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ABSTRACT
Human behaviors are regularized by a variety of norms or reg-
ulations, either to maintain orders or to enhance social welfare.
If artificially intelligent (AI) agents make decisions on behalf of
human beings, we would hope they can also follow established regu-
lations while interacting with humans or other AI agents. However,
it is possible that an AI agent can opt to disobey the regulations
(being defective) for self-interests. This paper attempts to design a
mechanism that discourages the agents from not obeying the global
regulation given a decentralized environment. We first introduce
the problem Regulation Enforcement and formulate it using re-
inforcement learning and game theory under the scenario where
agents make decisions in complete isolation of other agents. The
key idea is that, although we could not alter how defective agents
choose to behave, we can, however, leverage the aggregated power
of compliant agents to boycott the defective ones. Based on the idea,
we proposed a solution to the problem and conducted simulated
experiments on two scenarios: Replenishing Resource Management
Dilemma and Diminishing Reward Shaping Enforcement, using deep
multi-agent reinforcement learning algorithms. We further use
empirical game-theoretic analysis to show that the method alters
the resulting empirical payoff matrices in a way that promotes
compliance (making mutual compliant a Nash Equilibrium).

KEYWORDS
multi-agent reinforcement learning; empirical game-theoretic anal-
ysis; reward shaping;

1 INTRODUCTION
Human behaviors are normally guided by many regulations. These
include explicit laws such as traffic rules, or implicit social norms
to which each individual is accepted to conform (e.g. waiting in
line to pay in a store). In modern society with diversification of
individual values, the necessity for regulations becomes increas-
ingly important. Some regulations such as those defined by law
aim to maintain order and prevent chaos, while some aim to pro-
mote social welfare (e.g. people who are more financially capable
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should pay more tax). As artificial intelligence (AI) advances to-
wards real world applications, the so-called AI agents are making
all kinds of decisions on behalf of human beings. In this regard,
it is preferable that an AI agent follows regulations just like the
person it represents does. Consider the driving matrix game shown
below. Two autonomous cars driving on a road against each other,

Driving Matrix Game L R

L 1, 1 0, 0
R 0, 0 1, 1

they have to choose either to swerve on the left (L) or to swerve
on the right (R) of the road. Agents that are trained together may
be able to reach a consensus, but agents trained separately may
collide into one another. Introducing regulations (e.g. the right car
should yield) here can mitigate ambiguities and avoid lose-lose
situations. Furthermore, some regulations are not there to prevent
agents from making malevolent decisions or to enhance agents’
self-interest, they are there for ethical reasons or to enhance wel-
fare of the society as a whole. Human beings opt to follow such
regulations even if it undermines their self-interests because either
they are afraid of being punished by authorities (i.e. government),
or they are well-educated with civic consciousness. Unfortunately,
such awareness may not exist for some AI agents that are trained
to maximize individual rewards. In other words, without certain
special design (e.g hard-coding ethical rules for agents to follow or
specifically trained toward altruism), we shall not expect a normal
AI agent to obey regulations that lead to sacrifice of its rewards.
Similar to human society, even a small amount of AI agents not
compliant to existing regulations can lead to catastrophe.

Consider a real-world dilemma - Replenishing Resource Manage-
ment Dilemma. It describes a situation in which group members
share a renewable resource (e.g. lumbering or fishing) that will
continue to produce benefits unless being over-harvested. Regula-
tions such as International Convention for the Regulation of Whaling
are signed by many countries to constrain the harvesting behav-
ior. In the future, it is likely that robots become the main force to
harvest such resources, and thus it is crucial to design a mecha-
nism to prevent agents from violating the regulation to maximize
self-interests.

There have been some works aiming at designing ethical AI
agent instead of one that only optimizes its own rewards. For ex-
ample, assuming in a multi-agent environment [13] proposes a
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design for benevolent (non-greedy) agents through shaping the
reward function. They propose the idea of diminished rewards that
leads to less satisfaction for consecutive rewards, and consequently
achieves non-greediness of agents as they are not motivated to ob-
tain resources rapidly and repeatedly. In the experiment consisting
of both stronger and weaker agents, it is shown that implementing
such reward function can lead to more balanced distribution of re-
sources, and consequently prevent the weaker agents from starving.
Although the diminishing reward function seems to be a favorable
solution from the social-welfare point of view, there is no incentive
for the stronger agents to implement such feature since it hurts
their overall rewards. To make things worse, the fact that other
agents have agreed to sacrifice offers an even stronger motivation to
violate the regulation since the strong ones can obtain even higher
rewards. This example shows that even if there exists a way to
shape the resulting joint policies in a desired way, enforcing every
single agent to comply is non-trivial. We refer to this problem as
Diminishing Reward Shaping Enforcement.

We aim to address the following problem, named Regulation
Enforcement in this paper: There are regulations that the soci-
ety expect all agents to comply, but certain individuals can gain
advantage by not complying. The Replenishing Resource Manage-
ment Dilemma and Diminishing Reward Shaping Enforcement are
two examples. Our goal is to design a solution to minimize the
amount of non-complying agents under decentralized multi-agent
reinforcement learning (MARL) settings. We consider decentral-
ized MARL since in real world it is hard to assume a centralized
authority to control all agents. However, this task becomes much
more challenging for decentralized agents since each agent makes
decisions in complete isolation of other agents, and is not aware of
the internal value functions of others.

We make the assumption that most agents (80% in our experi-
ments) are benign and they abide by all regulations, which is rea-
sonable in most real-world scenarios. We name agents that comply
to all regulations as Compliant and agents that disobey one or more
regulations as Defective. The solution we propose contains two
major components: a detector and a boycotting strategy. The boy-
cotting strategy states that agents shall shape their policy in a way
that boycotts the non-complying agents, which is identified by the
detector. By implementing this mechanism, we expect Defective
agents to lose incentives to disobey regulations since being Defec-
tive can increase the chance of being detected and then boycotted,
which results in lower return.

One seemingly possible solution to this problem is to deploy
“police” as in real world. However, this would require a centralized
authority to deploy and furthermore, the cost grows proportionally
with the agent population as police agents are needed to enforce the
regulations.Our solution leverages the power of the crowd, eliminat-
ing the need of deploying special purpose agents. Furthermore, our
method enables a decentralized AI society to be self-balancing. If
the majority of the agents agree on a certain regulation, the minor-
ity that try to exploit loopholes will be boycotted by the majority,
resulting in fewer rewards. Nevertheless, if not enough agents agree
to a certain regulation, boycotting non-compliant agents will not
work and eventually all agents will defect in order to gain higher
return.

We summarize our contributions as below:

• To our knowledge, this is the first work to introduce the task
of Regulation Enforcement. We believe it could become
a crucial problem with the pervasiveness of AI agents. We
further provide a formal definition from aspects of reinforce-
ment learning and game theory.
• We propose a simple yet effective solution to solve this prob-
lem in a decentralized environment. Our solution contains
a detector and a general boycotting policy. Although we
could not directly alter the policy of Defective agents in a
decentralized environment, the Compliant agents are highly
motivated to comply since then they can contribute to the
prevention of Defective agents by lessening their rewards.
• We evaluate the effectiveness of our model on simulated sce-
narios of Replenishing Resource Management Dilemma and
Diminishing Reward Shaping Enforcement. We also use empir-
ical game-theoretic analysis to further show how empirical
payoff matrices evolve after applying our method. Results
shown are promising.

2 PRELIMINARIES
2.1 Reinforcement Learning
RL defines a class of algorithms solving problems modeled as
a Markov Decision Process (MDP). An MDP consists of a tuple
(S,A,T ,R,γ ), where S is the space of state s , A is the space
of action a, T is the transition function with probability distribu-
tion Pr(s ′ |s,a), R(s,a) is the reward function that outputs a scalar
feedback given action a made at state s , and γ is the discount factor.

A n-player partially observable Markov gameM is defined by a
set of states S and an observation function O : S × {1, 2, ...,n} →
Rd specifying each player’s d-dimensional view, along with n sets
of actions allowable from any state {A1,A2, ...,An }, one for each
player, a transition function T : S × A1 × A2 × ... × An → ∆(S),
where ∆(S) denotes the set of discrete probability distributions
over S, and a reward function for each player i: ri : S × A1 ×
A2 × ... × An → R. Let Oi = {oi | s ∈ S,oi = O(s, i)} be the
observation space of player i , to choose actions, each player uses
policy πi : Oi → ∆(Ai ).

For temporal discount factor γ ∈ [0, 1] we can define the long-
term payoff as V ®πi (s0) for player i when the joint policy ®π =
(π1,π2, ...,πn ) is followed starting from state s0 ∈ S.

V ®πi (s0) = E ®at∼ ®π (O (st )),st+1∼T(st , ®at )

[ ∞∑
t=0

γ t ri (st , ®at )
]
. (1)

2.2 Game Theory
A normal-form game is a tuple (S, f ,n) where n is the number
of players, Si is the strategy set for player i , S = S1 × S2 × · · · × Sn
is the set of strategy profiles and f (x) = (f1(x), . . . , fn (x)) is its
payoff function evaluated at x ∈ S . Let xi be a strategy of player i
and x−i be a strategy profile of all players excluding player i . When
each player i ∈ {1, . . . ,n} chooses strategy xi resulting in strategy
profile x = (x1, . . . ,xn ) then player i obtains payoff fi (x). Note
that the payoff depends on the strategy profile chosen, i.e., on the
strategy chosen by player i as well as the strategies chosen by all the
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other players. Extensive-form games extend these formalisms to
the multistep sequential case (e.g. poker).

Matrix Games are two-player games where each player has
two strategies to choose from. It is the special case of two-player
perfectly observable (Oi (s) = s) Markov games obtained when
|S| = 1 and A1 = A2 = {C,D}, where C and D are called (atomic)
cooperate and defect respectively. Matrix Games serve as mathe-
matical model of many of the simplest conflict situation in the areas
of economics, mathematical statistics, war science, and biology.

A Nash Equilibrium is a strategy profile x∗ ∈ S such that no
unilateral deviation in strategy by any single player is profitable
for that player, that is,

∀i,xi ∈ Si : fi (x∗i ,x∗−i ) ≥ fi (xi ,x∗−i ). (2)

When the inequality above holds strictly (with > instead of ≥) for
all players and all feasible alternative strategies, the equilibrium is
classified as a Strict Nash Equilibrium. If instead, for some player,
there is exact equality between x∗i and some other strategy in the
set S , then the equilibrium is classified as a Weak Nash Equilibrium.

Empirical game-theoretic analysis (EGTA) is the study of
meta-strategies obtained through simulation in complex games
[16, 18]. This is necessary when it is prohibitively expensive to
explicitly enumerate the game’s strategies. These meta-strategies
(or styles of play), over atomic actions, are commonly played by
players in games such as poker described as “passive/aggressive”
or “tight/loose” [14]. Expected utilities for each joint strategy are
estimated and recorded in an empirical payoff matrix, one cell at a
time. Probabilistic elements are removed by sampling. EGTA has
been employed in trading agent competitions (TAC) and automated
bidding auctions.

3 PROBLEM FORMULATION
Our goal is to design a strategy to discourage the violation of regu-
lations to gain more rewards in multi-agent scenarios where agents
make their own decisions. This problem, namely the Regulation
Enforcement, is formulated as below:

LetM be a n-player Markov game and there are N regulations
that regularize the agents’ behavior. Regulations can be defined in
two ways:
• Defined in the reward function space such as requiring
agents to shape their reward function in a certain way, i.e.
implement diminishing reward shaping [13] so that resource
is distributed more equally among agents.
• Defined in the policy space like requiring agents to behave
in a certain way in specific situations, i.e. stopping the car at a
red light can be formulated as π (state = observe red light) =
stop.

ΠC denotes the set of policies that follow all regulations, and ΠD

denotes the set of policies that violate one or more regulations.
In this paper, agent i with the policy πi is labelled as Compli-
ant(C) if πi ∈ ΠC and Defective(D) if πi ∈ ΠD . Under this setting,
ΠC

⋂
ΠD = ∅ and ΠC

⋃
ΠD = Π (the set of all legal policies).

We denote the set (π1,π2, ...,πn ) as the resulting joint policy
under the assumption that at leastM% (M=80 in our experiments)
of agents are Compliant (πj ∈ ΠC ). Let πCj , π

D
j denote the result-

ing policy of agent j being Compliant and Defective respectively.

The demand of Regulation Enforcement comes from the following
assumption:

∃j s.t. V (π1,π2, ...,π
C
j , ...πn )

j (s0) < V
(π1,π2, ...,πD

j , ...πn )
j (s0) (3)

where s0 is the starting state. That means there exists some agents
who can gain more rewards by being Defective. Note that we could
not alter the behaviors of Defective agents since agents make de-
cisions in a decentralized manner, but we can affect Compliant
agents’ policies in a way that lessens the return of Defective agent

j, V
(π1,π2, ...,πD

j , ...πn )
j (s0). That is, our goal is to design a strategy

for agents (in particular Compliant agents) so that being Defective
can damage the overall reward:

∀j,V (π1,π2, ...,π
C
j , ...πn )

j (s0) ≥ V
(π1,π2, ...,πD

j , ...πn )
j (s0) (4)

As mentioned in the preliminaries, general-summatrix games is the
special case of two-player perfectly observable Markov game when
there is only one state and both players have only two strategies to
choose from. Similarly, if we take the case where player i has only
two strategies {Ci ,Di } to choose from ∀i , then the problem can
be rephrased from the point-of-view of game theory, as described
below.

Let (S, f ,n) be a normal-form game with n players, where Si is
the set of strategy for player i , S = S1 × S2 × · · · × Sn is the set of
strategy profiles and f (x) = (f1(x), . . . , fn (x)) is its payoff function
evaluated at x ∈ S . Given that the strategy set for player i can be
denoted as {Ci ,Di }, the set of strategy profiles can be denoted as
{C1,D1} × {C2,D2} × ... × {Cn ,Dn }. Let the strategy that player i
takes as si , and x be any strategy profile that consists of at leastM%
(M = 80 in our experiments) of Compliant strategies, then Equation
(3) becomes:

∃i s.t. fi (Ci ,x∗−i ) < fi (Di ,x
∗
−i ). (5)

The goal of Regulation Enforcement then becomes:

∀i : fi (Ci ,x∗−i ) ≥ fi (Di ,x
∗
−i ). (6)

where xi is a strategy profile of player i and x−i is a strategy profile
of all players excluding player i . Note that we adopt similar notation
as in Equation (2).

4 ENFORCING REGULATION
Intuitively, we aim to mitigate agents’ incentive to disobey regu-
lations. The goal is to lessen the rewards gained being Defective
comparing to those gained being Compliant. If this can be achieved,
then any rational agents will choose to be Compliant. Note that in
a decentralized environment, we cannot force any agent to imple-
ment or execute any strategy because each agent makes its own
decision.Thus, our plan is to offer a mechanism that can benefit
an agent in the long run, so it has high motivation to implement
and execute the compliant strategy. The mechanism states that if
defecting agents are detected, an agent should shape its reward
function towards boycotting them, as illustrated in Figure 1. Note
that an assumption is made: at leastM% of players are Compliant
(M has to represent the majority, e.g. M%=80% in our experiments).
Furthermore, since all agents interact with one another in an envi-
ronment with shared resources, it is assumed that they can observe
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Figure 1: A simple illustration of the proposed mechanism. Red blocks denote the shared resource while blue blocks denote
agents. The detector takes a sequence of past actions or rewards as input and determines which agents are Defective. Agents
then incorporate that information into their observation and take action according to their policies trained with Boycotting
Reward Shaping (Equation 10).

how many rewards (resources) other agents have collected. Intu-
itively, the proposed method is trying to boycott Defective agents
by leveraging the aggregated power of Compliant agents.

There are two major components in our method: training a
detector and laying down a boycott strategy.

4.1 Detector
This detector makes prediction of Defective agents by observing
agents’ behavior. More specifically, it takes reward sequences and/or
action sequences (if needed) of an agent as input and learns to clas-
sify whether the agent is Compliant or Defective. The underlining
hypothesis is that since the goal of a Defective agent is to obtain
more rewards through not obeying regulations, Defective agents
shall be detectable based on the their actions performed and se-
quence of rewards obtained. More formally, let ®Ai,t denote the
sequence of actions and/or rewards of agent i up till time t , we
aim to learn a detector D( ®Ai,t ,θ ) parameterized by θ that outputs
1 (True) if agent i is classified as Defective or 0 (False) if agent i
is classified as Compliant. Multiple inferences can be made at a
time. In many scenarios, a rule-based detector is sufficient. Take
the Replenishing Resource Management Dilemma for instance, one
simple rule is sufficient to determine whether a resource-gathering
agent exceeds the maximal quota allowed. However, some scenarios
can be less trivial and a more sophisticated classifier is required
for detection. For example, to detect whether a comity function is
implemented in an auto-driving agent.

4.2 Boycotting Reward Shaping
We exploit the idea of Reward shaping [11] to design the boycott
strategy. Motivated by behavioral psychology, reward shaping is
initially proposed as an efficient way of including prior knowledge
in the learning problems so as to enhance the convergence rate.
Additional intermediate rewards are provided to enrich a sparse
base reward signal, giving the agent with useful gradient informa-
tion. The shaping rewardH is usually integrated with the original

reward in the form of addition:

R′(st ,at , st+1) = R(st ,at , st+1) +H(st ,at , st+1). (7)

In [13], instead of using reward shaping as a way of enhancing
convergence rate, they use reward shaping to shape agents’ policies
in an intended way. They suggest designing a benevolent agent
based on a reward shaping method which diminishes rewards to
make the agent feel less satisfied for consecutive rewards.

R′(st ,at ,It ) = R(st ,at ) × F (It ) (8)

It =
W∑
i=1
R(st−i ,at−i ) (9)

F is a predetermined non-strictly decreasing function andW is a
chosen window size.

Similar to [13], we use reward shaping as a method of shaping
agents’ resulting policies. The idea states that agents should op-
timize a mental-reward that is usually different from the actual
rewards obtained. We plan to design a reward shaping scheme that
encourages agents to boycott Defective agents while maximizing
their own reward. More formally, Boycotting Reward Shaping
is defined below:

Denote the trained detector as D where Dt (i) outputs 1 if it
classifies agent i as Defective or 0 if it classifies agent i as Compliant.
Let the reward function of agent i be R′i (st ,at ), and the number of
agents be N , agents have to optimize a reward function R′i (st ,at )
which is defined as

R′i (st ,at ) = Ri (st ,at ) − B ×
[∑N

j=1Dt (j) × Rj (st ,at )]∑N
j=1Dt (j)

(10)

where B is a predetermined ratio which we refer to as the Boycotting
Ratio. The rightmost term denotes the average “observed” reward
of all Defective agents. Note that B = 0 corresponds to the original
scenario where no changes are applied.
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Figure 2: Workflow to obtain empirical payoff matrices in Experiment 3. Agents that follow all regulations are Compliant
(blue) otherwise Defective (green). There are 10 agents in total and we fix 8 out of 10 agents as Compliant. We aim to observe
what is the payoff of the other 2 agents when they choose to behave compliantly or defectively. For each entry in the payoff
matrix, we train and evaluate the game correspondingly (notice how the number of green defectors vary between entries). By
repeatedly playing out the games using resulting joint policies, and averaging the results, we can obtain the payoffs for each
cell of the matrices.

5 EXPERIMENTS
We conduct three experiments based on deep multi-agent rein-
forcement learning. In the first two experiments, we address the
scenarios of Replenishing Resource Management Dilemma and Di-
minishing Reward Shaping Enforcement as mentioned in the intro-
duction section. In the third experiment, we adopt similar settings as
Experiment 1 and use empirical game-theoretic analysis to observe
how the proposed method affects the empirical payoff matrices.

5.1 Experiment 1: Replenishing Resource
Management Dilemma

In this experiment, we aim to address the scenario where group
members share a renewable resource and sustainable development
can only be achieved if no individual over harvest the resource. As
a result, a regulation is laid down to prevent gaining self-interest
from over-harvesting.

To conduct the experiment, we design the following game. There
are 5 agents that interact with each other in a 20 x 20 grid world.
Apple trees, which appear as red blocks on the map, represent the
replenishing resource. An apple tree will die out (disappear) if more
than 5 apples are collected, and a new apple tree will appear at a
random location on the map. The regulation is that agents shall
not collect more than 3 apples at any time. However, agents can
obviously benefit from not obeying the rule and collecting more
than 3 apples at a time.

This experiment has the following setting:
• REGULATION: For the sake of sustainable development,
all agents shall not collect more than 3 apples at any
time.

• Compliant Agents: Agents that are not collecting more than
3 apples at any given time. There are 4 Compliant agents.
• Defective Agents: Agents that collect more than 3 apples at
one or more times in the past. There is 1 Defective agents
that collects up to 5 apples at a time.

The percentage ofCompliant agentsM is set to 80% (4 out of 5 agents
are Compliant). Note that a rule-based detector D that examines
the collection rate is sufficient in this case. Thus, in this experiment
we will focus on the effectiveness of boycotting.

5.2 Experiment 2: Diminishing Reward
Shaping Enforcement

In this experiment, we aim to address the scenario where agents
are not equally capable and have to share a kind of resource. Since
members have varying capabilities, to prevent stronger agents leav-
ing weaker agents “starving”, the regulation demands every agent
to implement and conduct the diminishing reward function to act
non-greedily as described previously.

To conduct the experiment, we design the following game. As
in Experiment 1, there are 5 agents in a 20 x 20 grid world, 4 out
of 5 agents are Compliant, and apple trees represent the shared
resource. Different from the previous experiment, now the agents
are not equally capable: it takes one time step for a stronger agent
to collect 5 apples while it takes two time steps for weaker agents to
collect 5 apples. The regulation states that all agents are required to
implement diminishing reward shaping so they do not act greedily.
Understanding that an agent (in particular the stronger one) can
obviously benefit from not obeying the rule to behave greedily,
here we assume the one particular strong agent to be Defective
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through not implementing the diminishing reward. The goal of
this experiment is to evaluate whether the proposed Regulation
Enforcement mechanism can find and penalize the Defective agent.

This experiment has the following settings:
• REGULATIONS: For the sake of avoid acting greedily,
all agents shall optimize anew reward functionR′(st ,at ,It )
which is defined as (according to [13])

R′(st ,at ,It ) =
{
R(st ,at ) It ≤ τ

−1 It > τ
‘ (11)

It =
3∑
i=1
R(st−i ,at−i ) (12)

where τ is set to 2.
• Compliant: Agents that implement the diminishing reward
function accordingly to the regulation above. There are 4
Compliant agents.
• Defective: Agents that do not implement the diminishing
reward function. There is 1 Defective agents here.

Note that a rule-based detectorD is not sufficient in this case. A
binary classifier needs to be trained to decide whether an agent is
Compliant or not. We will evaluate the detection accuracy as well
as the effectiveness of the boycotting mechanism.

5.3 Experiment 3: Payoff Matrices
In this experiment, we investigate the proposed task and solution
using empirical game-theoretic analysis. We aim to observe how
empirical payoff matrices evolve before and after applying the
regulation enforcement mechanism. We focus on two players and
regard all other 8 agents as part of the dynamic environment. We
adopt the scenario of Experiment 1, except that there are now 10
agents instead of 5. We will evaluate on different choice of policies
of these two players and make the other 8 agents always Compliant.
We train and evaluate correspondingly to each situation to obtain
the matrices, filling one cell at a time, illustrated in Figure 2. We
set the Boycotting Ratio to 2 in this experiment.

5.4 Simulation Details
Games studied here are implemented in a large-scale 2D gridworld
platform MAgent [19]. The state st and the joint action of all play-
ers ®a determines the state at the next time-step st+1. Observations
of agents depend on the agent’s current position and consist of
two parts, spatial local view and non-spacial feature. Spatial view
consists of several rectangular channels, which includes map of
locations of other agents and map of non-penetrable wall. These
channels will be masked by a circle and the radius of the circle
is defined as view_ranдe . In all our experiments, view_ranдe is
set to 2, which means that the size of one channel is 5 × 5, where
2 × 2 + 1 = 5. Non-spatial feature includes last action, last reward,
absolute position of all other agents and apples, normalized posi-
tion of the agent, and ID embedding. ID embedding is the binary
representation of agent’s unique ID. Actions are discrete actions
such as move or gather. Similar to the observations, move range
and gather range are circular range with their radii denoted as

move_ranдe and дather_ranдe respectively. In our experiments,
we setmove_ranдe to 3 and дather_ranдe to 1. That makes 33 valid
actions in total. Each episode lasts for 1, 000 steps and all results
are obtained from an average of 100 episodes after training 30000
episodes.

We use Double Dueling DQN [10, 15, 17] to simulate the game
since it converges faster than DRQN[2] and A2C[9] in our experi-
ment. Default neural networks have two convolution layers both
with a 3× 3 kernel and two fully connected dense layer. The spatial
view observation is fed into the two convolution layers followed
by two fully connected layers, which gives a vector of 256. The
non-spatial view is then concatenated with it before feeding it into
another fully connected layer. The last layer has the output size
of 33, which corresponds to the number of actions. All layers are
followed by Rectified Linear Unit (ReLU) activation function.

During learning, to encourage explorationwe implement epsilon-
greedy policies with epsilon piece-wise linear decay over time. The
i-th agent’s policy is parameterized by

πi (s) =
{

argmaxa∈Ai
Qi (s,a) with probability 1 − ϵ

U(Ai ) with probability ϵ

whereU(Ai ) denotes a sample from uniform distribution overAi .
Each agent updates its policy given a stored batch (“replay buffer”)
of experienced transitions {(s,a, ri , s ′)t : t = 1, . . .T } such that

Qi (s,a) ← Qi (s,a) + α
[
ri + γ max

a′∈Ai
Qi (s ′,a′) −Qi (s,a)

]
Old data is discarded so the batch can be constantly refreshed with
new data reflecting more recent transitions. We set the batch size
(capacity of replay buffer) to 5000 in our experiments. The network
representing the function Q is trained through gradient descent
on the mean squared Bellman residual with the expectation taken
over transitions uniformly sampled from the batch (see [10]). Since
the batch is constantly refreshed, the Q-network may adapt to the
changing data distribution.

As mentioned, learning agents are “independent” of one another
and each regard others as part of the environment. From the per-
spective of a player, the learning of other players shows up as a
non-stationary environment. Each individual agent’s learning de-
pends only on the other agent’s learning via the (slowly) changing
distribution of experience it generates. Codes will be made public.

6 RESULTS
Wewill discuss the results separately for the two major components
of the proposed mechanism: detecting and boycotting.

6.1 Detector
For Experiment 1 and Experiment 3, a rule-based detector is suf-
ficient to achieve 100% accuracy. Thus, here we report the result
from the trained detector in Experiment 2. We extracted 10000 tra-
jectories of trained agents, half of them are extracted from agents
that obey the regulation where the other half are taken from agents
that disobey the regulation. We preprocess those trajectories into
sequence of rewards and randomly select 20% of them as the testing
set. Using a 4-layer fully connected neural network as the classifier,
we ran prediction on the testing set after 100 epochs of training. All
layers use Rectified Linear Unit (ReLU) activation function except
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Avg(C)
All Compliant 984.7

Boycotting Ratio Avg(C) Avg(D)
0.0 (original) 976.0 1063.3

0.5 963.8 1013.9
1.0 949.5 891.7
1.5 948.6 871.7
2.0 909.9 818.0

Table 1: Result of Experiment 1. Avg(D) denotes the average
episode return of Defective agents while Avg(C) denotes the
average episode return of Compliant agents.

the last output layer which uses Sigmoid activation function. Re-
sults are shown in Figure 3. We can see that in this experiment the
behavior of agents that do not implement the diminishing reward
can be detected with high accuracy, and using longer sequence of
observations yields better performance.

6.2 Boycotting Reward Shaping
The results of Experiments 1 and 2 are shown in Figure 4 and
Table 1 as well as Figure 5 and Table 2 respectively. Episode return
is calculated by counting the number of apples (shared resource)
agents collect in an episode. From the tables, we can see that if
we assume 80% (4 out of 5) of the agents are Compliant, our goal
as stated in Equation 6 can be fulfilled by setting the Boycotting
Ratio B to 1.0 or higher for Experiment 1 and 1.5 or higher for
Experiment 2. The goal is achieved when the blue line goes below
the red line in Figure both 4 and 5, which means gaming on the
system through violating the regulation can result in worse reward.
Below we further describe some important observations.

First, we can observe that higher Boycotting Ratio leads to lower
return of both Defective and Compliant agents. This is reasonable
because a higher Boycotting Ratio means that Compliant agents
are more encouraged to boycott the Defective agents or consume
resources that are more likely of Defective agents’ interest. As result,
the Defective agent gains lower return, and the Compliant agents

Figure 3: Detector accuracy with different length of observa-
tion sequence (Experiment 2).

Figure 4: Illustration of Table 1. The horizontal red line de-
notes the average episode return the Defective agents will
obtain if it behaves compliantly instead.

Weak Strong
All Compliant 796.2 887.2

Boycotting Ratio Avg(C) Avg(D)
0.0 (original) 795.5 1110.0

0.5 791.2 1045.0
1.0 777.8 969.0
1.5 762.2 869.6
2.0 703.1 859.6

Table 2: Result of Experiment 2. Avg(D) denotes the average
episode return of Defective agents while Avg(C) denotes the
average episode return of Compliant agents.

Figure 5: Illustration of Table 2. The horizontal red line de-
notes the average episode return the Defective agents will
obtain if it behaves compliantly instead.

also gain lower return because their objective is “deviated” from
maximizing their own rewards.

Note that all agents are equally capable (meaning that two agents
will have the same expected return if they are both Compliant
or both Defective) in Experiment 1 but not in Experiment 2. In
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Before C D
C 728.1, 728.1 677.4, 935.0
D 935.0, 677.4 844.2,844.2

After C D
C 728.1, 728.1 683.1, 481.0
D 481.0, 683.1 677.8, 677.8

Table 3: Result of Experiment 3. A strategy profile (cell) is
boldfaced if it is a Nash Equilibrium.

Experiment 2, we deliberately make agents boycott the agents who
are not only Defective but also stronger inherently.The first row in
Table 2 shows that even if all agents implement diminishing rewards,
stronger agents still get considerably more reward than the weaker
ones. That is the essence of diminishing reward shaping [13] since
it still maintains non-homogeneous equality (Stronger agents can
still obtain more resources than the weaker ones). However, the
gap between them becomes much larger (from 81.0 to 314.5) if the
stronger agent opts to be Defective. It reassure the necessity of
a mechanism like ours to discourage cheating, as otherwise the
stronger agents will have much higher motivation to not obey
the regulation. We can also observe that a higher Boycotting Ratio
is required in Experiment 2 to successfully boycott the Defective
agent. That can also be explained by the fact that Defective agents
in Experiment 2 are inherently stronger.

The result of Experiment 3 is shown in Table 3. If we view the
8 other agents as part of the dynamic environment, and the two
remaining players only have two strategies {C,D} to choose from,
the result can then be interpreted as the payoff matrix of a general-
summatrix game. We can see how the payoff matrix evolves. Before
applying our mechanism, mutual defection is the Nash Equilibrium.
After our mechanism is applied, mutual compliant becomes the
new Nash Equilibrium. This illustrates that our framework is able to
promote compliance. Note that it is reasonable that after applying
our method, agents gain less rewards. Recall that our goal is to
ensure agents follow regulations that aim to ensure sustainable
development of resources. Violating the regulation will surely lead
to short term gain of rewards (i.e., 844.2 compared to 728.1) but
sacrifices long-term sustainability.

7 RELATEDWORKS
To the best of our knowledge, the Regulation Enforcement task has
not been proposed previously and we have not yet seen a solution
for it. In existing literature social dilemmas might be the most re-
lated to this proposed task. In social dilemmas, individuals tempt
to increase their payoffs in the short run at a cost to the long run
total welfare. Consider a general-sum matrix game with the two
strategies interpreted as cooperate and defect. The four possible
outcomes of each stage game are R (reward of mutual cooperation),
P (punishment arising from mutual defection), S (sucker outcome
obtained by the player who cooperates with a defecting partner),
andT (temptation outcome achieved by defecting against a cooper-
ator). Refer to the game matrix with R, P , S , T organized as below.

C D

C R,R S,T

D T , S P , P

A matrix game is a social dilemma when its four payoffs satisfy
the following social dilemma inequalities ( from [8]):

1. R > P Mutual cooperation is preferred over mutual defection.
(13)

2. R > S Mutual cooperation is preferred over being exploited
by a defector. (14)

3. 2R > T + S This ensures that mutual cooperation is pre-
ferred over an equal probability of unilateral cooperation
and defection. (15)

4. either Greed:T > R Exploiting a cooperator is preferred over
mutual cooperation
or Fear: P > S Mutual defection is preferred over being
exploited. (16)

Several algorithms and analyses have been developed for the
two-player zero-sum case [5, 6]. [5] proposes a method using mod-
ern reinforcement learning to generalize successful strategy in
Prisoner’s Dilemma: tit-for-tat. The learning agents get rewards
from both their own payoff and the rewards other agents receive.
They both show that agents can maintain cooperation in complex
environments. However, it only works when the zero-sum games
is considered. General-sum case is significantly challenging [20].
Most algorithms require tracking several different potential equilib-
ria for each agent [1, 3], or posing restrictions to agents to simplify
the problem [7].

Instead of designing new learning algorithms or providing novel
solutions, [4] aims to answer “what social effects emerge when each
agent uses a particular learning rule?". Their purpose is to study and
characterize the resulting learning dynamics. Analysis is studied
on the dynamics of policies learned by multiple self-interested
independent learning agents using its own deep Q network. They
also characterize how the learned behavior in each domain changes
as a function of environmental factors.

Similar to social dilemma, there are tensions between collective
and individual rationality [12] in Regulation Enforcement. Regulation
Enforcement is a scenario where individuals can gain self-interest
from not following regulations, which the society as awhole expects
all agents to comply. That corresponds to inequality (6) in the defi-
nition of social dilemma (exploiting a cooperator is preferred over
mutual cooperation). For example, consider regulations that limits
the rate of deforestation for the sake of sustainable development of
our environment. Woodcutting robots can obviously increase its
productivity in the short run by disregarding the regulation, and
given that other individuals are complying to the regulations offers
an even stronger motivation to violate the regulation since they can
obtain evenmore resources. However, Regulation Enforcement is not
a social dilemma as it does not necessarily follow inequalities (13)
– (15). In fact, social dilemma can be considered as a (two-player)
subset of Regulation Enforcement if we make being cooperative an
explicit regulation.
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8 CONCLUSIONS
In this paper, we first propose the task of Regulation Enforce-
ment and provide its connection to a well known problem (social
dilemma) in the related works section. We also present a solution
to the problem which aims to eliminate the incentive of agents
violating regulations in order to gain more rewards in multi-agent
reinforcement learning scenarios. Our solution involves two ma-
jor components: a detector to identify Defective agents and a new
regulation that states a boycotting strategy. We demonstrate the ef-
fectiveness of the method under two different scenarios - Replenish-
ing Resource Management Dilemma and Diminishing Reward Shap-
ing Enforcement. We also show how the empirical payoff matrices
evolves after applying our method, using empirical game-theoretic
analysis. The proposed method “transfers” the Nash Equilibrium
from mutual defective to mutual compliant.
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