HOW SAMPLING RATE AFFECTS CROSS-DOMAIN TRANSFER LEARNING FOR VIDEO
DESCRIPTION

Yu-Sheng Chou', Pai-Heng Hsiao® Shou-De Lin', Hong-Yuan Mark Liao®

!Graduate Institute of Networking and Multimedia, National Taiwan University, Taiwan
Memorence A.L, Taipei City, Taiwan
3Institute of Information Science, Academia Sinica, Taiwan

ABSTRACT

Translating video to language is very challenging due
to diversified video contents originated from multiple ac-
tivities and complicated integration of spatio-temporal in-
formation. There are two urgent issues associated with the
video-to-language translation problem. First, how to transfer
knowledge learned from a more general dataset to a specific
application domain dataset? Second, how to generate sta-
ble video captioning (or description) results under different
sampling rates? In this paper, we propose a novel temporal
embedding method to better retain temporal representation
under different video sampling rates. We present a transfer
learning method that combines a stacked LSTM encoder-
decoder structure and a temporal embedding learning with
soft-attention (TELSA) mechanism. We evaluate the pro-
posed approach on two public datasets, including MSR-VTT
and MSVD. The promising experimental results confirm the
effectiveness of the proposed approach.

Index Terms— Video Description, Transfer Learning,
Sampling Rate, Temporal Representation

1. INTRODUCTION

Using computer to automatically produce video description
has many real-world applications and it is indispensable for
modern life. To make an appropriate description on a rela-
tively ”big” data like video, a good way is to introduce ’sam-
pling.” The key concept of sampling is to perform process-
ing on a smaller amount of sampled frames, but a close-to-
accurate description can still be obtained. Figure 1 shows
how sampling rate affect the outcome of video description. In
Figure 1 (a), the sampling is sparser. The video description
corresponding to this sampling is “a car is crashing.” If we
take denser sampling as indicated in Figure 1 (b), the resul-
tant video description becomes “a car is dashing with a bus.”
From the above example, it is apparent that if the sampling in-
terval is too large, some important messages may be missed.
How to tolerate the sampling rate change and still generate
correct description will be a great challenge for video descrip-
tion researchers.

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

2651

Fig. 1: Examples of automatic video description at differ-
ent sampling rates on MSR-VTT. (a) set of frames grabbed
by sparser sampling rate: “a car is crashing.” (b) set of frames
grabbed by denser sampling rate: “a car is dashing with a
bus.”

Recent development of CNN-based video captioning (de-
scription) has great impact on automatic expansion of video-
to-language resources. The CNN-RNN encoder-decoder
structure is composed of a CNN-based extractor and a Re-
current Neural Network (RNN)-based model for mapping
the representations between a source sequence and a tar-
get sequence. A CNN-RNN framework incorporates both
chronological variable-length sequences, which are video
frames and words [1, 2, 3, 4, 5, 6, 7, 8], in its main structure.
To make global temporal representation of videos, Venu-
gopalan et al. [3] proposed the use of a stacked Long Short
Term Memory (LSTM) model to achieve the goal. To use this
model, one has to input video frames into the encoder side
and then decode the mapped hidden representation as a sen-
tence at the decoder side. In the LSTM model they proposed,
all input video clips are all sampled to a fixed 80-frame size
during the training process, no matter how long the original
is. Therefore, for source videos with different lengths, the
corresponding sampling rates may be different since they are
all ultimately sampled to a fixed length of 80. This is equiv-
alent to applying different sampling rates for different input
videos.

To build a video description (captioning) system that can
tolerate different sampling rates, temporal representation in-
variance among datasets is one of the fundamental problems
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needs to be solved. In this paper, we propose a transfer learn-
ing technique to solve the above mentioned problem. This
transfer learning technique can perform global transfer learn-
ing on the temporal representation of a video by a stacked
LSTM encoder-decoder architecture. To ensure the proposed
system can generate stable temporal representations under
different sampling rates, we propose a temporal embedding
learning with soft attention (TELSA) mechanism, to learn the
temporal embedding and adjust softly the representations for
the target domain.

2. THE PROPOSED APPROACH

2.1. Problem Formulation

A video-to-language translation system can be formulated
as conditional probability p(y|x) of a predicted sentence
(y1, ..., Ym) given an input sequence (z1,...,2,) extracted
from sampling video frames with CNN and it is a variable-
length input and output problem. To solve the problem of this
sort, the main idea of the encoder-decoder framework is to
encode the input sequence (x1,...,z,) as a latent temporal
representation z into decoder for sequence modeling. There-
fore, the above conditional probability can be defined as the
product of conditional probabilities as follows:

m

pyle) = [ pwilynsi-1.2) (1)
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It is reasonable to choose Recurrent Neural Network (RNN)
to handle the above mentioned variable-length sequence prob-
lem. However, traditional RNN is error-prone when learning
sequences that contain long-term dependency. Usually, a se-
quence with long-term dependency suffers from the vanishing
and exploding gradient problem [9]. Fortunately, the Long
Short Term Memory (LSTM) [10] unit, which consists of a
memory cell ¢; and three gates (input ¢, output o; and for-
get f3), is a solution to the above problem. The memory unit
through the gates can learn when to forget or write previous
hidden states and propagate the explicit information for long-
term dynamics.

Consequently, we can re-formulate Equation (1) and re-
write it as follows:

m

p(ylz) = Hp(ytlhn+t—1ayn+t—laz) 2
t=1

In the encoding phase, the LSTM maps the input dynamics as
fixed length temporal representation vector z. We then decode
the vector at each time step ¢ as a vocabulary-sized vector and
output the word distribution y; by applying softmaz func-
tion over the training corpus.

2.2. Transfer Learning on Temporal Representation

To transfer the knowledge of source domain to target domain,
we make use of the statistics calculated from videos with dif-
ferent lengths and append the soft-attention mechanism. In
this way one is able to adaptively learn temporal representa-
tion z and decrease domain discrepancy caused by using dif-
ferent sampling rates. Instead of using “attention” to derive
the weighted average in encoding phase [11, 4], we take the

dynamic az(»t) to softly adjust the input representation at each
time step ¢ such that:

n

z= Hp(yt|ht—1,oé§t)5i) 3)
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where v; represents the element of the set sampled from CNN
feature extractor, and it is embedded as a low-dimensional
vector v; by the learnable embedding function E'(x), which is
a fully-connected layer.

The dynamic weights az(-t) are used to adjust the repre-
sentation of each frame based on new input size (e.g. 40 to
80). The dynamic weights should be normalized whenever
the number of frame is changed. This enables the capability
of adaptive temporal representation on the target domain. The
weights al(-t) need to be derived by consulting the global ob-
servation and the previous hidden state. Thus, the relevance

score egt) plays this role and can be computed by:
e = wTtanh(Wyhs_1 + E(v;) + b) (5)

where w, W, and b, are the parameters used to reveal the

t t) . . t
relevance of al(- ). The relevance scores el(- ) involved in al(- )

can summarize previous hidden state h;_; and embed rep-
resentation E(v;) to reflect the transfer relevance of the i-th
temporal feature. Specifically, we consider the embedding of

visual representation into the score, and it can jointly learn
()

i

the other parameters that are associated with «

In a transfer case, the relevance score el(»t) must fit into the

target domain with distinct sampling length n by normalizing
(®)

i

them to derive o, :
o’ = eap{e{"}) Y exp{el’} ©)

=1

2.3. Network Architecture

We develop the video description architecture, as illustrated in
Figure 2, based on the stacked LSTM encoder-decoder frame-
work [3]. The stacked LSTM has 2 layers, each with 256-
dimensional hidden unit, and they respectively perform en-
coder and decoder role for modeling the two variable-length
sequences. The function of TELSA is to transfer learned tem-
poral representations. It only operates when training the target
domain dataset.
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Fig. 2: Architecture for temporal representation transfer: The stacked LSTM encoder-decoder is pre-trained on source
domain. To decrease the temporal discrepancy with imbalanced sampling rate (e.g. video frames for source domain is 80 and
target domain is 40), TELSA mechanism can transfer temporal embeddings and adjust visual representations in encoding phase
(TELSA mechanism in dash line rectangle is only activated when fine-tuning on target domain).

Table 1: Single domain evaluation results on MSR-VTT:
We train on the training set and test on the validation set.

train:test METEOR BLEU

samples @] @2 @3 @4
80:80 26.10 75.50 60.30 46.70 34.80
40:80 25.40 75.40 58.80 44.20 32.20
40:80+TELSA 26.00 77.40 61.50 47.30 34.60

3. EXPERIMENTS

3.1. Datasets and Metrics

Our experiments were all conducted on two popular datasets,
including MSR-Video to Text (MSR-VTT) [12] and Mi-
crosoft Video Description corpus (MSVD) [13] datasets.
These datasets are all popular for video to language perfor-
mance evaluation.

For quantitative analysis, we adopt two standard metrics,
including METEOR [14] and BLEU@N [15] with N equal to
1, 2, 3, and 4. For qualitative analysis, we show samples of
the video clips and the generated descriptions by all baselines
and our method.

3.2. Single-domain Analysis: MSR-VTT

In the first set of experiments, we dealt with the imbalanced
sampling rate problem within single domain, i.e., the trained
source domain and the target doamin were both in MSR-VTT.
For every video clip for training and every video clip for val-
idation, we sampled them into 80 frames (we denote this ar-
rangement as 80:80). This sampling is a baseline sampling
since the training side and the testing side both sample video
clips into the same number of frames. For comparison, we
made 40:80 set to show how our TELSA approach can adapt
to different sampling rates. In Table 1, row 1 and row 2 show

the results obtained by applying 80:80 and 40:80 settings, re-
spectively. It is obvious that the 80:80 setting outperformed
the 40:80 setting, since the latter sampled less frames than
the former in training the source domain. Intuition tells us
sampling only 40 frames (one half of the original sampling
rate) means under-sampled and the loss of partial video infor-
mation for training networks. However, when we added the
proposed TELSA mechanism to the 40:80 setting, the perfor-
mance was significantly improved. In the BLEU@1, @2 and
@3 experiments, the performance of the 40:80+TELSA set-
ting was even better than that of the original 80:80 setting. As
to the cases of METEOR and BLEU @4, the performances
were also very close to that of the 80:80 setting.

3.3. Cross-domain Analysis: MSR-VTT to MSVD

In the second set of experiments, we handled the imbalanced
sampling rate problem within cross-domain environment. We
used the MSR-VTT and the MSVD datasets as the source do-
main and the target domain, respectively.

In the training process, the training sets of the two do-
mains were used for training. For evaluation, we used a test
set coming from the target domain. For the cross-domain ex-
periments, we denote the number of sampled frames and from
which domain these frames were sampled as N1S:N>T. For
example, 40S:80T means 40 frames from source domain ver-
sus 80 frames from target domain.

To analyze how the trained source dataset, the trained tar-
get dataset, fine-tuning, and TELSA function during the video
description process, we respectively checked their capability
on video description. We designed three sets of experiments
using different sampling rates to train the source dataset.
Thus, the settings of the three experiments were 40S:80T (set
A), 80S:80T (set B), and 120S:80T (set C), respectively.

Table 2 illustrates the results obtained by conducting
experiments based on 40S:80T, 80S:80T, and 120S:80T set-
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ground truth: a man scores a goal in soccer.

A: 40S:80T

B: 80S:80T

C: 120S:80T

source data only: a man is playing a video game.

a man is playing a football game.

a man is playing a football
game.

fine-tuning: a man is playing football.

a man is playing football.

a football player is running
down the field.

fine-tuning + TELSA: a soccer player is playing the

goal.

a man is playing a soccer game.

a football player is playing
football.

Fig. 3: Qualitative results on MSR-VTT-to-MSVD transfer.

Table 2: Evaluation results of different settings on MSR-
VTT-to-MSVD transfer: All methods are tested on target
domain testing data and each column represents one setting.

single domain transfer learning

Method
source target fine-tune  ours
A:40S:80T
METEOR 26.80 26.70 28.14 29.19
BLEU@1 67.90 69.90 72.35 74.49
BLEU®@2 5030 54.10 57.25 59.78
BLEU@3 38.20 43.70 46.79 49.26
BLEU@4 27.10 33.20 36.81 39.01
B: 80S:80T
METEOR 2690 26.70 27.99 28.55
BLEU@1 69.10 69.90 72.38 73.07
BLEU@2 5240 54.10 57.02 57.49
BLEU®@3 40.60 43.70 46.45 47.01
BLEU@4 29.50 33.20 36.53 36.67
C: 120S:80T
METEOR 26.00 26.70 27.30 28.00
BLEU@1 67.70 69.90 71.15 72.08
BLEU@2 50.60 54.10 56.10 56.65
BLEU@3 39.10 43.70 45.65 46.13
BLEU@4 27.60 33.20 35.30 35.75

tings, respectively. The digits shown in the left two columns
of set A are results obtained by testing video description
algorithm on the trained source dataset and target dataset,
respectively. The right two columns are the video description
results obtained by introducing transfer learning across do-
mains. The third column are the results obtained by applying
fine-tuning and the results obtained by applying our TELSA
method are listed in the fourth column. The single domain
results are consistently worse than those obtained by applying
the transfer learning based methods. The video description

results shown in set B and set C have consistent results.

To demonstrate the effectiveness of our approach quali-
tatively, we chose one video clip from the test set. Figure 3
shows one set of sampled image frames and the generated
video description under the settings of 40S:80T, 80S:80T and
40S:80T. The ground truths are also listed at the bottom for
comparison. In Figure 3, our method outperformed the base-
lines, including the use of source dataset training only and
the introduction of fine-tuning. From the generated video de-
scription, our method (fine-tuning + TELSA) not only rec-
ognized objects in frames and actions across time, but also
summarized the video contents in a more satisfactory way.

4. CONCLUSIONS

The contribution of this work is three fold. First, video-to-
video transfer learning has been addressed by a number of
past works [16, 17, 18]. However, video-to-language transfer
learning has not been seriously addressed in the past. In this
work, we have defined the problem and proposed an approach
to alleviate the temporal domain discrepancy when encoun-
tering imbalanced sampling rates of different datasets com-
ing from distinct application domains. Second, we propose
TELSA to analyze and solve how varying sampling rates may
impact the video-to-language transfer learning results. Third,
our TELSA outperforms baseline fine-tuning, as evidenced by
MSR-VTT to MSVD transfer learning experiments. Another
application with TELSA could be extended to image qual-
ity assessment (IQA) for variable-size images, improving the
flexibility upon the fixed-size manner [19].
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