weighted by the Pearson correlation
between the two sensors. The imputation method proposed
in [18] (ImM) learns to combine two temporal predictors (the
last-seen predictor and an autocorrelation-based temporal
linear predictor) and one spatial linear predictor.
The applying k-nearest neighbor estimation (AKE)
method [24] adopts linear regression models to describe the
spatial relationship among each pair of sensor nodes. The
prediction of a target node is the weighted combination
of the regression models from its k-nearest neighbors. If
no enough spatial information, AKE incorporates temporal
information.
The bayesian gaussian process (BGP) method [23] is a
recently proposed random process method that assumes the
current readings are Gaussian distributed given the past data.
The parameter, mean and covariance are changeable from
time to time based on domain knowledge on the mean and
covariance function. In contrast, in this paper we focus
on sensor data imputation that does not rely on domain
knowledge.
The above methods suffer from making unverified assump-
tions about the data. For example, some models favor spatial

correlation over temporal correlation (or vice versa), while
some assume that sensors of the same distance should have
a similar correlation. Such assumptions may or may not hold
for various datasets, and hence imposing them a priori can
lead to inaccurate results. The models we propose, however,
try to rely less on such a priori knowledge, and learn the
latent correlation directly from the data.
Finally, conceptually closer to our solution are the singular
value decomposition (SVD)-based methods. Conventional
SVD has a significant limitation as it can only be applied to
a complete matrix. Therefore, one needs to somehow first fill
in the missing values before conducting such decomposition.
The initial assignment of those missing values, unfortu-
nately, can significantly affect the prediction accuracy [14].
Furthermore, SVD is computationally expensive in general.
A salient example of SVD-based approaches for imputation
is the empirical orthogonal functions (EOF) model, which
has been applied to oceanographic applications to solve the
problem of missing or unreliable satellite data [1]. EOF
first fills in the missing values (e.g., using all zeros or the
mean values) and then performs SVD to decompose the
matrix. The top K singular vectors in the SVD are used to
reconstruct the matrix and update the estimation of missing
values, where K is determined through cross validation over
the data. An improved version of EOF [13] also considers
the temporal ordering: The readings from one sensor node
are copied M times and form M lag-shifted time series. The
modification boosts the accuracy of EOF, but significantly
slows down the method due to its M -fold data size increase.
Moreover, our study shows that the improved EOF is still
less accurate than our model.

III. USING MATRIX FACTORIZATION FOR IMPUTATION

Matrix factorization (MF) is arguably the most success-
ful collaborative filtering (CF) technique in the area of
recommendation systems [5], [14]. Compared with other
recommendation models such as regression-based predic-
tion models, graph-based random walk models, or simple
statistical models, the MF model possesses the advantages
of being more accurate and more scalable to data size. A
key feature of MF models is its capability to learn latent
factors from relatively sparse observations, and to leverage
these factors to impute the missing elements in the matrix.
In the following, we will first introduce the fundamentals of
the MF methodology, present our novel sensor-data-specific
modifications to the MF objective function, and finally
provide the complete training procedure of the proposed
method.

A. Introducing Matrix Factorization
As stated in section II-C, conventional SVD is not ap-
propriate for the task of missing data imputation. Matrix
factorization is designed to amend the limitations of SVD,
and recently researchers have shown [14] that the matrix
factorization model is indeed a better approach to learn
the latent factors given sparse matrices, because during
the factorization procedure only the observed entries are
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exploited. Utilizing numerical optimization procedures, for
a partially observed matrix R, MF produces two latent
matrices PM×K and QK×N whose multiplication seeks to
approximate the observed entries in RM×N :

R ≈ PQ.

Given R being the sensor network readings, each row of P
represents latent factors in the temporal dimension and each
column of Q represents the latent factors in the dimension
of correlation among sensors.

We adopt a biased-MF that includes row and column biases
μm and μn. In a temperature monitoring system, the row
bias can be understood as the average temperature at a given
time, and the column bias reflects the average temperature
at the location plus the systematic bias of the sensor node.
The predictions of missing values can be obtained through
r̂mn = μm + μn + pmqn. After adding the regularization
term to constrain the scale of latent factors, the objective
function of MF becomes to minimize:

1

2

∑
m,n

(rmn − r̂mn)
2
+

β

2

(∑
m

(μ
2
m + ||pm||2) +

∑
n

(μ
2
n + ||qn||2)

)
,

where pm are the row factors of P (for time m), and qn are
the column factors of Q (for sensor node n) respectively. β
is the parameter that controls the strength of regularization.
Matrix factorization can also be derived from a probabilistic
perspective [21].

B. Temporally-Regularized Matrix Factorization (TR-MF)

Although we map the sensor data imputation task to a
collaborative-filtering-based recommendation task, there are
indeed some major differences in the properties of the data.
Normal collaborative filtering models assume no ordering
on the users (i.e., temporal dimension). That is, we can
randomly swap the rows in the matrix without affected the
factorization outcome. However, such independence does
not exist in sensor data as a sensor’s signal in time t is
highly dependent on that of time t − 1. In other words,
an ideal model should consider such order dependency, and
reordering the rows would significantly affect the outcome
of factorization.

With this observation, we propose a temporally-regularized
matrix factorization (TR-MF) to better model the charac-
teristic of sensor data. As the name may suggest, TR-MF
adds a temporal regularization term to conventional MF. The
temporal regularization forces the latent factors of adjacent
rows to be similar, which reflects the fact that readings
in adjacent time steps should be similar. We also add a
similar regularization term for adjacent row biases. The
modified objective function (γ controls the strength of the
regularization) looks like:

1

2

∑
m,n

(rmn − r̂mn)
2
+

β

2

(∑
m

(μ
2
m + ||pm||2) +

∑
n

(μ
2
n + ||qn||2)

)

+
γ

2

∑
m

(
(μm − μm+1)

2
+ ||pm − pm+1||2

)
.

C. Spatio-Temporal-Regularized Matrix Factorization (STR-
MF)

Although previously we argued that nearby sensors might
not necessarily possess the highest correlation with each
other, here we would like to show that our TR-MF model
can easily be extended to accommodate spatial correlation
if one decides to do so. Given the distance (or any kind of
‘closeness’ measure) between sensors, we can add spatial
regularization terms to provide a bias to account for possible
spatial correlation. The objective function (γs controls the
strength of the regularization) then becomes:

1

2

∑
m,n

(rmn − r̂mn)
2
+

β

2

(∑
m

(μ
2
m + ||pm||2) +

∑
n

(μ
2
n + ||qn||2)

)

+
γ

2

∑
m

(
(μm − μm+1)

2
+ ||pm − pm+1||2

)

+
γs

2

∑
ni,nj
neighbors

(
(μni

− μnj
)
2
+ ||qni

− qnj
||2

)
.

We call this spatio-temporal-regularized matrix factorization
(STR-MF). Users should exploit spatial regularization with
care, however, as our experimental study will show that
biasing for spatial correlation can often produce inferior
results. In the following discussion, we will focus mainly
on TR-MF.

D. Optimization Procedure

Several methods to learn MF have been proposed, such as
stochastic gradient descent (SGD) [6], [14], alternating least
square (ALS) [14], [27], Newton’s method [3] and Wiberg
Algorithm [22]. For sensor data, we suggest SGD for its
efficiency and simplicity.

In SGD, we incrementally update our model by considering
one reading at a time. Focused on one observed reading rmn

with the following objective function

1

2
(rmn − r̂mn)

2
+

β

2

(
μ
2
m + ||pm||2 + μ

2
n + ||qn||2

)
.

It is not hard to derive the TR-MF update equations (η
controls the learning rate) as⎧⎪⎪⎨
⎪⎪⎩

μ′m = μm − η((r̂mn − rmn) + βμm)

μ′n = μn − η((r̂mn − rmn) + βμn)

p′m = pm − η((r̂mn − rmn)qn + βpm)

q′n = qn − η((r̂mn − rmn)pm + βqn)

For each reading, we update all the μm and pm. Then after
a full scan of all observed readings, we perform temporal
regularization by updating all μm and pm simultaneously
according to the following equations:{
μ′m = μm − ηγ((μm − μm−1) + (μm − μm+1))

p′m = pm − ηγ((pm − pm−1) + (pm − pm+1))

The updating procedure is summarized in Procedure 1. Note
that we propose to avoid updating the temporal regular-
ization with the update of each reading, because doing
so can bias the model toward the time steps that possess
fewer missing readings, which contradicts the goal of data
imputation.
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Procedure 1 (Spatio-)Temporally-Regularized MF

Parameters: β, γ, (γs,) η, K
Input: training set, validation set

Normalize the training set as D
Initialize μm, μn, pm, qn to small random numbers
repeat

for each observed reading rmn in D
Update μm, μn, pm, qn

Update μm, pm by temporal regularization
(Update μn, qn by spatial regularization)

until stopping criterion is met
Output the imputation prediction model

For STR-MF, we can update all μn and qn simultaneously
as:{
μ′ni

= μni
− ηγs

∑
nj

(μni
− μnj

)

qni
′ = qni

− ηγs
∑

nj
(qni

− qnj
)

where ni and nj are a pair of neighboring sensor nodes.

Data Normalization: Unlike the ratings in recommendation
systems that are normally within a certain range (e.g., 1 to
5 stars), readings from WSNs are real-valued (rounded to
a desired level of precision), and the range may vary with
the sensors. Here we propose to normalize the training set to
zero mean and unit variance before conducting MF learning,
and once the missing values are produced by our model, we
need to rescale the values to the original mean and variance.
Although this procedure does not change the quality of
outcomes theoretically, in practice we do find some benefits:
First, when the global mean becomes zero, the origin of our
model naturally becomes a fine initial point for MF training,
which is good for non-convex optimization techniques such
as MF. Second, normalization forces different datasets to
look similar, which simplifies the parameter tuning task.

Stopping Criterion: In addition to the training dataset
used to learn the TR-MF (or STR-MF) model, we use a
validation dataset to determine the model parameters and
when to cease updating the model. More specifically, the
training stops when the validation error fails to decrease for
a certain amount of iterations (500 in our experiments).

Time Complexity: While training TR-MF, the time required
for each update is Θ(KN), where K is the number of factors
(≤ 54 in our experiments) and N is the number of observed
readings. In other words, it is independent of the size of
the data matrix. The total number of iterations varies with
data quality, the missing rate and some parameters such as
the learning rate and stopping criterion. In our experiments,
it normally takes several minutes to train a TR-MF model
on a computer with Xeon 2.53GHZ processor and 16 to
64G memory, but in some circumstances the training time
can grow to 1 to 2 hours. To predict a missing value, it
takes 2K multiplication operations, which can be done in
real time. On a normal laptop, it takes less than one second
to predict all values for our Berkeley data matrix (270, 000

values). Note that the training time is not as important as
the prediction time, as normally we need only to train our
model once to learn the optimal parameters and factors for
prediction.

IV. MULTIVARIATE FACTORIZATION MODEL

A given sensor node may contain multiple sensor types and
thus is capable of sensing various aspects of the environment
(e.g., temperature and humidity) at the same time. These
attributes can potentially be correlated [7], and being able
to take advantage of such correlation would result in bet-
ter imputation quality. This section proposes two models,
multivariate TR-MF and temporally-regularized tensor fac-
torization (TR-TF), to leverage multivariate correlation for
missing data recovery.

A. Multivariate TR-MF (MTR-MF)
In TR-MF, as we normally have many more time-steps than
sensor nodes, the latent matrix P is much larger than Q,
and therefore being able to learn a faithful representation of
latent factors in the temporal-dimension is critical.
For concreteness, assume there are two types of sensors in a
node: temperature and humidity. Then, using TR-MF we can
obtain Ptem and Qtem from the temperature matrix Rtem,
and obtain Phum and Qhum from the humidity matrix
Rhum. These two Ps are identical in size, and it is not
hard to imagine that they should be correlated because row
factors pm in both matrices represent the factors of time
step m. Therefore, it might be beneficial to use both sides of
information to learn a unified and better P. This observation
motivates us to design the multivariate TR-MF (MTR-MF).
In MTR-TF, we let R =

[
Rtem Rhum

]
, which is the

horizontal concatenation of the temperature matrix and the
humidity matrix. This enables the temperature and humidity
models to share the common P matrix, so that they merge
similar factors and communicate the observed information
with each other. Note that the Qtem and Qhum matrices
in the TR-MF model remain independent in the new Q
in MTR-MF. Also, the spatial regularization can be freely
added to yield a corresponding MSTR-MF.
The learning process of multivariate TR-MF is very similar
to that of TR-MF except for two differences: (1) for each
row, we need distinct bias terms for temperature and humid-
ity readings as they naturally are biased differently, and (2)
Rtem and Rhum of R must be normalized independently
with their own means and variances.

B. Temporally-Regularized Tensor Factorization (TR-TF)
One main concern for MTR-MF is that it does not fully
exploit the mutual-dependency between the multiple sensor
signals at a node. Namely, we did not specify that a pair of
columns in Rtem and Rhum correspond to the same node.
Here we propose a more complex tensor model to capture
such relationships.
A tensor can be regarded as a high-dimensional matrix,
and is usually exploited to represent multi-dimensional data.
While TR-MF could model only 2-dimensional correlations
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such as sensor/time-step, a third-order tensor can model 3-
dimensional correlations such as variable1/variable2/time-
step. Tensor decomposition is a multi-dimensional extension
of singular value decomposition (SVD). Similar to SVD,
conventional tensor decomposition methods assume a fully
occupied matrix R.

In the following, we will first introduce the tensor decom-
position models and then describe how to modify them into
a model for imputing missing data.

1) Tensor Decomposition: The long-standing Tucker de-
composition model [25] factorizes a higher-order tensor into
a core tensor S and one factor matrix for each dimension—
however, it is computationally expensive. This led to the
development of the more efficient canonical decomposi-
tion (CD) [4], which factorizes a tensor into a sum of
K rank-one tensors. CD is the special case of the Tucker
decomposition when S is super-diagonal. Formally, the CD
of an M ×N × C tensor T is

T =
K∑

k=1

pk ⊗ qk ⊗wk or tmnc =
K∑

k=1

pmkqnkwck

where pi, qi and wi are a column of matrices P, Q and
W, which are the factor matrices, and K is the number of
columns.

2) Tensor Factorization for Data Imputation: Here we in-
troduce temporally-regularized tensor factorization (TR-TF)
model for missing data estimation. Similar to TR-MF, TR-
TF learns the temporal correlation given the sparsity of data
with the capability to take additional information such as
spatial correlation and heterogeneous sensor readings into
consideration.

We follow the idea of context-aware recommendation
sytems [12], but we use canonical decomposition rather
than Tucker decomposition. Consider a 3-dimensional tensor
(e.g., the temperature reading of a sensor given a certain
time-stamp and a certain humidity reading), a tensor model
can be described as:

Factorization := F1 × F2 × F3 → F1 ×K,F2 ×K,F3 ×K

The tensor factorization model decomposes the three di-
mensional tensors T into three matrices. One of them rep-
resents the temporal dimension, and the rest can represent
sensor nodes, sensor node coordinates, heterogeneous sensor
readings, etc. In the experiments, we implemented a three
dimensional tensor model and chose the sensor nodes as
well as the multivariate sensor readings as the remaining
two dimensions.

Similar to the TR-MF model, we also add bias terms to each
dimension into the TR-TF model. The prediction function
is:

t̂mnc = μm + μn + μc +
K∑

k=1

pmkqnkwck

We extend the model with regularization terms designed
to constrain the scale of latent factors and, solely in the
temporal dimension, to force adjacent rows to be similar.
The final objective function of our TR-TF is:

∑
m,n,c

1

2
(t̂mnc − tmnc)

2

+
β

2

(∑
m

(μm + ‖pm‖2
) +

∑
n

(μn + ‖qn‖2
) +

∑
c

(μc + ‖wc‖2
)

)

+
γ

2

∑
m

(
(μm − μm+1)

2
+ ‖pm − pm+1‖2

)

3) Optimization: Minimizing the above objective function
can be done using many different strategies. For effi-
ciency and scalability, we suggest stochastic gradient de-
scent (SGD) as in TR-MF. Focusing on an observed reading
data tmnc, the update rules for all ks are:

μm
′
= μm − η(e + βμm), p

′
mk = pmk − η(e × qnk × wck + β × pmk),

μn
′
= μn − η(e + βμn), q

′
nk = qnk − η(e × pmk × wck + β × qnk),

μc
′
= μc − η(e + βμc), w

′
ck = wck − η(e × pmk × qnk + β × wck).

where e = t̂mnc− tmnc. After a round of updating, we then
update the model according to temporal regularization:

pm
′
= pm − ηγ((pm − pm+1) + (pm − pm−1))

μm
′
= μm − ηγ((μm − μm+1) + (μm − μm−1))

TR-TF applies similar normalization and stopping criterion
techniques as in Section III. Its time complexity is also
similar to that of TR-MF, except TR-TF models can be
trained even more efficiently because they usually consist of
fewer factors and do not require many iterations to converge.

V. EXPERIMENTAL RESULTS

We conducted an experimental study comparing the accuracy
of our proposed TR-MF, STR-MF, MTR-MF, and TR-TF
methods to prior state-of-the-art methods.

A. Experimental Setup
We performed our study using two datasets: an indoor
dataset, the “Berkeley” dataset, and an outdoor dataset, the
“traffic” dataset. For each dataset, we study two patterns for
missing data: “random missing” and “consecutive missing.”
This section details these datasets and patterns, as well as the
parameter settings for our methods. We follow the standard
evaluation process in machine learning of dividing the data
into training, validation, and testing sets.

1) Datasets:
Berkeley Dataset:
The Intel Berkeley Research lab dataset [2] records temper-
ature (◦C), humidity (relative humidity, %), light (lux), and
voltage (volt) for 54 sensors (with one sensor completely
missing) in an indoor lab environment from February 28th
and April 5th, 2004. Sensor locations are shown in Figure
2(a). The dataset includes 2.3M sensor observations, with
over 210K samples along the temporal dimension. Because
the completeness of data degrades after 10000 samples,
in our experiments only the first 2500, 5000, or 10000
samples were used. We found the relative performance of
the compared methods to be similar in these three cases;
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thus, we report only results of 5000 samples. The inherent
missing rate (i.e., before we introduce our missing value
patterns) for these first 5000 samples is roughly 49%.

Traffic Dataset:
The traffic dataset [19] records the temperature (◦C), humid-
ity (relative humidity, %), and voltage (volt) conditions of
20 sensor nodes and one gateway node. This dataset, col-
lected by the Bio-industrial Department at National Taiwan
University, was recorded over a 2.5 year time period ending
in 2011 in an outdoor location high traffic area in Taipei,
Taiwan (see Figure 2(b)). The sampling rate is roughly once
every 30 minutes. Along the temporal dimension, we use the
entire range which consists of roughly 43K time stamps. The
inherent missing rate is roughly 58%.
Note that for both Berkeley and traffic datasets, simple
preprocessing rules were applied to remove apparent out-
liers. In the Berkeley dataset, observations are removed
if temperature > 100◦C, temperature < 5◦C, or humidity
< 16%. In the traffic dataset, observations are removed if
temperature > 60◦C, temperature < 5◦C, humidity > 100%
or humidity < 10%.

(a) Intel Berkeley research lab floorplan (b) Traffic sensor deployment map
(8 sensors of 20 shown)

Figure 2: Sensor configuration

2) Missing Data Generation: Although both datasets in-
trinsically have missing readings, we cannot use those for
evaluation because their true values are unknown. Instead
we devised two strategies to produce artificial missing data.

Random Missing Pattern: This pattern reflects repeatedly
choosing a random time and random sensor to be missing
and hence removed from the training set. We define two
variables x and y during our experiment, and the X-axis of
the resulting plot varies with x.

• 10% of the existing readings are randomly selected
(without replacement) to be the validation set

• y% of the existing readings are randomly selected
(without replacement) to be the testing set

• The remaining readings (x%) are part of the training set.
That is, x+y+10=100 that accounts for all the observed
readings.

Consecutive Missing Pattern: This pattern reflects testing
the effect of all data missing after a certain point in time.
We define two values x and y as follows.

• Here, we have the last y% of time covered as missing,
and the prior 10% to that is considered as the validation
data.

• The sensor node numbers “covered up” in the valida-
tion and testing for the Berkeley and traffic datasets

are 4, 19, 45 and 2, 4, 6, 8, 10, 14, 17, 19, 20, 21, respec-
tively. Note that node 21 of the traffic dataset is the
gateway node. We experimented with other combina-
tions of covered up nodes, and the results were similar.

3) Parameter Setting: We exploit the commonly used metric
of root-mean-square-error (RMSE) to measure the difference
between the predicted values and the ground truth, and
all parameters in our models and competitors’ models are
automatically selected using the validation set.

We share the resulting parameter values of our models. The
number of factors K is 54 for MF and 30 for TF for the
Berkeley dataset, and 21 for MF and 10 for TF for the traffic
dataset. The learning rate η is set to 0.04 to 0.004 for MF
and 0.001 to 0.0001 for TF. A smaller η or a larger K could
slow down the training process, but it would not degrade the
model. Also, a reasonable choice of K should not be larger
than the number of sensor nodes since the rank of the matrix
is at most K. The temporal regularization γ is set to 0.2/η
in all of our experiments. The conventional regularization β
is 0.001 for consecutive missing and 0 for random missing
in MF, while in TF, β is 0.005 for consecutive missing and
0.001 for random missing.

B. Experimental Results on TR-MF
We first compared TR-MF with its predecessor, the EOF
model [1] and improved EOF model [13]. Table II shows a
representative experiment (Berkeley dataset, random missing
pattern, humidity readings). Improved EOF is significantly
more accurate than EOF, but still worse than our TR-MF.
Given this, and the fact that EOF-based methods require the
execution of many rounds of SVD, which is computational
expensive and much less efficient than the other models we
study, we omit EOF from any further experiments.
We compared our TR-MF with conventional MF (i.e., MF
without temporal regularization), linear interpolation (LI),
applying k-nearest neighbor estimation (AKE), data esti-
mation using statistical model (DESM), spatial temporal
imputation (STI) and multiple imputation (MI). Note that
sensor location information is available for only 8 out of 20
sensors in the traffic dataset, but the pairwise distance values
are required inputs for the DESM and STI models. In these
cases, we simply assume the unknown distances are equal.

Table II: RMSE of TR-MF and EOF on (Berkeley, random,
humid(%)). Columns are labeled with the percent-
age of data used for training.

10% 20% 40% 60% 80% 85%
TR-MF 0.142 0.114 0.092 0.082 0.076 0.075

EOF 2.423 1.385 1.000 0.734 0.656 0.645
Improved EOF 0.362 0.237 0.183 0.152 0.136 0.134

Figures 3(a), 3(b), 3(c), 3(d) and 3(e) show the results of
our random missing experiments. The outcomes indicate
several interesting facts. First, TR-MF outperforms the orig-
inal MF significantly, which demonstrates the effectiveness
of the temporal regularization. In general, TR-MF shows
significant improvement over all the other methods. On the
other hand, LI is quite competitive on the Berkeley dataset,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Accuracy of salient methods, varying the
percentage of training data. (a) to (e) are for
random missing data; (f) to (j) are for
consecutive missing data.

especially for lower missing rate cases. This is because
the sampling rate of the Berkeley dataset is fairly high,
using only temporal correlations is sufficient to obtain decent
results. In datasets with lower sampling rates such as the
traffic dataset, the spatial-oriented methods such as AKE
outperform LI.
Figures 3(f), 3(g), 3(h) and 3(i) and 3(j) show the results
for the consecutive missing pattern. Comparing it with the
previous figure, we find that, not surprisingly, the consec-
utive missing task is more challenging, as the RMSE is
much higher than that of the random missing case. Generally
speaking, the incorporation of the temporal correlation is not
very useful for the consecutive missing cases. Specifically,
LI is no longer competitive and the performance between
TR-MF and MF has become closer, especially when the
missing rate is high. The AKE algorithm also performs
competitively in this case. The results indicate that when
there is less information from which a model can learn,
providing it other kinds of information (e.g., the spatial

information) can potentially improve the outcome. This
conjecture is confirmed in the next experiment which shows
that TR-MF can be further improved in consecutive missing
cases when spatial information is included.

C. Experimental Results on STR-MF

Next we focus on using the Berkeley dataset to verify the
STR-MF model as the sensor node location information for
the traffic data is incompletely specified and thus unable to
be properly exploited.

Table III compare STR-MF with TR-MF. The spatial regu-
larization used for STR-MF was defined based on manually-
determined neighborhood nodes established via inspection
of the floor plan, as shown in Figure 4(a). Note that STR-
MF and sTR-MF stand for TR-MF with strong and rela-
tively weaker spatial regularization, respectively. The results
show that for the random missing pattern, adding spatial
regularization indeed hurts the performance. We believe this
perhaps surprising finding holds for the random missing
cases because the sensor observations alone are adequate for
TR-MF to learn the correlations between sensors. In fact,
enforcing similarity between nearby sensors can actually
degrade accuracy because the degree of correlation between
sensors is actually quite low. On the other hand, for consec-
utive missing cases, adding spatial regularization shows sig-
nificant improvement for humidity and temperature readings.
Generally, the distinction between TR-MF and STR-MF is
that the former is a pure data-driven model while the latter is
slightly knowledge-driven. The experiments show that when
we have sufficient data to learn the correlation between
sensors, it is better to ignore the given knowledge because
they might not be accurate; however, if the given data is
less abundant, incorporating external spatial knowledge can
be helpful.

(a) Expected similarity (b) Humidity (c) Light

Figure 4: Expected vs. Actual similarities

We also conduct an interesting experiment to see whether
the correlations learned by TR-MF in random missing cases
reflect our hypothesis of spatial correlation (i.e., Figure 4(a)).
For the humidity and light data, we first use the TR-MF
model to learn the latent factors of each sensor node given
random missing under 85% training data. Based on the latent
factors q, we can then define the similarity between sensor

nodes ni and nj as:
qTni

qnj

max(||qni
||2,||qnj

||2) ,
Then we identify the top 100 similar pairs and draw a line
between each of them on the floor plan. We can see that
the manually hypothesized spatial correlation plot Figure
4(a) is more similar to the one learned from humidity data
(Figure 4(b)) than to the one learned from light data (Figure
4(c)). This experiment shows two interesting insights. First,
the manually-crafted spatial correlations do not necessary
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Table III: RMSE of Berkeley, random missing and consecutive missing

Random Missing Consecutive Missing

Humidity (%) Light (lux) Temperature (◦C) Humidity (%) Light (lux) Temperature (◦C)
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10% 0.142 0.484 0.173 35.5 97.4 38.3 0.046 0.154 0.061 0.957 0.573 0.547 220.0 281.6 264.7 0.515 0.242 0.307
20% 0.114 0.424 0.135 28.2 90.6 28.9 0.032 0.146 0.047 0.796 0.657 0.459 113.3 236.8 230.0 0.392 0.179 0.187
40% 0.092 0.352 0.104 21.2 85.8 22.8 0.023 0.145 0.037 0.771 0.520 0.455 58.0 110.7 64.3 0.310 0.196 0.189
60% 0.082 0.337 0.093 17.2 83.3 18.3 0.018 0.147 0.031 0.540 0.351 0.708 41.7 150.1 69.2 0.206 0.191 0.243
80% 0.076 0.324 0.084 17.7 84.4 18.1 0.015 0.148 0.027 0.447 0.299 0.261 21.4 112.6 28.0 0.132 0.108 0.114
85% 0.075 0.326 0.083 14.4 82.0 15.8 0.016 0.138 0.028 0.323 0.166 0.256 8.3 85.4 12.0 0.088 0.065 0.082

reflect the true correlations between sensor signals, because
they might have not yet considered other factors such as
barriers or long-distance correlations. Second, if knowledge
of spatial correlation does to some extent reflect the true
correlations between sensors, incorporating this in scenarios
with limited information can be helpful (e.g., the humidity
imputation for the consecutive missing pattern in Table III
improves with spatial information); otherwise it is useless
(e.g., no improvement on the light imputation for the con-
secutive missing pattern in Table III).

D. Experimental Results on MTR-MF and TR-TF
To evaluate multivariate imputation models, we use humidity
information to improve temperature predictions and vice
versa. Here we compare the two proposed multivariate
imputation models: MTR-MF and TR-TF with the univariate
model TR-MF, which has been demonstrated to outperform
other models in the previous section.
We consider two different scenarios in this experiment.
For illustration purposes, assume the goal is to predict
the missing entries in the temperature matrix. In the first
scenario (denoted as MTR-MF-all and TR-TF-all), we do not
cover up the humidity data and use this data in its entirety.
The goal here is to evaluate whether using all the humidity
information allows our model to improve the temperature
predictions. In the second scenario (denoted as MTR-MF-
part and TR-TF-part), we assume the humidity readings are
missing together whenever temperature readings are missing.
Note that such cases happen quite often in WSN due to
communication loss or sensor node malfunction. In the
second scenario, MTR-MF-part can be performed without
problems. However, to predict an entry in the temperature
matrix, the TR-TF model requires use of the corresponding
entry in the humidity matrix. In the TR-TF-part, such issues
can be addressed by first predicting the missing humidity
readings based on the humidity TR-MF model, and then
apply TR-TF.
The results are shown in Figure 5. Except for MTR-MF-
part, which exhibits a similar performance as TR-MF, we
see significant improvement on TR-TF-all, TR-TF-part and
MTR-MF-all. From this we see the effect of heterogeneous
information and we can conclude that: although MTR-MF
is not helpful when multiple sensors are missing together,
both temperature and humidity information can indeed be
used to enhance the prediction of the other.

E. Designing Prediction Models after Imputation
As stated previously, one main reason to conduct data im-
putation is that most off-the-shelf data analysis tools cannot

deal with inputs with missing values. Here one practical
question to ask is: “Can an improved imputation outcome
indeed lead to the development of a better analysis model?”
Here we conduct an experiment using the humidity values
of 20 sensors in the traffic dataset to build two regression
models (linear regression and support-vector regression) in
order to predict the temperature values of the gateway.
In the experiment, we first remove the gateway signal from
the matrix, and use TR-MF as well as the other competitive
models (including LI and AKE) to fill in all the missing
humidity values in the remaining 20 sensors. Then for each
imputation model, we use the filled-in readings of these 20
sensors as the inputs X and the gateway temperature values
as the output Y to train the regression models for prediction.
We divide the data randomly into 80% training and 20%
testing, and show the results of both regression models in
Table IV. We use mean square error (MSE) to measure the
error here and show the 95% confidence interval. The results
confirm our hypothesis that a better imputation model does
lead to the production of a better prediction model, and TR-
MF again outperforms the other models in this respect.

Table IV: Accuracy of temperature models built using filled
humidity data

MSE Linear Regression Support Vector Regression
train LI AKE TR-MF LI AKE TR-MF
10% 24.7 ±5.3 14.5 ±7.8 9.0 ±5.7 25.1 ±5.9 16.8 ±7.4 9.9 ±5.9

20% 19.2 ±1.1 13.9 ±3.1 8.7 ±1.9 20.7 ±1.5 15.8 ±2.4 7.9 ±2.2

40% 17.5 ±1.9 10.0 ±2.2 8.8 ±1.7 18.0 ±1.6 10.5 ±2.2 8.3 ±1.9

60% 16.6 ±0.6 8.0 ±1.3 6.6 ±0.8 17.4 ±0.7 9.4 ±1.0 7.2 ±0.9

80% 15.0 ±0.7 8.3 ±1.4 6.4 ±1.0 13.8 ±0.6 8.4 ±1.1 7.2 ±0.8

85% 14.4 ±0.6 7.8 ±1.3 6.3 ±0.7 16.1 ±0.6 8.4 ±0.9 5.8 ±0.8

VI. CONCLUSION

This paper proposes usage of factorization-based models
for missing data estimation. In contrast to many existing
knowledge-driven approaches that make stronger assump-
tions about the data (e.g., assume that nearby sensor nodes
have higher similarity; or assume the so-called “neighbor-
hood area” is at the same radius away from the center in
every direction), our data-driven factorization model learns
the inter-sensor and intra-sensor correlations through ex-
ploiting their latent similarity. Furthermore, we show that the
additional knowledge such as the spatial relationships among
sensors can seamlessly be incorporated into our model
through regularization terms (e.g., STR-MF) if desired. Our
experiments suggested that the temporal regularization is
very helpful in general, while spatial information is useful
only when the existing data are insufficient for the model
to learn the inter-sensor relationships. Finally, we propose
MTR-MF and TR-TF models that successfully exploit the
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Figure 5: Root mean square errors of multivariate models, varying the percentage of training data. The units of measurement
are Celsius for temperature and % for humidity.

correlation between multiple sensor types. We believe that
factorization-based models will become a very important
class of missing data estimation techniques for WSN in the
near future, and we envision that our work can establish a
foundation for more advanced research in this direction.
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