
Fast Algorithm for Logistic Bandit

Jun-Kun Wang
National Taiwan University
wangjim123@gmail.com

Chi-Jen Lu
Academia Sinica

cjlu@iis.sinica.edu

Shou-De Lin
National Taiwan University

sdlin@csie.ntu.edu.tw

Abstract

We study a logistic bandit problem and propose an algorithm
that enjoys fast update. In our problem, each round the learner
first chooses an arm from a decision set, in which each arm is
associated with a feature vector. Then, she receives a reward,
which is binary and is generated by a logistic function. Our
algorithm for the problem can be seen as a marriage between
stochastic gradient descent in optimization with confidence
ball strategy in stochastic linear bandit literature. If the deci-
sion space is finite k arms with d dimensional feature vectors,
our algorithm enjoysO(kd) computational complexity in each
round, which is better than O(kd2) of related works. We give
some theoretical analysis of the proposed algorithm for the
regret upper bound. Furthermore, we consider a distributed
bandit setting such that there are some learners conducting the
online learning. We extend our algorithm to the distributed
setting. By communication, the learners can achieve speedup
in learning, which is measured by regret. We also conduct ex-
periments on two recommendation datasets (MovieLens and
Yahoo! Front Page) to show that our algorithm not only up-
dates faster but also achieves highly competitive click-through
rate with the baseline.

Introduction
Online learning algorithms have drawn growing interests
because of their theoretical guarantees and their applica-
tions in sequential learning and decision making. Among
these algorithms, stochastic linear bandit (e.g. (Auer 2002;
Dani, Hayes, and Kakade 2008; Li et al. 2010; Abbasi-
yadkori et al. 2011)) has been adopted in web recommen-
dation systems and shown to have some success. In the set-
ting, in each round, the learner first observes some contexts
(feature vectors) associated with some items. The learner
then selects an item according to her decision rule. After
that, the reward of choosing the item is revealed, while
the rewards for choosing the others remain hidden. Finally,
the learner updates her model based on her previous de-
cisions and observations and then continues to the next
round. The setting is so general that the related algorithms
for the bandit problem have been applied to web advertis-
ing and recommendation (Li et al. 2010; Li et al. 2011;
Abbasi-yadkori et al. 2011). However, previous works for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stochastic linear bandit has a computational issue. Their algo-
rithms update slowly when operating on a high dimensional
context space. This is because the algorithms have to maintain
the inverse of a matrix and the online update of the inverse
matrix requires O(d2) computations by Sherman–Morrison
formula. Moreover, when choosing an arm, the algorithms
involve some multiplications of the maintained matrix and
the feature vector of each arm, which is O(kd2) in general.
This prevents from using rich feature representation of items.
Thus, the performance for choosing good items is sacrificed
for reducing response/update time and saving the computa-
tions.

In this work, we address this issue and propose an effi-
cient algorithm; the complexity of update in the proposed
algorithm scales linearly with the dimension of a context
space. We achieve this by considering an assumption of re-
ward which is different from the one in the original stochas-
tic linear bandit problem. Previous works (e.g. (Auer 2002;
Dani, Hayes, and Kakade 2008; Li et al. 2010; Abbasi-
yadkori et al. 2011)) assume the expected reward of making
a decision is the inner product of a unknown vector and the
feature vector that corresponds to the decision. Instead, we
study a logistic banidt problem, which was recently proposed
by (Zhang et al. 2016). The reward is generated by a logistic
model. It is binary and the probabilities of the outcome is
determined by the inner product of a unknown vector and
the context vector associated with the decision through the
logistic function.

We also extend our algorithm to a distributed bandit set-
ting, which is another major contribution in this paper. The
setting is that there are m learners doing online learning. The
learners can communicate with a master to exchange their
information. By communication, the learners can improve
their learning and predicting performance. Our proposed algo-
rithm allows the learners to achieve Õ(

√
T/m) regret under

certain condition, compared to Õ(
√
T) when learning alone,

where T is the number of rounds. We believe that the pro-
posed distributed algorithm is useful for a recommendation
system, as such a system usually needs to provide service to
many users online at the same time.

Our results. We propose an algorithm that for logistic
bandit. The computational complexity is O(kd), which is
a factor of O(d) improvement over the related works. We
prove that the algorithm has O(

√
T log T) regret. Most im-

portantly, the dimension of the context space does not appear
explicitly in the regret bound. We also study the distributed
bandit setting and propose a distributed algorithm that allows
the learner to achieve speedup in learning. We conduct exper-
iments and compare our algorithm with a popular stochastic
linear bandit algorithm, which shows that our algorithm not
only runs faster than the baseline but also achieves highly
competitive click-through rate (CTR) with the baseline.

Preliminaries
As discussed in the introduction, we are interested in a spe-
cific stochastic linear bandit problem, which has recently
been considered in (Zhang et al. 2016). In each round, the
learner first makes a decision xt ∈ Rd from a decision set
D ∈ Rd. Then, she receives a reward rt ∈ R. The reward is
assumed to be binary rt ∈ {0, 1} and is generated from the
logistic model,

Pr[rt = 1|xt] =
1

1 + exp(−x>t w∗)
=

exp(x>t w
∗)

1 + exp(x>t w
∗)
,

(1)
and Pr[rt = 0|xt] = 1 − Pr[rt = 1|xt], where w∗ ∈ Rd
is a unknown vector. If x>t w

∗ is large, then the probabil-
ity that observing the reward 1 is high, as the function is
monotone increasing with respect to the parameter x>t w

∗.
The assumption of rewards can model the click (rt = 1)
or no-click (rt = 0) of an advertisement (xt) in web ad-
vertising. For web advertising, one would like to design
an algorithm to maximize the number of user clicks over
time. Due to the assumption of rewards, the conditional ex-
pected number of clicks achieved by an algorithm would
be ΣTt=1 exp(x>t w

∗)/(1 + exp(x>t w
∗)). As our problem

belongs to online learning, a common way to measure the
performance of the learner is to compare the expected clicks
she gets with the one by a clairvoyant who knows w∗ in
hindsight. The difference, which is called the pseudo regret
of the learner, is

T max
x∈D

exp(x>w∗)

1 + exp(x>w∗)
−

T

Σ
t=1

exp(x>t w
∗)

1 + exp(x>t w
∗)
. (2)

However, we do not analyze the regret bound of an algo-
rithm based on the definition above due to some technical
difficulties. Instead, we provide an upper bound of the fol-
lowing measure,

T max
x∈D

x>w∗ − ΣTt=1x
>
t w
∗, (3)

while we still use the assumption of the rewards when deriv-
ing the upper bound. One can show that (2) and (3) are at the
same order. Denote the value of (2) as (A) and the value of (3)
as (B). (Zhang et al. 2016) has shown that 1

2(1+exp(θ)) (B) ≤
(A) ≤ 1

4 (B) , assuming ‖(w∗)>x‖2 ≤ θ for any x ∈ D.
Consequently, the derived upper bound of (3) is within a
constant multiple of (2).

Algorithm
Let us begin by giving another assumption and notation.
Without loss of generality, we assume for every x ∈ D

in the decision space, its L2 norm satisfies ‖x‖2 ≤ u.
Moreover, x>w∗ 6= 0 for all x ∈ D. In the following,
for brevity, the probability of the binary reward rt = 0
is mapped to rt = −1 so that the probability (1) can be
written into a compact form, i.e. Pr[rt = {±1}|xt] =

1
1+exp(−rtx>t w∗)

=
exp(rtx

>
t w∗)

1+exp(rtx>t w∗)
. Let us denote ft(w) =

log(1 + exp(−rtx>t w)), which is the logistic loss func-
tion. It follows that maximizing the probability function

1
1+exp(−rtx>t w)

over w is equivalent to minimizing the lo-

gistic loss ft(w). Next, for each function ft(·), let f̄t(w) =
Ert [log(1 + exp(−rtx>t w)] be its conditional expectation
over the reward rt when choosing xt, where rt is generated
by the logistic model.

We also assume the unknown vector w∗ ∈ Rd is also a
minimizer of

min
w

f̄t(w) +
λ

2
‖w‖22,∀t, (4)

for some suitable λ. To justify this assumption, we borrow
the following lemma.
Lemma 1. ((Zhang et al. 2016)) f̄t(w) − f̄t(w

∗) =
DKL(pw∗,xt ||pw,xt) ≥ 0, where DKL(·||·) means the KL-
divergence, pw∗,xt ≡ 1

1+exp(−x>t w∗)
is the bernoulli distri-

bution induced by w∗, and pw,xt ≡ 1
1+exp(−x>t w)

is the one
induced by w.

The lemma means w∗ is the minimizer of minw f̄t(w),∀t.
Yet, to control the model complexity, we also require w∗

satisfies the optimization problem (4). This holds when f̄t(0)
is larger than f̄t(w∗) by λ

2 ‖w
∗‖22. Thus, we further assume

that w∗ is in a L2 norm ball whose radius is R, ‖w∗‖2 ≤ R.
We think the condition is not strict at all, as long as x>w∗ 6=
0 for all x ∈ D, since the model w = 0 simply implies that
each items gets a click (reward 1) with the same probability
0.5 and this implication is unlikely to be true in practice.

Our algorithm is shown in the following block, where ΠR

is the projection into the ball, and ∇ft(wt) is the gradient
of the function ft(w) = log(1 + exp(−rtx>t w)) at point
wt. The algorithm requires two parameters, which are the
radius of a confidence ball γt and the learning rate ηt. Both
parameters are defined in the following section.

Algorithm 1 Our algorithm
Require γt and ηt.
Initialization: Let w1 = 0 ∈ Rd.
1: (xt, ŵt) = arg max

x∈D,w∈Ct
x>w,

where Ct = {w : ‖w −wt‖2 ≤
√
γt}.

2: Select xt and observe a reward rt = 1 or rt = −1.
3: Update wt+1 = ΠR(wt − ηt(∇ft(wt) + λwt)).

Clearly, the update (line 3 in Algorithm 1) isO(d). For the
optimization problem in line 1, if the decision set D is finite:
D = {x1,x2, · · · ,x|D|}, then xt = arg maxxk w

>
t xk +√

γt‖xk‖2. That is, the total computational complexity is
O(kd), which is better than O(kd2) of many related works
(e.g. (Abbasi-yadkori et al. 2011; Zhang et al. 2016)).

Theoretical analysis
In this section, we analyze the regret of Algorithm 1. As
mentioned in the preliminaries section, our goal is to provide
the upper bound of (3) for our algorithms.

The following theorem shows that with high probability,
the squared distance between our algorithm’s wt and the
unknown w∗ in each round t is scaled with O(1/t).

Theorem 1. Let δ ∈ (0, 1/e) and assume T ≥ 4 and λ ≤ 1.
If ηt = 2

λt , then with probability at least 1 − δ, we have

‖wt − w∗‖22 ≤
(2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)

λ2t ,
for any t ≤ T , where u is the upper bound of the L2 norm of
any x ∈ D respectively.

Proof. Denote a function ψt(·) as ft(·)+ λ
2 ‖ ·‖

2
2. The update

wt+1 = ΠR(wt − ηt(∇ft(wt) + λwt)) is equivalent to
wt+1 = ΠR(wt−ηt∇ψt(wt)). Now we bound the distance.

‖wt+1−w∗‖22 = ‖ΠR(wt−ηt∇ψt(wt))−w∗‖22
(1)

≤ ‖wt−
ηt∇ψt(wt)−w∗‖22 = ‖wt −w∗‖22 − 2ηt〈∇ψt(wt),wt −
w∗〉+η2t ‖∇ψt(wt)‖22 = ‖wt−w∗‖22−2ηt〈∇ψ̄t(wt),wt−
w∗〉+η2t ‖∇ψt(wt)‖22+2ηt〈∇ψ̄t(wt)−∇ψt(wt),wt−w∗〉
(2)

≤ ‖wt−w∗‖22−2ηt(ψ̄t(wt)− ψ̄t(w∗)+ λ
2 ‖wt−w∗‖2)+

η2t ‖∇ψt(wt)‖22 + 2ηt〈∇ψ̄t(wt) −∇ψt(wt),wt −w∗〉
(3)

≤
(1 − ηtλ)‖wt − w∗‖22 + 2ηt〈∇ψ̄t(wt) − ∇ψt(wt),wt −
w∗〉+ η2t (2u2 + 2λ2R2).

Above, (1) is by the known property of projection. (2) is
due to the fact that any non-strongly convex function added
by λ

2 ‖ · ‖
2
2 becomes a λ strongly convex function. Thus,

ψ̄t(w
∗) ≥ ψ̄t(wt)+∇ψ̄t(wt)

>(w∗−wt)+ λ
2 ‖wt−w∗‖22.

Rearraging it leads to−〈∇ψ̄t(wt),wt−w∗〉 ≤ −(ψ̄t(wt)−
ψ̄t(w

∗) + λ
2 ‖wt −w∗‖22). (3) is because of the assumption

that w∗ is the minimizer of ψ̄t(·) ≡ f̄t(·) + λ
2 ‖ · ‖

2
2 so that

ψ̄t(wt) − ψ̄t(w
∗) ≥ 0 and the fact that ‖∇ψt(wt)‖22 =

‖∇ft(wt) + λwt‖22 ≤ 2(‖∇ft(wt)‖22 + λ2‖wt‖22) ≤
2(u2+λ2R2), as ‖∇ft(wt)‖2 = (

exp(−ytx>t w)

1+exp(−ytx>t w)
)2x>t xt ≤

‖xt‖22 ≤ u2.
Now we have derived that ‖wt+1 − w∗‖22 ≤ (1 −

ηtλ)‖wt −w∗‖22 + 2ηt〈∇f̄t(wt) −∇ft(wt),wt −w∗〉 +
η2t (2u2 + 2λ2R2). Unwinding the derived inequality till
t = 2, we get ‖wt+1 − w∗‖22 ≤ 4

λΣti=2
1
i (Π

t
j=i+1(1 −

2
j))〈∇f̄i(wi)−∇fi(wi),wi−w∗〉+ 4

λ2 Σti=2
1
i2 (Πt

j=i+1(1−
2
j))(2u2+2λ2R2). Then, by using the facts that Πt

j=i+1(1−
2
j) = Πt

j=i+1(j−2j) = (i−1)i
(t−1)t and Σti=2

1
i2 Πt

j=i+1(1− 2
j) =

Σti=2
(i−1)
i(t−1)t ≤

1
t , we have

‖wt+1 −w∗‖2 ≤ 4

λ2t
(2u2 + 2λ2R2)

+
4

λt(t− 1)
Σti=2(i− 1)〈∇f̄i(wi)−∇fi(wi),wi −w∗〉.

(5)
We can continue to provide the bound of the distance. The

process is similar as the proof for Proposition 1 in (Rakhlin,
Shamir, and Sridharan 2012). Observe that Zi = (i −
1)〈∇f̄i(wi)−∇fi(wi),wi−w∗〉 for each i is a martingale

difference sequence, The conditional expectation given the
previous rounds is 0. Furthermore, |Zi| ≤ (t−1)‖∇f̄i(wi)−
∇fi(wi)‖2‖wi −w∗‖2 ≤ 2(t − 1)u‖wi −w∗‖2 ≤ 4(t −
1)uR. Thus, the expected value of Zi is bounded. Let Fi−1
be the randomness up to round i − 1. The conditional
variance Var[Zi|Fi−1] is bounded by (i − 1)2‖∇f̄i(wi) −
∇fi(wi)‖22‖wi −w∗‖22 ≤ 4u2(i − 1)2‖wi −w∗‖22, using
that fact that Var[·] ≤ E[(·)2] and Cauchy-Schwarz inequal-
ity.

Then, we can follow (Rakhlin, Shamir, and Sridharan
2012) using the lemma below, which is a variant of Free-
man’s inequality.

Lemma 2. (Lemma 3 in (Rakhlin, Shamir, and Sridha-
ran 2012)) Let Z1, . . . , ZT be a martingale difference se-
quence with a uniform bound |Zi| ≤ b for all i. Let Vs =
Σst=1Vart−1(Zt) be the sum of conditional variance of Zt’s.
Further, let σs =

√
Vs. Then we have, for any δ ≤ 1

e and
T ≥ 4, Pr(Σst=1Zt ≥ 2 max(2σs, b

√
log(1/δ))

√
log(1/δ)

for some s ≤ T) ≤ log(T)δ

By using the above analysis and Lemma 2, we
have Σti=2(i − 1)〈∇f̄i(wi) − ∇fi(wi),wi − w∗〉 =

Σti=2Zi ≤ 2 max(4u
√

Σti=2(i− 1)2‖wi −w∗‖22, 4uR(t−

1)
√

log(T log(T)
δ))

√
log(T log(T)

δ) for all t ≤ T with proba-
bility 1− δ. Substituting it into (5) leads to ‖wt+1−w∗‖2 ≤

32
λt(t−1) max(u

√
Σti=2(i− 1)2‖wi −w∗‖22, uR(t− 1)×√

log(T log(T)
δ))

√
log(T log(T)

δ) + 4
λ2t (2u

2 + 2λ2R2)

≤ 32u

√
log(

T log(T)
δ)

λt(t−1)

√
Σti=2(i− 1)2‖wi −w∗‖22 +

1
λ2t (32uR log(T log(T)

δ) + 8u2 + 8λ2R2), assuming
λ ≤ 1.

Now let m =
32u

√
log(

T log(T)
δ)

λ , n =
1
λ2 (32uR log(T log(T)

δ)+8u2+8λ2R2). We can rewrite it as
‖wt+1 − w∗‖2 ≤ m

t(t−1)

√
Σti=2(i− 1)2‖wi −w∗‖22 + n

t .
Using mathematical induction by assuming ‖wt+1−w∗‖2 ≤
a
t+1 and finding a, we can derive the theorem. That is, we
need to find an a so that

a

t+ 1
≥ m

t(t− 1)

√
Σti=2(i− 1)2

a

i
+
n

t
.

It follows that a should satisfy a ≥ 9m2

4 + 3n. Substituting
the definition of m and n into a and observing that the base
case t = 1 also satisties the inequality, we get ‖wt−w∗‖22 ≤
(2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)

λ2t ,

Theorem 2. Let δ ∈ (0, 1/e) and assume T ≥ 4 and λ ≤ 1.
Set γt ≤ (2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)

λ2t ,
Then, with probability at least 1 − δ, our algo-
rithm achieves T maxx∈D x>w∗ − ΣTt=1x

>
t w
∗ ≤

4
√

(2304u4+96u3R) log(T log(T)/δ)+24(u4+λ2u2R2)
λ2 log(T)T .

Proof. Let x∗ be the optimum of maxx∈D x>w∗. Then
T maxx∈D x>w∗ − ΣTt=1x

>
t w
∗ = ΣTt=1x

∗>w∗ − x>t w
∗

(1)

≤ ΣTt=1x
>
t ŵt − x>t w

∗ = ΣTt=1x
>
t (ŵt −wt) + x>t (wt −

w∗) ≤ ΣTt=1‖xt‖2(‖ŵt − wt‖2 + ‖wt − w∗‖2)
(2)

≤
ΣTt=1‖xt‖2(

√
γt +

√
γt), where (1) is due to the optimiza-

tion problem in line 1 in Algorithm 1. (2) is because
‖ŵt − wt‖2 ≤

√
γt holds due to the constraint in line 1

of the algorithm. Moreover, the term ‖wt−w∗‖2 is bounded
by
√
γt for all t with probability 1 − δ, according to Theo-

rem 1.
Thus, we have T maxx∈D x>w∗ −

ΣTt=1x
>
t w
∗ ≤ 2ΣTt=1

√
γt‖xt‖2 ≤

2
√

ΣTt=1γt
√

ΣTt=1‖xt‖22 ≤ 2
√
u2T

√
ΣTt=1γt ≤

2
√
u2T

√
ΣTt=1

(2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)
λ2t ≤

4
√

(2304u4+96u3R) log(T log(T)/δ)+24(u4+λ2u2R2)
λ2 log(T)T ,

where the second inequality is by using Cauchy-Schwarz
inequality.

Theorem 2 means that Algorithm 1 can achieve
O(
√
T log T) regret of (2). The upper bound does not depend

explicitly on the dimension of the context space, d. The di-
mension is implicitly connected to the bound through the L2
norm assumption of the decision set, namely, ‖x‖22 ≤ u2,∀x.
This regret upper bound is O(d) improvement over the one
by (Zhang et al. 2016). The computational complexity is also
O(d) improvement over (Zhang et al. 2016).

We note that the above theoretical analysis assumes the
decision space D is fixed in each round. Yet, the assumption
is not necessary. If the decision space is changed over rounds
(Dt instead of D), the analysis can still proceed.

Distributed logistic bandit
In this section, we extend our algorithm to a distributed sce-
nario. The motivation is that in a typical recommendation
system, there are many users interacting with the system at
the same time. Specifically, we consider the scenario that
there are m learners; each provides recommendation to a
user at a time. By communication, the learners can improve
their learning and predicting performance.

We assume the distributed architecture is that their ex-
ists a master communicating with the m learners. The
master maintains and updates a global parameter, while
a learner uses a global parameter to provide recommen-
dation and receives the feedback from a user. Our as-
sumption for the communication protocol adopts the cyclic
delayed update fashion (round-robin fashion), which has
been considered in (Langford, Smola, and Zinkevich 2009;
Agarwal and Duchi 2011) in the distributed optimization
literature.

Our distributed algorithm for the learners and the mas-
ter are shown on Algorithm 2 and Algorithm 3 respectively.
The master maintains a global index t. At each t, the master
communicates with a learner in the cyclic fashion and ex-
changes the information. It is the master that performs the
update of the global parameter w, while a learner interacts
with a user, makes a decision, receives the feedback, and

Algorithm 2 Distributed algorithm (learner)
1: Receive v and θ from the master
2: (x, ŵ) = arg max

x∈D,w∈C
x>w,

where C = {w : ‖w − v‖2 ≤
√
θ}.

3: Select x and observe reward r = 1 or r = −1 .
4: Compute∇g(v) = ∇ log(1 + exp(−rx>v)).
5: Send ∇g(v) + λv when the master calls it again.

Algorithm 3 Distributed algorithm (master)
For t = m+ 1, . . . , T
1: Communicate with a learner (in the cyclic fashion).
2: Send v = wt and θ = γt to the learner
3: Receive∇ψt−m(wt−m) = ∇g(wt−m) + λwt−m

from the learner.
4: Update wt+1 = Π(wt − ηt∇ψt−m(wt−m))

computes the gradient. The master performs the updates by
using out-of-date information (last line in Algorithm 3) due
to the communication protocol. Because of the cyclic delayed
protocol, the gradient used for the update at step t is com-
puted from the global parameter obtained at step t−m. For
step 1 to step m, one can execute Algorithm 1 to initialize
the master and the learners.

In the following, we analyze our distributed algorithm.

Theorem 3. Let δ ∈ (0, 1/e) and assume T ≥ 4 and λ ≤ 1.
If ηt = 2

λt , then with probability at least 1 − δ, we have

‖wt − w∗‖22 ≤
(2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)

λ2t

+ 12Ru
√
2u2+2λ2R2m(logm+2)

λ2t for any t ≤ T , where u is the
upper bound of the L2 norm of any x ∈ D respectively.

Proof. ‖wt+1 −w∗‖22 = ‖ΠR(wt − ηt∇ψt−m(wt−m))−
w∗‖22 ≤ ‖wt−ηt∇ψt−m(wt−m)−w∗‖22 = ‖wt−w∗‖22−
2ηt〈∇ψt−m(wt−m),wt − w∗〉 + η2t ‖∇ψt−m(wt−m)‖22
= ‖wt − w∗‖22 − 2ηt〈∇ψt−m(wt),wt − w∗〉 +
2ηt〈∇ψt−m(wt) − ∇ψt−m(wt−m),wt − w∗〉 +
η2t ‖∇ψt−m(wt−m)‖22 = ‖wt−w∗‖22−2ηt〈∇ψt−m(wt)−
∇ψ̄t−m(wt)+∇ψ̄t−m(wt),wt−w∗〉+2ηt〈∇ψt−m(wt)−
∇ψt−m(wt−m),wt − w∗〉 + η2t ‖∇ψt(wt−m)‖22
(1)

≤ (1 − ηtλ)‖wt − w∗‖22 − 2ηt〈∇ψt−m(wt) −
∇ψ̄t−m(wt),wt − w∗〉 + 2ηt〈∇ψt−m(wt) −
∇ψt−m(wt−m),wt − w∗〉 + η2t ‖∇ψt−m(wt−m)‖22,
(2)

≤ (1 − ηtλ)‖wt − w∗‖22 − 2ηt〈∇ψt−m(wt) −
∇ψ̄t−m(wt),wt −w∗〉+ η2tRu

√
2u2 + 2λ2R2m(logm+

2) + η2t (2u2 + 2λ2R2).
Above, (1) uses the fact that−(∇ψ̄t−m(wt),wt−w∗〉) ≤

−(ψ̄t−m(wt) − ψ̄t−m(w∗) + λ
2 ‖wt − w∗‖22) from the

strong convexity of ¯ψ(·) and the assumption of w∗. (2) is
because 2ηt〈∇ψt−m(wt) − ∇ψt−m(wt−m),wt − w∗〉 ≤
2ηt‖∇ψt−m(wt) − ∇ψt−m(wt−m)‖2‖wt − w∗‖2
≤ 4ηtR‖∇ψt−m(wt) − ∇ψt−m(wt−m)‖2
≤ ηtRu‖wt − wt−m‖2, where the last inequal-
ity uses that fact that ∇ψt−m(·) is 1

4 smooth. To
proceed, for the term ‖wt − wt−m‖2, it can fur-

ther be bounded by Σm−1s=0 ‖wt−s − wt−s−1‖2 ≤
Σm−1s=0 ‖ΠR(wt−s−1−ηt−s−1∇ft(wt−s−1−m))−wt−s−1‖2
≤
√

2u2 + 2λ2R2Σm−1s=0 ηt−s−1 = 2
√
2u2+2λ2R2

λt (t
t−1 +

· · · + t
t−m) = 2

√
2u2+2λ2R2

λt (m + Σms=1
s
t−s) ≤

2
√
2u2+2λ2R2

λt (m+mΣms=1
1
t−s) ≤ 2

√
2u2+2λ2R2

λt m(logm+

2) = ηt
√

2u2 + 2λ2R2m(logm + 2). There-
fore, 2ηt〈∇ft(wt) − ∇ft(wt−m),wt − w∗〉 ≤
η2tRu

√
2u2 + 2λ2R2m(logm+ 2).

Now, by following the proof of Theorem 1, we can derive
the result.

Using Theorem 3, we can derive the regret of the dis-
tributed algorithm.

Theorem 4. Let δ ∈ (0, 1/e) and assume T ≥ 4 and λ ≤
1. Denote a = (2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)

λ2

and b = 12Ru
√
2u2+2λ2R2m(logm+2)

λ2 . Set γt ≤ (a + b) 1
t .

Then, with probability at least 1 − δ, our distributed
algorithm achieves T maxx∈D x>w∗ − ΣTt=1x

>
t w
∗ ≤

4
√

(a+ b)T log(T).

Recall that T is the index maintained by the master, and it
is the total number of rounds conducted by all the m learn-
ers. That is, each learner conducts T/m rounds, assuming
T is a multiple of m. According to the theorem, if the quan-
tity a � b, then the term b, which is introduced by the
delay, is negligible. The meaning is that each learner has
O(
√
m) speedup in learning compared to the case when

learning alone; if each learner independently processes T/m
rounds without communication, then the total regret would be
mÕ(

√
T/m) = Õ(

√
Tm), while in our case the total regret

is Õ(
√
T). The condition forO(

√
m) speedup holds whenm

is not too large. On the other hand, if both quantities are at the
same order, then the total regret would be Õ(

√
Tm) regret

which means no speedup is achieved, compared to the perfor-
mance of learning without communication. We note that the
analysis can be seen as a case that a learner cannot receive
the feedback right before the end of each round, but receives
it m rounds later. Back to the distributed setting, though the
master equivalently experiences the delayed feedbacks, many
rounds can be conducted simultaneously during an interval.
This is why the parallelization can help each learner to have
a better regret.

Experiment
In the experiments, we compare our algorithm (Algorithm 1)
with (Abbasi-yadkori et al. 2011), the popular stochastic
linear bandit algorithm. The experiments are conducted on
two datasets.

The first dataset is Yahoo! Webscope dataset (R6A) 1. It
is the benchmark of measuring and comparing performance
of bandit algorithms (Chu et al. 2009; Li et al. 2011). Each
line in the log files represents a user interacting with one
randomly chosen article from a pool of articles. It records
a click (rt = 1) or no-click (rt = 0) for the recommended

1 https://webscope.sandbox.yahoo.com/

Table 1: Performance of the baseline on Yahoo! R6A dataset.
feature baseline baseline

dimensions CTR average running time (s)

36 (order=1) 5.211 % 5.95 ×10−4

576 (order=4) 5.350 % 9.07 ×10−2

3600 (order=10) n/a 3.40

Table 2: Performance of Algorithm 1 on Yahoo! R6A dataset.
feature dimensions Algorithm 1 Algorithm 1

CTR average running time (s)

36 (order=1) 4.876 % 1.36 ×10−4

576 (order=4) 5.533 % 7.00 ×10−3

3600 (order=10) 5.187 % 3.62 ×10−2

article. The articles available to present to a user in each round
is the subset of the articles. That is, the decision set Dt may
be different over time. Each record in the log file is obtained
by randomly and uniformly selecting an available article for
recommendation. The way of collecting the records can be
used to construct an unbiased estimator of the performance
for a bandit algorithm. (Li et al. 2011) suggests an algorithm
being evaluated to step through the log files line by line. If the
algorithm recommends the same article as the one recorded
in the line, the event is added to the history and the algorithm
is updated; otherwise, it just simply ignore the line. The
measure of the performance is CTR score, defined as the
number of clicks divided by the number of retained events
(records).

Each user and each article in the Yahoo! R6A dataset
is represented by a 6 dimensional feature vector. Based
on the raw feature vectors, we construct some rich feature
representation for the available articles in each round. The
way we form the high-dimensional features is described as
follows. Denote a raw vector as v = [v[1], v[2], . . . , v[6]]>.
We can generate the mth order representation as u =
[v[1], v[2], . . . , v[6], v[1]2, v[2]2, . . . , v[6]2, . . . , v[1]m, v[2]m

. . . , v[6]m]>. Then, the final constructed feature vectors of
the articles are obtained by conducting the outer product
of each mth order representation of a user vector and
available articles’ vectors in each round. For the mth order,
it generates a (m× 6)2 dimensional feature vector for each
article.

The second dataset is MovieLens 10M dataset 2. This
dataset consists of tuples (user’s ID, movie’s ID, rating score
[1-5]). We assume that the ratings which are less than 4 as
no-click (rt = 0), the other cases are click (rt = 1). We try
to simulate the bandit problem as the first dataset. The way
we construct a pseudo log file is as follows. First, we choose
the 200 movies that get most clicks and the 200 movies that
get most no-clicks. The union is the set of 324 movies. Then,
a tuple in the original rating file is randomly sampled and at
the same time the decision space is constructed by randomly
sampling 25 items from the pool of 324 movies. If the movie

2 http://grouplens.org/datasets/movielens/

https://webscope.sandbox.yahoo.com/
http://grouplens.org/datasets/movielens/

indicated by the sampled tuple is in the sampled decision
set, then the tuple and decision space is added to the pseudo
log file. The procedure is repeated to construct about 300
thousands records in the pseudo log file. For the feature repre-
sentation, we use LIBMF 3, a matrix factorization toolkit, to
construct the items’ features based on the ratings. The feature
dimension is set to 100, 500, and 1000 in the experiment. The
evaluation follows the same procedure as the Yahoo! R6A
dataset.

There are parameters for the baseline and our algorithm.
Denote the feature vector of an available item k in round t as
xt,k. For the algorithm of (Abbasi-yadkori et al. 2011), the
score of each item when making a decision is computed as

w>t xt,k + α1

√
x>t,kM

−1
t xt,k, where wt is the online least

squares solution and Mt is the matrix that facilitates ex-
ploration (please see (Abbasi-yadkori et al. 2011) for de-
tails). We set α1 as a tuning parameter. For our algorithm,
there are two parameters ηt and γt. For ηt, we set ηt = 150

t
for the MovieLens dataset, and set ηt = α2

t for the Ya-
hoo! R6A dataset, where α2 is a tuning parameter. For γt,
we set γt = α3

(2304u2+96uR) log(T log(T)/δ)+24(u2+λ2R2)
λ2t ,

where α3 is a tuning parameter. For λ, we simply set it to 0.
In both algorithms, when making a decision, computing the
score of each item is parallelizable (e.g. line 1 in Algorithm 1
in our case). That is, a number of threads can be created and
each thread can compute the scores for some items at the
same time. We use OpenMP/C++ to achieve that. Codes to
reproduce the experiments will be available online.

Experiment results on Yahoo! Webscope dataset
(R6A)
The algorithms are executed on the 05/01/2009 log file in the
dataset, which consists of 4 million records. The original ran-
dom policy for collecting the records achieves 3.10 % CTR.
Table 1 and Table 2 show the performance of the baseline
and our algorithm respectively. Since the number of retained
records (i.e. number of effective rounds) by each algorithm
during evaluation is different, the average running time in
each round for retained records is reported

As we can see from the tables, our algorithm is signifi-
cantly faster than the baseline. Moreover, the CTR scores of
our algorithm are highly competitive with the baseline. For
the tenth order feature representation, the baseline cannot
finish the experiment in three weeks, so we could not provide
the CTR (n/a). The tables also show that there are some im-
provements in CTR using high dimensional feature vectors.
The CTR scores of both algorithms are higher when using
the fourth order features, compared to the ones using the first
order features. Yet, when using a much higher feature vectors
(i.e. order=10), the improvement is degraded to some degree.
However, as the dimension of raw features of this dataset is
6, constructing high dimensional features may be hard.

Experiment results on MovieLens dataset
Table 3 and Table 4 show the performance of the baseline
and our algorithm respectively. In this dataset, a policy that

3 https://www.csie.ntu.edu.tw/~cjlin/libmf/

Table 3: Performance of the baseline on MovieLens dataset.
feature dimensions baseline baseline

CTR average running time (s)

100 0.8549 1.46 ×10−2

500 0.8640 2.80 ×10−1

1000 0.8579 2.08

Table 4: Performance of Algorithm 1 on MovieLens dataset.
feature dimensions Algorithm 1 Algorithm 1

CTR average running time (s)

100 0.8657 1.40 ×10−3

500 0.8697 4.40 ×10−3

1000 0.8673 1.44 ×10−2

randomly and uniformly choose an item in each round has
0.65 CTR. From the tables, we see that our algorithm is better
than the baseline measured by both CTR and running time.

Simulation for distributed bandit
Figure 1 shows the simulation results for our distributed
algorithm on Yahoo! R6A dataset, which are the CTRs with
respect to number of rounds per learner under different values
of parameter m. We can see that the gain increases with
number of learners m till some points (m=50). Yet, even for
m = 100, the learning rate of each learner is much faster
than the one of learning without communication (“no delay”
in the figure). This demonstrates that our algorithm works
well in the distributed setting.

Conclusion
In this paper, we propose an efficient algorithm whose update
is fast and regret upper bound does not depend explicitly on
the dimension of the context space. Our algorithm admits us-
ing high dimensional context vectors, which offers flexibility
for feature engineering. The significance is reflected on the
benchmark dataset. Furthermore, we develop a distributed
algorithm and analyze its regret. We believe that it is a big
step towards developing distributed bandit algorithms that
work well in applications with theoretical guarantees. Future
works include implementing our distributed algorithm in a
real recommendation system as well as considering different
communication protocols.

Figure 1: Simulation for distributed bandit.

https://www.csie.ntu.edu.tw/~cjlin/libmf/

References
[Abbasi-yadkori et al. 2011] Abbasi-yadkori, Y.; Pál, D.;

Garivier, A.; and Szepesv́ari, C. 2011. Improved algorithms
for linear stochastic bandits. NIPS.

[Agarwal and Duchi 2011] Agarwal, A., and Duchi, J. 2011.
Distributed delayed stochastic optimization. NIPS.

[Auer 2002] Auer, P. 2002. Using confidence bounds for
exploitation-exploration trade-offs. Journal of Machine
Learning Research 3:397–422.

[Chu et al. 2009] Chu, W.; Park, S.; Beaupre, T.; Motgi, N.;
Phadke, A.; and Chakraborty, S. Zachariah, J. 2009. A case
study of behavior-driven conjoint analysis on yahoo!: front
page today module. KDD.

[Dani, Hayes, and Kakade 2008] Dani, D.; Hayes, T.; and
Kakade, S. 2008. Stochastic linear optimization under bandit
feedback. COLT.

[Langford, Smola, and Zinkevich 2009] Langford, J.; Smola,
A.; and Zinkevich, M. 2009. Slow learners are fast. NIPS.

[Li et al. 2010] Li, L.; Chu, W.; Langford, J.; and Schapire,
R. 2010. A contextual-bandit approach to personalized news
article recommendation. WWW.

[Li et al. 2011] Li, L.; Chu, W.; Langford, J.; and Wang, X.
2011. Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. WSDM.

[Rakhlin, Shamir, and Sridharan 2012] Rakhlin, A.; Shamir,
O.; and Sridharan, K. 2012. Making gradient descent optimal
for strongly convex stochastic optimization. ICML.

[Zhang et al. 2016] Zhang, L.; Yang, T.; Jin, R.; and Zhou, Z.
2016. Online stochastic linear optimization under one-bit
feedback. ICML.

	Introduction
	Preliminaries
	Algorithm
	Theoretical analysis
	Distributed logistic bandit
	Experiment
	Experiment results on Yahoo! Webscope dataset (R6A)
	Experiment results on MovieLens dataset
	Simulation for distributed bandit

	Conclusion

