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Abstract—Location tracking of passive RFID tags is useful
for its ultra-low cost, but is very challenging for its passive
nature. A passive RFID tag relies on no internal power source
and draws power from the field created by the reader to
power the microchip’s circuits. This has made passive RFID
tags highly sensitive to surrounding materials, as well as any
disturbance. Therefore, conventional machine learning models
may not perform well. In this paper, we propose an ensemble-
based machine learning model, together with novel feature
engineering techniques, for location tracking of passive RFID,
which can work seamlessly with any supervised learning methods.
The reader-based sub-models training method used in our model
significantly reduces the training time by splitting our model
into smaller sub-models and training them in parallel, which is
desirable in real-world application.

Keywords—RFID, RSSI, Indoor Location, Positioning Algo-
rithm, Ensemble.

I. INTRODUCTION

Radio frequency identification (RFID) is a ubiquitous tech-
nique applied in various areas for over a decade !. While we
are in the midst of a major shift from Internet to the Internet
of Things (IoT) — the heart of this disruption is making sense
of the significant amount of data being generated — location
and time are the key to understanding many things. This
paper addresses the problem of location tracking using RFID
technology.

RFID, by a broad definition, is a blanket term that cov-
ers anything that can be identified using radio frequencies.
RFID is available at multiple frequencies with diverse sets
of technologies, and, therefore, comes with performance and
cost characteristics. RFID technologies can be categorized by
usage, frequency, physical property, and data [1]. A popular
taxonomy is defined by the physical property of internal
power source. Specifically, active RFID and passive RFID
are fundamentally different technologies; however, they are
often compared and evaluated together because internal power
source is usually a deciding factor for designing low-power
small form factor devices, especially in the context of the
Internet of Things (IoT).

There are three types of RFIDs, differentiated by whether
or not an internal power source is used and the way the internal
power source is used.
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e Active RFID has internal power source for power-
ing the microcontroller and transmitting signals to a

reader.

Passive RFID does not require any internal power
source and relies solely on power drawn from the
signal from a reader.

Semi-passive RFID uses an internal power source to
run the microcontroller but draws the power from a
reader just like passive RFID.

Passive RFID is particularly useful for deploying onto
high-volume, low-cost assets, e.g., clothes, because no internal
power source implies smaller form factor and lower costs. For
example, Walmart has been trying to adopt RFID technology
for inventory management so that they can cut the volume of
excess inventory in its massive supply chain.

In this paper, we propose feature generation techniques for
location tracking of passive RFID that can work seamlessly
with any supervised learning methods. We also propose a
reader-based sub-models training method, together with an
ensemble solution based on multi-label classification, that
makes our approach very efficient in terms of training time. In
our case, we use a retail dataset as an example, but our method
shall be applicable to the tracking of any high-volume, low-
cost assets, e.g., warehouse logistics.

We collected around 60M real-world indoor RFID tracking
data instances to conduct experiments. To our knowledge, this
is the first-ever empirical study on RFID location tracking
that involves this huge amount of ground truth labeled data
instances.

II. BACKGROUND

Location tracking has been well studied in the literature
and the industry in the past decade, which has enabled a
variety of location based services. Parametric (or model-based)
methods include received signal strength (RSS) lateration [2],
time of arrival (TOA) lateration [3], time difference of arrival
(TDOA) weighted mean squares [4], received signal phase
(RSP) [5], angle of arrival (AOA) [6], etc. These methods are
based on certain assumptions of predetermined models and
parameters, e.g., path loss propagation modeling, and can be
vulnerable to noise. Fingerprinting, on the other hand, is a data
driven model[2], and has been the most promising in providing
accurate indoor location estimates. It is based on k-nearest
neighbor search on a pre-recorded RSS-to-location database.
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Fig. 1: The interior layout of the experimental clothes shop. The black squares are readers, and the blue rectangles are shelves,
where clothes with tags are placed. Each grid has a dimension of one foot by one foot.

Data driven methods can be much more robust against noises,
in particular when the noise models are unknown. This work
falls into the category of data driven methods powered by state
of the art machine learning techniques.

The major concerns of deploying any existing location
tracking solutions are either in their performance inadequacy
or their requirements for substantial infrastructure deployment
efforts. The use of passive RFID addresses the latter concern to
some extent because the battery-free nature makes a location
tracking solution easy to deploy; in combination with its low
cost, the location tracking solution can be almost maintenance-
free. However, the battery-free nature also makes location
tracking tricky because the measurements, i.e., received sig-
nal strength indicator (RSSI), can be particularly unreliable.
This paper uses an ensemble-based machine learning model,
together with novel feature engineering techniques to address
the former concern of accuracy inadequacy.

III. PROBLEM DEFINITION

This paper addresses the location tracking problem in the
context of asset tracking. Just as any data driven methods
like fingerprinting, the location is discrete by discretizing the
space. In the context of indoor localization where people can
maneuver continuously across the space, location is defined
by densely-sampled grids over the space; in the context of
asset tracking, location is defined by certain predetermined
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landmarks. For example, in a retail store, clothes are either
on top of a table, in a rack or on a shelf.

In our scenario, we use RFID in a retail clothes store, where
there are hundreds of clothes with tags, ten shelves, and five
readers. Our goal is to tell which shelf a cloth is located in,
given the received data instance of a tag, which consist of its
RSSI, phase, frequency, scanned multiple times in a period of
time. This can be classified into the category of multi-class
classification problems.

IV. DATASET

The dataset was collected in a laboratory in Intel facility
in Arizona replicating a real brick-and-mortar apparel shop
setting. In the following, we describe in detail the infrastructure
used for data collection, the way the ground truth labeled data
were collected, and how the ground truth labels are defined.
Finally, we conduct several statistical analyses on the dataset.

A. Hardware and Software Settings

The data were collected using Intel®Responsive Retail
Platform (RRP) 2. It is an end-to-end infrastructure includ-
ing Responsive Retail Sensor (or sensor), which features an
integrated RFID reader and antenna. In our setting, there are

Zhttps://newsroom.intel.com/newsroom/wp-
content/uploads/sites/11/2017/01/IntelResponsiveRetailPlatformFactSheet.pdf



Fig. 2: Shelf setting

five sensors, as depicted in Figure 1 in 1-by-1 foot grids, where
dark squares are sensors and light (blue) rectangles are shelves
or tables.

Figure 2 shows the setting of the two shelves on the right of
Figure 1. As can be seen, this is a fine replicate of an apparel
shop where clothes are organized just like the way it is in a
real store.

In order to elaborate on the software settings, we first start
with a brief description about the way RFID tags are designed.
RFID tag has two states — A and B, and alternates between the
two states. Tags in state A are considered not-yet-inventoried
and hence readable by a sensor; on the other hand, tags in
state B are considered already-inventoried or of-no-interests
and hence invisible to any sensor. Based on the definition of
states, RFID sensor has four exclusive sessions — 0, 1, 2 and 3.
In a nutshell, when an RFID tag is read by a reader, its state is
switched by the reader from state A to state B; a session defines
how long (in seconds) the tag persists in state B. For example,
in session 0, a tag switches back to state A immediately after
being read, whereas in session 2, a tag persists in state B for
at least two seconds before switching back to state A.

In addition to states and sessions, RRP also provides
customization of reading behaviors — deepscan and mobility.
Deepscan behavior is intended to read tags (inventory) deeply;
mobility behavior is intended to allow fast scanning of easily
read tags.
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Fig. 3: RFID tag

The data were collected continuously, where sensors are in
session 2 with mobility mode in the daytime, and in session
0 with deepscan mode in the nighttime. This is a common
practice so that it can read a large tag population quickly in the
daytime by minimizing duplicate reads, and read tags deeply
in the nighttime when tags are almost surely stationary.

B. Data Collection

While data were collected continuously by sensors
mounted in the ceiling, the ground truth labels were collected
separately with a TSL 1128 Bluetooth UHF RFID Reader.
Basically, we manually scanned every tag on the shelves and
racks and labeled their true locations. There are in total five
sensors, each of which comes with one antenna and one reader,
and approximately 300 RFID tags. The data were collected
continuously day and night for five consecutive days, with a
total number of entries of around 60M. Tab. I illustrates a
snippet of the data, where EPC and antenna identity (ID) are
unique strings identifying tags and antennas, respectively, and
labels are the enumeration of discrete locations, which in our
case are shelves, along with numeric fields including RSSI,
phase, frequency and timestamp.

C. Ground Truth Labels

Given Figure 1, we define the ground truth labels as shelves
A, BC, E, FG, H, I, JK. Notice that we have combined some
nearby shelves into a single label for simplicity, as in BC, FG,
and JK.

D. Statistical Analyses

Analyses of different aspects are conducted here to help
understand the data in a more detailed way, and the results are
presented as charts alongside.

In particular, we calculate the raw data distribution from
the perspectives of each shelf. That is, we see how many raw
data instances were collected from each shelf. The result is
shown in Figure 4.

Further analyses are done on distinct clothes, rather than
raw data instances. Figure 5 shows how many clothes are
located in each shelf, while Figures 6 to 10 present the
distributions of clothes read by each reader

V. METHODOLOGY

Figure 11 shows the overall process of our solution. We
first perform data preprocessing and feature engineering, which
include aggregation of the data over time, and extracting



TABLE I: A snippet of the data. Note that all EPCs have a prefix of 3014032F440FOE0540.

Raw Data
EPC RSSI AntennalD Phase Frequency Timestamp Label
7CD02C -50.0 SNO1051 0.8344855486097889 906.25 1449730800021 E
TAE21B -71.0 SNO01047 2.6016314162540475 909.75 1449730800039 B
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Fig. 4: Raw data distribution from the perspective of each shelf.
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Fig. 5: Number of distinct clothes in each shelf.

additional aggregate features. For each reader, we then con-
struct an individual predictor for location tracking. Finally,
the probabilistic outputs of each predictor are integrated using
multi-label classification techniques to produce the final result.
Below, we will elaborate on each of these components.

A. Aggregation

RFID signals can be scanned in a relatively frequent man-
ner (e.g. once per second). However, typically we do not need
to make a decision about a tag’s location that frequently. Thus,
whenever a decision of location has to be made, normally there
have already been multiple instances received. We consider it
an advantage from the prediction point of view, since the model
can gather more information before making a decision. Thus,
in this stage we propose an aggregation method that aggregates
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Fig. 7: Distinct counts of clothes in each shelf scanned by
SNO1051.

all the data of a tag scanned in a short period of time to jointly
make a decision about its location.

The way we carry out this aggregation is intuitive. Since
each record has a timestamp associated with it, we first parti-
tion the time into periods of equal lengths, say five minutes,
which we call time spans, and then group together the data that
were scanned in the same time span. Then, for each tag, we
combine all the data in the same group into one by averaging
the feature values.

One thing to note here is that we have multiple readers at
different locations, and each of them can be scanning the same
tag. Because the distributions of data from different readers
are likely to vary significantly, aggregating data that were not
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Fig. 8: Distinct counts of clothes in each shelf scanned by
SNO01060.
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Fig. 9: Distinct counts of clothes in each shelf scanned by
SNO1143.
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Fig. 10: Distinct counts of clothes in each shelf scanned by
SNO01249.
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scanned by the same reader is not really meaningful. Thus, we
aggregate only the data that came from the same reader. For
example, in a certain time span, if a tag was scanned by, say
one reader for 20 times, another for 15 times, but none of the
others, then there will be only two resulting entries in that time
span, which are the average of the 20 entries scanned by the
first reader, and that of the 15 entries scanned by the second
reader, respectively.

In addition to calculating the average of the data, we also
incorporate two sets of aggregate features at this stage. The
first is the numbers of times that a tag was scanned by each
reader in a time span. For example, if a tag was scanned by
the first reader 90 times, by the second reader 110 times, but
not by any other readers, in a given time span, then the first
set of aggregate features for this tag would be 90, 110, 0, 0,
0. The second set, derived from the first, is the proportions
of numbers of times that a tag was scanned by each reader,
respectively. In the case of the previous example, the second
set of aggregate features for this tag would be 0.45, 0.55, 0,

s

We call these two sets of aggregate features together the
count features. We expect these count features to be useful,
as we consider that tags located in different shelves must
have quite different distributions of numbers of times being
scanned by each reader, which means they must differentiate
themselves in terms of these count features.

Table I shows the raw data we have obtained and Table II
shows the count features.

B. Reader-based Sub-models Partitioning

Given that the data were collected by multiple different
readers, it is a natural choice to construct sub-models based
on readers, because the raw data collected from a tag may
differ significantly if scanned by different readers, due to
the differences in the distance to the reader, the obstacles
in between, and the magnitude of interference, just to name
a few. However, most machine learning algorithms assume
and depend on the fact that data are coming from the same
distribution. By partitioning our model into reader-based sub-
models, we can be certain that the data in each sub-model
come from the same distribution.

Some may say this complicated partitioning scheme can
be replaced by turning reader ID into a one-hot encoded
categorical feature, which can also solve the problems we
propose above. Yes, but in our case where there are millions
of data, training the whole big model takes prohibitively long
time. With reader-based sub-models partitioning, the training
time of each sub-model is several times less than that of the
whole model. Moreover, since the training of each sub-model
is independent, they can be trained in parallel, which further
reduces the training time.

In the experiment section, we will show that the reader-
based sub-models training method we propose yields compa-
rable accuracy rate to that of the whole model with reader ID
encoded as categorical feature, while remaining time-efficient,
making our model much preferable in real-world applications.
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Fig. 11: The big picture of our methodology.

TABLE II: The count features incorporated during aggregation. Here, the time span is set to 600 seconds.

Count Features

EPC SNO1051 SNO1047 | SNO1060 | SNO1249 | SNOI143 | n_SNO1051 n_SNO1047 | n_SNO1060 | n_SNO1249 | n_SNO1143
TACOBA 0 63 1 8 0 0.000 0.875 0.014 0.111 0.000
7ACOBB 0 32 8 416 0 0.000 0.070 0.018 0.912 0.000

C. Sub-models Training

Having gone through all the pre-processing of the data, we
begin to apply various machine learning algorithms to solve
these multi-class classification problems in each of the sub-
models.

The models we have tried primarily include logistic regres-
sion (LR), deep neural network (DNN), and gradient boosting
decision tree (GBDT). LR is a basic and efficient machine
learning solution, while DNN and GBDT are two state-of-
the-art solutions that have achieved decent performance in
various competitions. Our experiments indicate that LR and
DNN achieved comparable accuracy rates in our case, while
GBDT significantly outperformed both of them.

Note that at this stage, a tag may be predicted multiple
times, as there is more than one sub-model. Hence, there shall
be a way to combine all the predictions of a tag in a time span
into one, after taking each of them into consideration, and this
is where our ensemble methods will come into play.

D. Ensemble Methods

As mentioned above, currently, a tag may have multiple
predictions in a time span by different readers, but only one
final prediction is expected. Thus, we employ an ensemble so-
lution to somehow combine different sub-models’ predictions.

As their name suggests, ensemble methods make use of
multiple models to achieve a better performance than could be
otherwise achieved by any of these models alone. Despite the
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fact that we are using the name ensemble methods here, the
scenario we are facing is very different from a typical ensemble
task, as normally an ensemble task assumes the models to be
combined are trained on the same set of data. However, in
our case, the sub-models are trained on different sets of data,
each collected by a different readers. Thus, a typical ensemble
method may not be applicable in our scenario.

To make use of the results from the sub-models, we should
first grab the predictions from each of them. Previously, we had
our sub-models directly predict which shelf each tag belongs
to. In fact, these predictions were generated in two steps. First,
the sub-models produce the probability estimates of each tag
belonging to each shelf. Then, for each tag, the sub-models
chose the shelf with the highest probability estimate to be the
prediction. Here, instead of using the predicted labels from the
second step, we use the probability estimates from the first step
as input to our ensemble methods, as they contain much more
information than a single label output. Table III gives a snippet
of the resulting features.

First, we try a typical ensemble model. For each tag, given
all of its probability estimates predicted by different sub-
models, we simply average them, and then choose the shelf
with the highest resulting probability estimate to be the final
prediction. In simpler words, this can be thought of as we are
trusting all sub-models equally, so we let them vote, and see
which shelf is the winner.

Then, we propose a more sophisticated ensemble method
powered by multi-label classification. Instead of trusting all
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Fig. 12: Comparison of accuracy rates between aggregation
with and without count features, and with different length of
time span. Here, LR is used as the training algorithm.

sub-models equally, we learn from the data whether we should
trust a sub-model. In details, for each tag, given all of its
probability estimates predicted by different sub-models, along
with some other features of it including its count features,
we should tell which sub-models to trust. We pose this as a
multi-label supervised learning problem, and the ground truths
here are whether each sub-model has correctly predicted the
belonging shelf of each tag. For example, if a tag has been
correctly predicted by the first two sub-models, but either not
predicted or wrongly predicted by the other three sub-models,
then the ground truth for this tag would be [1, 1,0, 0, 0], where
1 means to trust that sub-model, and 0 means the opposite.
After learning which sub-models we should trust for a tag,
we average only the probability estimates that were predicted
by the trusted sub-models, after which we choose the shelf
with the highest resulting probability estimate to be the final
prediction. In simpler words, this can be thought of as we first
elect some of the sub-models as representatives, who will then
vote to decide which shelf should be the final prediction. In
practice, we have tried Binary Relevance (BR) and Random k-
Labelsets (RAKEL), two remarkable multi-label classification
algorithms, for our purpose.

VI

During our work, we have made several hypotheses and
observations to verify our methodology. Here, we describe
them in details and show their results.

EXPERIMENTS

In the following experiments, we split our data into 80%
of training data, and 20% of testing data based on timestamp
(data that were collected later are taken as testing data). The
following results are all based on the testing data.

A. Hypothesis: Count Features Must Carry Important Infor-
mation

In this experiment we compare the accuracy rates of
aggregation with and without count features, and with different
lengths of time span given different algorithms.
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Fig. 13: Comparison of accuracy rates between aggregation
with and without count features, and with different lengths of
time span. Here, GBDT is used as the training algorithm.
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Fig. 14: Comparison of accuracy rates between aggregation
with and without count features, and with different lengths of
time span. Here, DNN is used as the training algorithm.

The results are shown in Figure 12, Figure 13, and Figure
14. As can be seen clearly, count features contribute significant
improvement.

Also, we can notice that the length of time span does
not seem to have any huge influence on the models with
count features incorporated. Thus, in this case, the length of
time span can be set to any reasonable value regarding the
application needs. As for the models without count features,
the longer the time span, the lower the accuracy rates. This is
in our expectation because the major advantage of having a
longer time span is that more count features can be collected
within a time span, but since we exclude the count features
here, we would only suffer more from data shrinkage due to
aggregation if we use a longer time span.



TABLE III:

Data that serve as input to the ensemble methods, where is_correct_(AntennalDs) are the labels,

p_(AntennalDs)_(Shelves) are the probability estimates given by each reader on each shelf, and rssi_(AntennalDs) are the
RSSIs collected by each reader. Note that count features are also incorporated as input.

Data Prepared for Ensemble Methods
EPC is_correct_SNO1051 .. P_SNO1051_A rssi_SNO1051
7TACOCC 1 7.31e-06 -75.6
7ACOFC 1 1.88e-06 -74.0

Whole v.s. Partitioned

0.87

0.778

0.685

Accuracy Rate

0.593

0.5
LR GBDT DNN LR GBDT DNN
Whole Partitioned
Bl LR B GBDT DNN

Fig. 15: Comparison of accuracy rates before and after sub-
models partitioning.

In the following experiments, we arbitrarily choose five
minutes to be the length of the time span.

B. Hpypothesis: Reader-based Sub-models and Whole Model
Must Yield Comparable Final Accuracy Rates

In this experiment we compare the accuracy rate of the
reader-based sub-models together and that of the whole model.
The naive ensemble method is employed here to get the final
accuracy rates. The result is shown in Figure 15. As expected,
they yield comparable accuracy rates.

Under the condition that partitioned and whole models
have similar accuracy rates, training time is the key factor of
choosing which model to use. With reader-based sub-models
training, each reader-based sub-model trains more than ten
times faster than the whole model in the case of GBDT,
for example, which makes our model particularly valuable.
Furthermore, nothing stops us from parallelizing the training
of each sub-model. In this way, the training time can be further
reduced by a factor of the number of readers.

C. Observation: GBDT Outperforms LR and DNN

In order to decide which algorithm we should use to
train our reader-based sub-models, we compare the results of
LR, GBDT, and DNN as shown in Figure 15. Apparently,
GBDT performs the best among three algorithms. Therefore,
we apply GBDT as our reader-based sub-models classifier for
the following experiments.
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(Combined) Final Results
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Fig. 16: Comparison of final accuracy rates between differ-
ent multi-label ensemble algorithms and state-of-the-art KNN
algorithm.

D. Observation: Our Model Outperforms State-of-the-art KNN
Model

Here, we show the final accuracy rates of our model under
different ensemble methods, along with the accuracy rate of
the state-of-the-art KNN model, which is yielded by naive
ensemble method.

As can be seen clearly in Figure 16, our model outperforms
the KNN model significantly. While multi-label ensemble
method does not seem to have a big influence on our model, it
still improves the accuracy rate by a slight amount compared
to naive ensemble method.

VII. CONCLUSIONS

In this paper, we present a machine-learning-based model
that facilitates RFID location tracking. In our case, we use it
to locate clothes in a clothes shop, which is a very common
usage, but it is certainly not limited to this usage only. Instead,
we expect it to generalize to any scenario that utilizes RFID
location tracking.

Our study shows that the count features are essential to
our model. Following this fact, we reckon that the number
of readers and how they are arranged must have a significant
influence on the performance of our model, because with more
readers and a better arrangement of them, we can generate
more detailed count features, which should make it easier for
us to track the tags.

The model we propose beats the state-of-the-art KNN
model significantly, meanwhile remaining time-efficient by
employing reader-based sub-models training. This makes our



model readily scalable when more readers are deployed, which
is highly desirable and valuable in real-world applications.

Finally, as our next step, we are going to further complicate
our scenario by constantly moving clothes between shelves,
allowing people to walk around freely, and adding some other
interfering signal sources. It is foreseeable that in order to
handle such complicated situation, not only should we deploy
more readers to collect data, but we should also come up with
a more sophisticated model.
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