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Abstract

We study the problem of online linear optimization with sparsity constraints in the semi-bandit setting.
It can be seen as a marriage between two well-known problems: the online linear optimization
problem and the combinatorial bandit problem. For this problem, we provide an algorithm which is
efficient and achieves a sublinear regret bound. Moreover, we extend our results to two generalized
settings, one with delayed feedbacks and one with costs for receiving feedbacks. Finally, we conduct
experiments which show the effectiveness of our methods in practice.
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1. Introduction

Consider the online prediction problem in which a learner must make repeated predictions in the
following way. In each round, the learner first observes a context or feature vector and must then
make a prediction. After that, the learner receives a corresponding loss as well as some feedback
before moving on to the next round. This problem models many practical applications such as
recommendation, portfolio selection, and time series prediction. However, there are situations in
which it is infeasible for the learner to access all the features due to some resource constraints. For
example, consider the scenario in which there are a huge number of sensors deployed, while the
objective is to perform event detection based on the sensor data. The value read from each sensor
serves as a feature, and because of the bandwidth and energy limitation, it would be better to obtain
only a subset of them at each time. Then the success of an algorithm depends crucially on how to
select the sensors (features) and update the predictor. More examples can be found in Zolghadr et al.
(2013).

Such a task has been formulated as the following problem Kale (2014); Foster et al. (2016),
for the case of linear predictors. For a total of 7' rounds, the learner must iteratively predict the
label y; of a sample x; arriving in round ¢. Each sample has d features, but the learner is only
allowed to query k of them, with k < d, and must make the prediction based only on them. After
each prediction, the true label is observed and the learner suffers some corresponding loss. The
learner’s goal is to minimize the regret, which is defined as the cumulated loss of the learner minus
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that of the best fixed predictor based on k features. Note that the learner at each step only receives
some limited information, and the setting can be seen as a “semi-bandit” one Audibert et al. (2014);
Neu and Bart6k (2016), which differs from the full-information one in the following way. In the
full-information setting, the learner gets to see all the d features of the sample at each step, while in
the semi-bandit setting, the learner only sees a small set of k < d features determined by the action
chosen at that step. With such limited information in the semi-bandit setting, the task of the learner
becomes harder. In particular, the learner has to face the dilemma of exploration versus exploitation.

When the labels are real numbers and the loss is the square loss, this problem turns out to be
computationally hard. More precisely, as shown by Foster et al. (2016), no algorithm running in time
polynomial in T can achieve a regret bound of about 7" =9, for a constant § > 0, unless NP C BPP.
To avoid the issue of computational intractability, we consider using the linear loss to replace the
square loss. That is, for a feature vector x with label y, the loss of a linear predictor w is defined
as —y - (x, w). Such a loss seems appropriate for binary classification, with y € {—1, 1}, because
without the minus sign, the product y - (x, w) is the correlation between the label and the prediction,
which corresponds naturally to a reward. We can place this problem in the more general framework
of online linear optimization, with —yx as the loss vector and the feasible set containing the linear
predictor w’s. However, as our problem requires an additional sparsity constraint ||w||o < k, our
feasible set becomes nonconvex, which prevents us from applying standard algorithms based on
“mirror descent” or “follow the regularized leader” (see, e.g., Bubeck and Cesa-Bianchi (2012)). In
fact, similar issues arise in the problem of combinatorial bandits Cesa-Bianchi and Lugosi (2012)
for which a different approach based on “follow the perturbed leader” algorithm Kalai and Vempala
(2005) has been proposed Neu and Bartok (2016). Unfortunately, we cannot apply such results either,
as their feasible sets consist of only binary strings (indicating which subset of arms are selected),
while ours contains real vectors. Furthermore, the algorithms in Cesa-Bianchi and Lugosi (2012);
Foster et al. (2016) do not help as their time and space complexity both grow proportionally to d¥,
which is prohibitively large even for moderate values of d and k. Therefore, it is not clear if it is
possible to have an efficient algorithm achieving a sublinear regret for our problem.

Our results. We answer this question affirmatively. More precisely, we consider the general
problem of online sparse linear optimization, in which the feasible set consists of w € R satisfying
a sparsity constraint |w||o < k as well as an L,-norm constraint |[w||, < 1, for b > 1. For this
problem, we provide an efficient algorithm achieving a regret of about /7" and having time and space
complexity scaling only linearly in d instead of in d*. The algorithm works for any b > 1 and k > 1,
Moreover, we extend our results to two generalized scenarios, one with delayed feedbacks, and
one with different costs for accessing different components of the loss vectors. Finally, we perform
experiments which show that our algorithm also work well empirically on real-world data sets.

Related works. While we are not aware of previous works on our problem of online sparse linear
optimization, there have been several related works for the problem of learning predictors based on
subset of features, in addition to Foster et al. (2016). Cesa-Bianchi et al. (2011); Hazan and Koren
(2012) considered a related problem in the batch setting, in which the learner in the training phase
can only query a small subset of features of each training example, but the final hypothesis for testing
can depend on all the features. Their algorithms do not work for us as our problem requires always
making predictions from subsets of features. Amin et al. (2015) studied an online problem about
prediction with expert advice under budget constraints, which can be seen as a relaxation from the
bandit setting towards the full-information one. This setting appears easier than ours as the learner
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can access additional information not related to the expert it chooses to follow, which allows the
decoupling of exploration from exploitation. Zolghadr et al. (2013) considered a setting in which
the loss of a learner in each round is defined as its prediction loss plus the cost of querying features,
which is different from ours. Kale et al. (2017) considered the square loss function under the contraint
that ||w||g < k. Yet, they made additional assumptions like restricted isometry property to avoid the
computational hardness. Finally, Wang et al. (2013) studied the task of binary classification, but they
provided a mistake bound rather than a regret bound, and their method seems specific to the case of
0-1 loss.

2. Preliminaries

Let us first introduce some notations which we will use later. For a positive integer d, let [d] denote
the set {1,...,d}. For a vector x € R? and for i € [d], we let x; denote the i’th component of x,
and when we need to use the notation x; for a time-indexed vector in R?, we will write x¢,; for the
the i’th component of x;. We let ||x||, denote the Ly-norm of a vector x. For a condition C, we use
the indicator function 1. to give the value 1 if C holds and O otherwise.

As discussed in the introduction, we are interested in the online sparse linear optimization problem
in which the learner can only choose actions from a feasible set consisting of “sparse” vectors. In
particular, we will consider feasible sets of the form {w € R? : ||w||o < kand ||w||;, < C}, for
b € [1,00] and C' > 0. For simplicity of presentation, we will discuss only the case with C' = 1, as it
is straightforward to extend our results to the general case, and we let KC denote such a feasible set.
Formally, we consider the online linear optimization problem, in which the learner must play the
following game for a total of 7" rounds. In round ¢, the learner must first choose an action w; from
some feasible set /. For this choice, the learner suffers some loss (8, w;), according to some loss
vector ;. After that, the learner receives the feedbacks 6, ;, for every ¢ such that w; ; # 0. Without
loss of generality, assume that each ||0;||.c < 1 (again, our results can be easily extended to the
more general case with ||0,||y < C’, for any positive b’ and C’). Note that the problem of online
prediction with limited feature access, discussed in the introduction, can be cast as this problem,
with the loss vector defined as 8, = —y;x;, for the feature vector x; and its label 3;. To measure the
performance of the learner, a common way is to compare its expected total loss to that of the best
fixed action w, € K in hindsight. The difference is called the regret of the learner, which is

T T
0 ~ min S0, w,).
;( t,wt)] Join Y (6, w.)

t=1

E

where the expectation above is over the randomness used by the learner.

3. Follow the Perturbed Sparse Leaders
As mentioned, we consider the feasible set
K={weR?: ||wlo<kand |w|, <1},

for b € [1, 00]. Our algorithm was inspired by that of Neu and Barték (2016), which is based on
the “follow the perturbed leader” algorithm. However, their results do not apply here, since they
have a different feasible set, with binary vectors only, and their loss vectors have only nonnegative
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Algorithm 1 Follow the perturbed sparse leader
fort =1to 1 do
1:  Play w; computed according to (2).
2:  Receive feedback 6, ; for i € Q.
3:  Call Algorithm 2 with input (4, t, M) to get hy ;, Vi.
4:  Construct ét, with ém =04, hyi - Licg,.

components. In fact, some of their key lemmas rely heavily on these two assumptions, and we have
to develop new analyses for our different setting.
Our algorithm is summarized in Algorithm 1, with the parameters

n=+/(kKt"D/logd)/(d?Tlog T),
v = codnlogT, (1)
M = [(dInT)/(kv)],

where ¢y is a small enough constant to make v < 1 for any 7', and we use the convention that
(b—1)/b =1 for b = co. Formally, our algorithm does the following in round ¢. First, it samples a
random perturbation Z; from the two-sided exponential distribution, with the density function

f(z) = elelh o

for z € RZ. Then it computes the perturbed leader:
t—1
W € mi , 0.-7,),
(i u)

where each éT is our estimator for @ to be described later in (3). Such a W; can be found efficiently,
as guaranteed by the following, which we prove in Subsection 3.1. Notice that in each round ¢, a new
sample of Z; is drawn from f(z) for computing the update.

Lemma 1 For any v € RY, the optimization problem minycic (W, v) can be solved in polynomial
time O(dlogk).

Our algorithm does not simply play this W; in round ¢; instead, it plays

w, = { Wi, with probability 1 — -; @)

uniformly random w € K, with probability ;

where K contains exactly those w € K such that for some Q C [d] of size k, w takes the value
1/ k'/" at those dimensions in Q and the value 0 elsewhere. By choosing w; this way, our algorithm
is guaranteed to receive each 6, ; with a good probability. More precisely, by letting

Qi ={i:wy; #0} and q; = Pr[i € Q¢ | Fr—1],
where F;_1 denotes the o-algebra generated by the random events up to round ¢ — 1, we have

qii > vk/d for every i.
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Algorithm 2 (i, ¢, M) Geometric resampling
forn=1,2,...,M do

1:  Sample w§”) independently according to the distribution of w; in (2).

2: if wgz) # 0 then break the loop.
3: Return hy; = n.

It remains to specify our estimator ét for ;. One possibility would be to set ét,i =0, ﬁ Lieq,,

which has the desirable property that E[étﬂ- Fi—1) = 04, because E[L;cq, | Fi—1] = ¢+;. However,

to use this estimator, the learner needs the value g; ;, which seems hard to determine as it does not

appear to have a closed form. Fortunately, we can adopt the geometric resampling approach of Neu
1

and Bartok (2016) to approximate 7 by another number A ;, which is described in Algorithm 2.

Then we choose our estimator 8, by setting
61 =04 hei Licq,, 3)

for each ¢ (note that ém = 0 fori ¢ Q). This estimator is almost unbiased, as shown in the
following, which we prove in Subsection 3.2.

Remark: We would like to emphasize that the step on line 1 of Algorithm 2 is about sampling a new
W first, by computing the perturbed leader again, and then sampling a w; by (2). The computational
time complexity of Algorithm 2 is O(Md), assuming that the oracle of uniformly sampling a w € K
is available.

Lemma 2 For any 1, E[ém | Fi1] — 04| < 1/T.

Finally, our algorithm can achieve a regret bound of about v/7, as guaranteed by the following
theorem, which we prove in Subsection 3.3.

Theorem 3 The regret of Algorithm 1 is at most O(v/aT logT) for oo = k0=1/4d% log d.

3.1. Proof of Lemma 1

For simplicity, let us assume that the dimensions are arranged to have |v{| > |ve| > -+ > |vy4|. For
the case of IC = Ky, it is well known that one can have the minimizer w with w; = —sign(v;)1;—;
for every i. For the case of I = K, it is easy to check that one can have the minimizer w with
w; = —sign(v;) 1<y for every i.

Now, let us consider the case of K with b € (1,00). For v € R% and Q C [d], let v denote the
projection of v to those dimensions in ). Then for any v € R?, and any w € K with Q = {i : w; #
0}, we know by Holder’s inequality that (w,v) = (wq,vq) > —||w|s - [[vgl|,, fora =b/(b—1).
Moreover, one can have (wg,vg) = —|wl|y - [[voll,, when |w;|®/||w[}) = |v;|?/||v]¢ and
w;v; < 0 forevery i € Q). Thus, to find w € X which minimizes (w, v), we first let Q = [k] so that
Ivoll, > ||ver||, for any Q" C [d] with |Q'| < k. Then we let W; = —sign(v;)|vi|**1;eq, and
choose w; = W;/||W/|. Clearly, we have w € K and (w, v) = —[[vgll, < —|[ve||, < (W', v)
for any w' € K with Q' = {i : w, # 0} as |@Q'| < k. The procedure clearly can be done in
polynomial time (e.g. O(d log k)) by using some efficient algorithms in sorting.




ONLINE LINEAR OPTIMIZATION WITH SPARSITY CONSTRAINTS

3.2. Proof of Lemma 2
According to the definition,

E0:; | Fi1] = 0 - Elhei | Fioil - 14
as h; ; is independent of ();. Moreover,

E [hti | Fi-1]
M

= Z n(l = qe)" qei + M1 — qeq)™
n=1
1

= —(1-01-a)™)

qti

by a routine calculation. As a result, we have

B0 | Fio1] — 0ri| < (1 —qr )M < e Mui <17,

asM = [(dInT)/(ky)] > (1/q:s) InT.

3.3. Proof of Theorem 3

Let w.. be the best offline predictor in K. By definition, the regret of our algorithm is

T T T
E Z(Wu 0t>] - Z<W*7 0:) = ZE (Wi — ws,04)],
t=1 t=1 t=1
which can be decomposed as
T T
D E[(wi— Wi, 0] + Y E[(W% — w.,04)].
t=1 t=1

“)

The first sum in (4) is at most 2k(~1)/~T because for each ¢, W; # w; with probability  and in
that case (w; — Wy, 0;) < |[w; — We||1 - [|0¢]loc < 2k~D/0 since [|04]|o0 < 1 and [|w; — Wy <

[we |1 + [|[Wre|[1 < 2k(~1/ where we use Holder’s inequality to get the upper bound of ||w||; as
|Iw|ly < 1 for any w € K. To bound the second sum in (4), we follow Neu and Bartdk (2016) and
use the help of a virtual algorithm that (i) uses a time-independent perturbation vector and (ii) is
allowed to peek one round ahead into the future. More precisely, the virtual algorithm first draws the
perturbation vector y/ according to the two-sided exponential distribution (independently from those

used by our algorithm), and then in each round ¢ it plays

t
Wi € argg1€i% <w,n2972>.

T=1

Our key lemma is the following.
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Lemmad4 Giventand01,...,0, 1, let Ui(z) denote an arbitrary element of

t—1
i 0. —z).
(50

Then,

T

D E[(Wr — wa, 0,)] < 26070/ 4 2R /b1y
U

t=1

tET;E B[ [ 0 - Uit 160,005 | 71|

where in the last line, the outer expectation is over the randomness up to round t — 1, which determines
01,...,0;:_1, and the inner expectation is over that of round t, which determines 0.

Proof Our proof follows the approach taken by Kalai and Vempala (2005); Neu and Bart6k (2016).
Let us first consider any fixed ¢, and note that we can express E [(W; — W, 0;)] as

E[E [(W — Wy, 0¢) | Fia]], S)

where the outer expectation is over the randomness up to round ¢ — 1 and the inner expectation is over
that of round ¢, which determines W, and 6,. Now consider any fixed realization of randomness up
to round £ — 1, denoted as r;_1, which in turn fixes él, R ét,l. Observe that the inner expectation
in (5) equals to the value

/ (Us(2) — W, 0,)df (2), ®)
Rd

and we can see it as a fixed value which is determined by r;_; but independent of the random
variables W; and ;. Then, let E;[-] denote the expectation over the distribution of ; conditioned on
r;—1, and let us decompose (6) as

[ Wita) = w00~ BB dr () + )
R

[ Wit — BB dsa). ®
We claim that (7) is at most 2l<:(b_1)/b/T, because for any w € /C,

<W — Wy, 0; — Et[ét]>

Iw — .l - || 6 — (6]

IN

< 2k-D/b ),

using the fact that ||w — w. ||} < [[w|l1 + w1 < 2k©~D/® and the bound [0y ; — E[6; ]| < 1/T
from Lemma 2. On the other hand, (8) equals

| [ (Wit~ w0012

7



ONLINE LINEAR OPTIMIZATION WITH SPARSITY CONSTRAINTS

which can be decomposed as
E, [ /IR{ (V=) ~ Ui — ), ét)df(z)] +
E; [/Rd<Ut(z —nb,) — W*,ét)df(z)] :
By combining all the bounds derived so far, we can obtain an upper bound on the inner expectation

in (5), for fixed t and r;_;. With such a bound, by taking an expectation over r;_; and a summation
over t, we obtain

T
D E[(Wr — w,0y)] < 2607/ 4
t=1

gE 0| [ (0) - Uita - 80, 0007(a)] | +

glﬁi [Et [/Rdwt(z — 1) — w., ét>df(z)H . 9)

Note that the last sum in (9) equals

T -~ ~
E [; /Rd<Ut(Z —nb) — W*70t>df(z)] )

with the expectation taken over the distribution of él, e éT, by noting that each Uy (z — nét) is
independent of 8,1, ..., 7. Then Lemma 4 follows from the following.
Proposition 5 For any él, cees Or,

T
3 / (Uy(z — nfy) — W, 8)df () < 2k®-D/0 g,
t=1 7/ R? "

Proof Taking the standard approach for analyzing the “follow the perturbed leader” algorithm, one
can show that

d A ~
; /Rd<Ut(Z —n6;) — w,, 0,)df (2)

T

= [ i) e B
t=1
< ;EKZ,%)},

where Z is the perturbation vector sampled by the virtual algorithm and w is what it plays in the
first round (see for example the proof of Lemma 7 in Neu and Bart6k (2016)). However, to bound the
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expectation E[(Z, W1 )], we do not find any existing bound, such as that in Neu and Bartok (2016),
which we can use directly, as our 7 is sampled from the two-sided exponential distribution and our
w1 € K is under a different constraint and has real-valued entries. Still, we can modify the proof of
Lemma 14 in Neu and Bartok (2016) to bound the expectation in the following way.

Let Z}‘, ey Z;“l denote the permutation of Z1,...,Zg such that Z’{ > Z;‘ 1 for every ¢. Then for

a=0b/(b—1), y y
a k a
> [wills < (Z Z; >
i=1

k i 1/a
v = (Z z:w) ,
i=1

which is a nonnegative random variable. Then for any A > 0, we have

k
(Z, 1) < (Z \z;«
=1

by Holder’s inequality. Let

E[Y] = / PrlY > yldy < A —l—/ Pr[Y > y]dy,
0 A

where

which is at most

Y | = gev/ke
> kl/a} =de .

Therefore, we have

E[Y] < A+ d/ e YR dy = A 4 (dkM@)em AR
A

which is at most
EYeInd + kY < 2kY%Ind

by choosing A = k'/*Ind. As E[(Z,W1)] < E[Y] and a = b/(b — 1), Proposition 5 follows. M

Our remaining task is to bound the last sum in Lemma 4. For this, we rely on the following
lemma.

Lemma 6 For anyt,
E [/d<Ut(z) — Uy(z —nBy),0,)df (z) | Fr_1| < 2nd>.
R

Proof Recall that f(z) = e II#l /22, Fix any ¢ and any realization of randomness up to round
t — 1, denoted as r;_1, which in turn fixes 61, ...,0;_;. Let E; [-] denote the expectation over the
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randomness in round ¢ conditioned on r;_;, and let Pr;[-] denote the corresponding conditional
probability (conditioned on r;_). Note that for any 6y,

/Rd<Ut(Z) — Uy(z —10,),0,)df (z)
N / (Ui(2). 0:)df (2) _/ (Uy(z),0,)df (z + nb;)
R Ja A
- /]Rd (1 B eHZHl_HZMetHl) (Ui(z), 0:)df (z)
[l = | 01020, 80 o

<l [ [0 8] ara).

IN

Moreover, since 8 ; = 0if j & Q;, we have

J.

Wi).00] @) < 3 [ 10,101,102

JEQ:

< Z Gt,5ht. 5

JEQ:

where (U.(z)); denotes the j’th component of the vector U;(z). This implies that

E, [\étul /R [(U(2). 8, df(z)}

< B | D aquihii| FE| DD heiauiheg | - (10)
1€Q¢ 1€Qt j#i

The first term in (10) can be written as

ZPTt [i € Q4] - Eq [Qt,ih%,i] = thQzEt[h%z] < 2d,

as Q¢ is independent of h; ; given r;_1 and Et[hf’i] equals

M 2
Z n*(1 = q)" g + M*(1 - g )™ < -
by a routine calculation. The second term in (10) equals
Z Pr.fi € Q] - ZEt [t ilqe jEe[ha ]
i i
as Q¢, hy g, and hy j, for j # 4, are independent of each other given r;_; (we compute h; ; and hy ;
using independent samples), which is at most

>y i}h,ji < d?

i i qt,i Qt,_y

10
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The lemma follows as the sum in (10) is at most 2d + d? < 2d>. [ |

By combining all the bounds above, we can conclude that the regret of our algorithm is at most

kDT 4 oD 4 2001 g 4 92T,
n

which gives the stated bound in Theorem 3 for our choice of parameters.

4. Extensions

Our algorithms can also be extended to work in more general settings. Here we consider two such
examples, one with delayed feedbacks and one with costs for receiving feedbacks.

4.1. Delayed feedbacks

Consider the scenario in which the feedbacks may be delayed, instead of being received right away.
This has been considered previously by Quanrud and Khashabi (2015) in the full-information setting
and Cesa-Bianchi et al. (2018) in a adversarial bandit setting, and here we study it in our semi-bandit
setting. Formally, the feedback 6, ; for i € (); for round ¢ is delivered at the end of round ¢ + D; — 1,
for some D; > 1,and let D = Zthl Dy. Hence, in the standard setting with no delays, D; = 1 and
D=T.

In this delay setting, before round ¢, only the feedbacks from some subset S; of previous rounds
are available, so we can only compute 6, for 7 € S;. Thus, we modify Algorithm 1 by choosing the
perturbed leader according to W; € arg minyex (W, ZTG S éT — Z;), while the rest is the same.
The resulting algorithm achieves the following regret bound, which we prove in the supplementary.

Theorem 7 By choosing the parameters 1 = \/(k®=1/%log d)/(d2Dlog D) and v = 2dnlog D,
the regret of the new algorithm is at most O(a~/Dlog D), for oo = d+/k(=1/blog d.

4.2. Knapsack constraints

Consider the scenario that receiving feedback 6 ; incurs some cost c;, which is independent of the
round ¢ but may depend on the dimension 7. The learner knows the costs and has a budget B in each
round, which limits the total feedback costs affordable in each round. More precisely, the feasible set
now becomes

V=XweR":|w|,<1, Y <B
:w,; 7Z0

We would like to modify Algorithm 1 to work for this new setting. Given the different feasible set
V, the learner now faces a different optimization problem: find W € V to minimize ¥(w) = (w, ®),
for ® =g Zt;:ll 6, — Z, in round t. Following the proof of Lemma 1, it suffices to solve the
problem: find J C [d] to maximize ®(J) = ||© ]|, subject to > icy¢i < B, for the number a such
that 1/a +1/b=1.

For the case with b = 1, it is known that we only need to consider J of size one. That is, the
optimization problem now becomes finding 7 € [d] which maximizes |®;| subject to ¢; < B. This

11
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can be easily solved by enumerating through d possible values of ¢. With this modification, while the
rest is the same as Algorithm 1, we have an efficient algorithm which achieves the same regret bound
as that in Theorem 3.

For the case with b € (1, o], we now face the knapsack problem: find J C [d] to maximize
®(J) = > ;e 10| subject to Y . ;¢; < B. Unfortunately, the knapsack problem is known to
be NP-hard. Thus, we use an approximation algorithm, which for any given ¢ > 0 finds J with
®(J) > (1 — e)®(J) in time O(d3 ") (see e.g. Section 11.8 in Kleinberg and Tardos (2005)). It
can be used to find w with ¥'(w) < (1 — €)W (W) (note that ¥(Ww) < 0). Then similarly to Kalai and
Vempala (2005), one can show that this results in an extra term of (1 — (1 — €))7 in the regret. By
choosing € = 1/772, the regret can be kept in the same order as before, although the time complexity
in each round now increases to O(d3T?).
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Appendix A. Proof of Theorem 7

To bound the regret of the new algorithm, let us compare it with that of Algorithm 1 (in the no-delay
setting) using the new choice of 1 and . Let w; denote what the new algorithm plays in round ¢,
which is W; with probability 1 — v and a random w € K having ||w||o = k with probability . Let
w; and W} denote those of Algorithm 1 corresponding to w; and W;. Then the regret difference
between these two algorithm is

T
D El(wi = wi, 0] < (1—7) ) E[(W — W}, 6)].
t=1 t=1

Note that the optimization problem for W;, compared to that for W}, has some 0,’s missing due
to delays: those with 7 in the set S; = [t — 1] \ S;. Let 85, = 2765} 6. and let us again use

the notation Uy (z) for arg minyecx <w, n Zi_:ll 0, — z> Then for any ¢, we have the conditional

expectation E [(W; — W}, 0;) | Fi_1] equal to

/ (Us(z), 0,)df () / Uiz + 1,), 01)df (2),
]Rd Rd

which, following the proof of Lemma 6, can be upper-bounded by

w65, [ 1wi@.00147

< o X[, [, 1w 001dr
TES:
< kOIS 6,

Tegt

as [|0¢]|oo < 1and ||Uy(z)||1 < k=% with U(z) € K. Taking the sum over ¢ and the expectation
over these 0,’s, we obtain

T

T
S R [(% — W, 0] <nkDES TR N6,

t=1 t=1 €5,
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Since each ||, |1 is counted at most D, times in the last sum and E[||0,]1] < ||0-||1 + d/T < 2d
from Lemma 2, the sum is thus at most 2ndk(®—1)/® 22:1 D, = 2pdk®=1/PD,
Thus, we can express the regret of the new algorithm as

T T
D E[(wi— w0+ Y E[(w] —w.,6,)]
t=1 t=1
where the first sum is at most 2ndk®~Y/?D from the discussion above and the second sum is at most

o <fy/<:(b_1)/bT + nd?T + Lpe-ny d)
n
according to the proof of Theorem 3. Then the theorem follows with the given choice of 7 and ~.

Appendix B. Experiments

In addition to our theoretical results, we also perform experiments to verify the effectiveness of our
algorithms in practice, which we show next.

First, we compare our Algorithm 1 with two baselines for the constraint set }Cz.! The first
baseline randomly selects a subset of k features before the rounds start, and then it runs the FTPL
algorithm using this same subset of features in every round. For the second baseline, we use the
best fixed subset of k features, instead of a random one, selected in an offline way. More precisely,
we first compute the subset of features which the best offline algorithm would choose, using the
algorithm in Lemma 1. Then we use this same subset of features in every round but run FTPL to
adapt the predictor dynamically. This is our second baseline, which we call “oracle”.

The experiments are conducted on four datasets, all downloaded from the libsvm website. The
statistics of the datasets are shown on Table 1. All the datasets except “mnist” have labels in
{—1,+1}. In the “mnist” dataset, the labels are digits from 0 to 9. We choose the difficult 3 vs. 5
classification task, with digit 3 labeled as 1 and digit 5 labeled as —1. Because of the randomness of
our algorithms and the baselines, we conduct the experiments five times for each dataset and each
budget k, each time with the dataset randomly shuffled. In the experiments, each call to Algorithm 2
is run with M = 10 iterations.

Data ‘ # samples | dimensions
a%a 48,842 123
connect 61,108 126
cov subset 58,100 54
mnist 3 vs. 5 13,454 770

Table 1: Dataset statistics

Figure 1 show the results. For a better illustration, we use the cumulative rewards » _, 7 =
>+ Yt(Wy, x¢) as the performance measure instead of the cumulative losses. Figure 1 (a)~(d) shows

1. We are not aware of any relevant work which we can compare fairly to. In fact, we believe that we are the first to
provide efficient algorithms for this problem, as existing algorithms all have runtime of the order of d*, which would
take too long to run even for moderate values of d and k.
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the graphs of the cumulative rewards v.s. the k/d ratios. Smaller ratios of k/d mean more stringent
budget constraints. One can see that our algorithm substantially outperforms the baseline in a wide
middle range of & /d ratios. The difference becomes smaller when & /d approaches to 1, as the setting
goes toward the full information one. Note that “oracle” has the advantage of an offline algorithm,
which can select the subset of features based on all the reward functions, while it is allowed to adapt
its predictor through time instead of being constrained to a fixed one. Thus, it may seem unfair to
compare with such an algorithm, but our experiments show that our algorithm is still competitive to it.
Another experiment is conducted to see the effect of redundant features. Here, redundant features are
sampled from the standard normal distribution and then added to the data. The numbers of redundant
features are set to be 0.2 ~ 1.5 times of the original ones. Figure 1 (e)~(f) show that our algorithm
is robust to the redundant features while the baseline (using a random subset) degrades as more
redundant features are added.
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Figure 1: Performance of FOLLOW THE PERTURBED SPARSE LEADERS. (a)~(d): Cumulative
rewards vs. k/d ratios. (e) and (f): Cumulative rewards vs. number of redundant features
added.
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