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ABSTRACT
PageRank has been the signature unsupervised ranking model
for ranking node importance in a graph. One potential draw-
back of PageRank is that its computation depends only on
input graph structures, not considering external informa-
tion such as the attributes of nodes. This work proposes
AttriRank, an unsupervised ranking model that considers
not only graph structure but also the attributes of nodes.
AttriRank is unsupervised and domain-independent, which
is different from most of the existing works requiring either
ground-truth labels or specific domain knowledge. Combin-
ing two reasonable assumptions about PageRank and node
attributes, AttriRank transfers extra node information into
a Markov chain model to obtain the ranking. We further
develop approximation for AttriRank and reduce its com-
plexity to be linear to the number of nodes or links in the
graph, which makes it feasible for large network data. The
experiments show that AttriRank outperforms competing
models in diverse graph ranking applications.
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1. INTRODUCTION
The ranking of nodes based on their importance is widely

used in applications such as web search and social network.
PageRank [14] is a well-known unsupervised solution for
such problem. It assumes that a highly-ranked node is more
likely to be pointed to by other highly-ranked nodes. Based
on the assumption, PageRank gives each node a ranking
score by modeling itself using the Markov chain framework,
to obtain the unique converged ranking result. Formally,
PageRank runs the update rule:

π(t+1) = (1− d)
1

N
1 + dPπ(t)
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Figure 1: On figure (a), node 1 and 4 should obtain
identical PageRank values, and so are nodes 5 and
6, assuming their edges (3,4) and (4,5) are not miss-
ing. However, if those links are missing, then with
the attribute values as shown in (b), it is possible
to recover the similarity of rankings between those
nodes.

where vector π denotes the ranking scores of all N nodes,
P denotes the transition matrix from graph edges, 1 is the
vector with all elements equal to 1, and d is the damping
factor which is recommended to be set to 0.85. PageRank
updates π for sufficient iterations to approach the converged
output.

One potential drawback of PageRank is that only the
graph information is considered in the ranking. Relying only
on the graph information is problematic since in real world
data the graph information might contain errors or missing
evidence due to data collection biases. For instance, in a
social network, friendship connections are very likely to be
missing, which can affect the ranking results of a PageRank-
based model. Nonetheless, the nodes in a graph are very
likely to contain certain profile information or attributes.
Take social networks as an example, we can obtain some
extra information (e.g. name, demographic features) about
the nodes or persons, and it is reasonable to assume that
information (e.g. job title) can be used to boost the ranking
performance. Such observation motivates our research aim-
ing to create a better yet still unsupervised ranking model
that considers both graph structure and external node at-
tributes.

We take Figure 1 as an example. Assume that the link
between node 3 and node 4 is missing while collecting the
graph information. In a regular PageRank model, the im-
portance of node 1 cannot be fully propagated to node 4.
However, the similarity of attributes between node 1 and
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Figure 2: Possible training data of graph-based
ranking models. Previous works use either (a), (a +
c) or (a + b + c), while AttriRank utilizes only (a
+ b).

node 4 could provide a hint that the ranking of these two
nodes should be closer.

Another potential issue for PageRank is that the ranking
score of a node depends only on the score of its neighbors
due to the 1st-order Markov assumption. In other words,
PageRank models itself with node adjacency relations and
does not directly consider non-adjacent nodes. However,
there exists other information from the graph that is highly
relevant to a node’s importance. To name a few: the to-
tal number of 2nd-degree neighbors of a node; or the total
number of shortest paths traversing through this node. Our
model allows the modeling of such complex graph informa-
tion as attributes attaching to the nodes and yields a more
trustable ranking that considers more relevant information.
Since data outside graphs are not always available, mak-
ing use of graph attributes is another direction to enhance
PageRank.

We design an unsupervised learning framework, AttriRank,
to improve PageRank performance by transferring the knowl-
edge of node attributes. Given arbitrary node attributes, we
propose a random walk-based framework to integrate graph
and attribute information for ranking. Such unsupervised
ranking problem has gain significant attention these years.
For instance, WSDM Cup 2016 focuses on unsupervised
ranking of authors on an academic graph. Unfortunately,
the solutions from the winners in the competition are de-
signed specifically for academic graph rather than general
graphs.

As Figure 2 illustrates, related works incorporating at-
tribute information try to fit given ranking labels. The su-
pervised framework might not be as effective since creating
supervised ranking ground truth is itself a challenging task.
To elaborate, since the goal is to rank nodes based on the
graph and the node attributes, human annotators have to
look into these two types of information and provide the
ranking for the nodes. When the graph size grows, it would
be extremely hard for human to generate faithful and unbi-
ased rankings. That motivates us to work on unsupervised
ranking in such problem.

Overall, our technical contributions include:

1. Exploiting both link structures and node attributes,
we propose an unsupervised learning framework Attri-
Rank to improve the quality of node importance rank-
ing.

2. We address the efficiency problem by proposing two
approximation tricks based on eigenvectors and Tay-

lor expression, which brings the time complexity linear
to the number of nodes. Experiments report no sig-
nificant performance difference between the exact and
approximate AttriRank.

3. Theoretical justifications are provided for the selection
of AttriRank parameters. It is essential as there is no
labeled validation set available to tune parameters in
unsupervised learning.

We release our source code of AttriRank in our website
1.

2. RELATED WORK
The earliest solutions to rank nodes of a network might

be the Centrality-based metrics [7] , such as closeness and
betweenness centrality derived in the field of social net-
work analysis. A few years later, PageRank [14] and HITS
[12] were proposed. PageRank gives ranking by computing
the mixture of authority score and reset probability while
HITS considers authority scores and hub scores separately.
Weighted PageRank [21] introduces weighted transition ma-
trix where each entry in the matrix is proportional to the
number of inlinks and outlinks of the innode. N -step PageR-
ank [23] is another derivative of PageRank, which replaces
the original transition matrix with a matrix whose entry is
proportional to the in-node’s N -step neighbor count. All the
models mentioned above mainly focus on the link structure
of the graph, ignoring other information embedded in the
graph or the external attributes which are the focus of this
paper.

Recently, some semi-supervised PageRank-related meth-
ods have been proposed, for example, TrustRank [10] , Adap-
tive PageRank [18] and Semi-supervised PageRank [8]. Trust-
Rank focuses on detecting spam websites. It first computes
hub score for each node. Nodes with top k scores form a
seed set. Human experts evaluate these web pages as spam
or non-spam. The result forms the initial score vector and
then a PageRank-based method is used to produce the final
rank. TrustRank is simple but heuristic: scores of human
labeled websites propagate to other unlabeled websites. A
website that is farther from a non-spam website receives a
lower score than a website closer to it. Adaptive PageRank
is an enhancement of PageRank. It transforms the original
PageRank formula into an objective function which mini-
mizes the norm-2 distance between the optimal PageRank
score under certain constraints and the original PageRank.
The constraints, for example, can be pairwise preferences
in websites. Semi-Supervised PageRank further expands
Adaptive PageRank. It is also a general version of many
PageRank-like algorithms such as NetRank [1], LiftHITS [6]
and Laplacian Rank [25, 2, 16, 20]. It includes node features
and edge features into the objective function. Node feature
vector is included in the reset probability matrix and edge
feature vector is included in the transition matrix. In ad-
dition, there is a weight vector for all node feature vectors
and a weight vector for all edge feature vectors. Both weight
vectors and the rank for each node can be learned during the
optimization process. Nevertheless, these methods are either
supervised or semi-supervised and have to rely on labels to
adjust their scores.

1https://github.com/ntumslab/AttriRank
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Figure 3: Example of two graphs involved in At-
triRank. (a) Graph G with nodes {1, 2, 3, 4} is
given as input. The nodes have attribute vectors
{x1, x2, x3, x4}. (b) Graph H is an imaginary, fully
connected graph with the same set of nodes. Each
edge (i, j) is assigned a positive similarity weight sij,
including self-loops.

3. METHODOLOGY

3.1 Problem Definition
We are given an N -node graph, denoted by G = (V,E),

as input to our model. V and E denote the set of nodes and
edges respectively. Each node i ∈ V is associated with a K-
dimensional attribute vector xi. Matrix X = [x1x2 . . . xN ] ∈
RK×N denotes all the node attribute vectors. Our goal is
to build an unsupervised extension of PageRank that, with
the help of node attributes, outputs a more reliable ranking
score πi for each i.

3.2 AttriRank

3.2.1 Model Assumptions
Similar to every unsupervised learning algorithm, Attri-

Rank needs to rely on some assumptions for ranking:

1. PageRank assumption. A node receives higher rank-
ing if it is linked by many other high-score nodes.

2. Attribute assumption. If a pair of nodes (i, j) have
similar attribute values xi ≈ xj , then they should re-
ceive similar ranking scores πi ≈ πj .

The PageRank assumption is exactly the same as that of
a conventional PageRank model. The attribute assumption
is commonly utilized in machine learning. That is, for two
instances with similar attributes, their classification or re-
gression outcomes should be similar.

3.2.2 AttriRank Overview
Based on the two assumptions, AttriRank adopts a sce-

nario where a random walker simultaneously moves in two
graphs G and H. H is a fully connected undirected graph
sharing the same node set V of G, as shown in Figure 3.
Each edge weight between nodes (i, j) in H represents the
similarity sij > 0 between the corresponding node attributes
(xi, xj). The choice of sij is discussed in Section 3.2.3. Re-
call that the random walk in PageRank can be interpreted
by a Markov chain model. AttriRank adopts the same in-
terpretation with the following update rule:

π(t+1) = (1− d)Qπ(t) + dPπ(t), (1)
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Figure 4: Random walk interpretation of AttriRank.
Consider a case with node 1 linking nodes {2, 3, 4},
but not {5} in graph G. (a) In graph G, like PageR-
ank, a walker at node 1 moves to one of the direct
successors uniformly at random. (b) In graph H, a
walker at node 1 chooses one node out of all nodes
with probability proportional to similarity weights.

where

Pij ≡


1
δj

if directed edge (j, i) ∈ E
1
N

if δj = 0
0 otherwise

(2)

Qij ≡
sij∑
k∈V skj

. (3)

Under Markov chain framework, the vector π ∈ RN of node
ranking scores is modeled as a probability distribution. That
is, for each node i, its ranking score πi ≥ 0 ∀ i and

∑
i∈V πi =

1. P ∈ RN×N and Q ∈ RN×N denote the corresponding
transition matrices for graph G and H respectively. If G
is undirected, an edge (i, j) in G is treated as two directed
edges (i, j) and (j, i). δj is the number of outgoing links, or
out-degree, of node j. Like PageRank, we have to deal with
dangling nodes (δj = 0) to avoid π = 0. Parameter d ∈ (0, 1)
controls the random-walk preference ratio between graph G
and H. Figure 4 draws the visual interpretation of (1). We
repeatedly assign vector π to the right-hand side of (1), until
convergence.

AttriRank can be treated as the linear combination of our
two proposed assumptions where d determines their ratio.
Pπ obeys the PageRank assumption, while Qπ follows the
attribute assumption. Assume that two nodes (i, j) have
similar attribute values xi ≈ xj . Then similarity sik ≈
sjk ∀ k. Therefore, πi =

∑
k∈V

sik∑
l∈V slk

πk ≈
∑
k∈V

sjk∑
l∈V slk

πk =

πj as d→ 0.
Below we prove the convergence property of AttriRank:

Lemma 1. AttriRank as a Markov chain model converges
to the unique stationary probability distribution, regardless
of the initial probability distribution π.

Proof. It has been known that if a Markov chain model
is formulated by an aperiodic and irreducible transition ma-
trix, then it will converge to the unique stationary probabil-
ity distribution after infinitely many iterative updates. We
have the transition matrix of AttriRank R ≡ (1−d)Q+dP .
Since d ∈ (0, 1) and sij > 0⇒ Qij > 0 by (3), R is ensured
to be

• aperiodic. Since Qii > 0 ⇒ Rii > 0, a random walker
at any state (node) i has non-zero chance to stay at i
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forever; hence, each state i is likely to be returned at
any particular timestamp.

• irreducible. Any state j transits to any other state i
with probability Qij > 0⇒ Rij > 0.

3.2.3 Similarity between Attributes
Previously we have defined graph H with similarity weight

sij for each edge (i, j). sij represents the scale of similarity
between the attributes of two adjacent nodes i and j. Math-
ematically, Radial Basis Function (RBF) kernel is selected
as our similarity definition in AttriRank. That is,

sij ≡ e−γ‖xi−xj‖
2
2 (4)

where positive parameter γ controls the influence of attribute
distances. RBF kernel has been employed as a similarity def-
inition in various occasions such as [13, 24]. There are three
major benefits for us to adopt such similarity measurement:

• sij = sji. It is the general requirement for any dis-
tance metrics, and we will later exploit this property
to derive an efficient approximation in Section 3.3.1.

• 0 < sij ≤ 1. sij > 0 to satisfy Lemma 1. The range
between 0 and 1 can let sij be explained with proba-
bility Pr(xi = xj) where sii = Pr(xi = xi) = 1.

• RBF kernel is equivalent to the inner product φ(xi)
Tφ(xj)

of two infinitely dimensional vectors projected from xi
and xj . Thus sij could catch non-linear similarity be-
tween xi and xj .

3.2.4 Internal Attributes
Here we propose that the attributes of nodes not only

can be derived from external data, but also from internal
graph structure information. One potential drawback for
the original PageRank algorithm is that it only propagates
the near-by node scores due to the 1st-order Markov assump-
tion. More complex structure information such as the sum of
degrees of neighbor nodes 2 steps away are not directly con-
sidered. AttriRank allows us to directly model such infor-
mation into attributes to enhance the performance. To dis-
tinguish sources of attributes, we call those extracted from
the input graph itself as internal attributes and attributes
unrelated to graph structure as external attributes. Our
experiments show that both types of attributes can boost
the performance. For each node, we pick the following 13
internal attributes and will show their effectiveness in the
experiment section: (1) assortativity 2; (2) in-degree; (3)
out-degree; (4-5) the sum and the mean of in-degrees of di-
rect successors; (6-7) the sum and the mean of out-degrees
of direct predecessors; (8-10) the number of successors at
distance {2, 3, 4}; (11-13) the number of successors at dis-
tance k ∈ {2, 3, 4} divided by the number of successors at
distance k − 1. To avoid large numerical scale, we take the
logarithmic value of all the internal attributes.

3.2.5 Time Preprocessing
Many publicly available graph datasets contain the times-

tamps of its node being added into the graph. Here we
propose a trick to encode time information into our model.

2Degree / Average degree of neighbors

Normally it takes time for a new coming node to build its
connection. Thus, the importance of cold-start nodes is be-
ing overlooked in PageRank. A similar observation is re-
ported by teams competing for WSDM Cup Challenge 2016
3. Our preprocessing on attributes is as below:

x′i =
1

1 + ti −mink tk
xi (5)

where ti is the timestamp of node i and mink tk means
the earliest time in the graph. With the adjustment of
(5), the similarity scores between two cold-start nodes be-
comes higher, meaning that it is more likely a random walker
will surf from one cold-start node to another, raising their
PageRank scores.

3.3 Efficient Model Approximation
Since H is assumed to be a fully connected graph, it takes

at least O(N2) time and space to generate matrix Q as well
as calculate matrix multiplication Qπ. That says, for large
graphs, it is infeasible to compute (1). To address the scala-
bility problem, we propose two approximation tricks in this
section.

3.3.1 Surrogate of Qπ
Based on the definition of Q in (3), we discover the fol-

lowing.

Lemma 2. If we define a N-dimensional vector r where
each element ri is defined as

ri =
1

z

∑
j∈V

sij (6)

with the normalization term z =
∑
i∈V

∑
j∈V sij, then we

have

r = Qr. (7)

Proof. For each node i,

(Qr)i =
∑
j∈V

sij∑
k∈V skj

rj

=
∑
j∈V

sij∑
k∈V skj

∑
k∈V sjk

z

=
1

z

∑
j∈V

sij

= ri.

The proof requires property sjk = skj in (4).

Since Q serves as a stochastic matrix under Markov chain
framework, vector r is the stationary probability distribu-
tion for Q. In fact r is the corresponding eigenvector for the
largest absolute eigenvalue 1 and captures the major trans-
formation direction of Q. Hence, instead of calculating Qπ
for each update, we put vector r into AttriRank:

π(t+1) = (1− d)r + dPπ(t). (8)

We can generate sparse matrix P and vector r using (2)
and (6) as a preprocessing step. P and r are kept as fixed
during the update process of π, such that we can avoid the
calculation on Qπ. The approximate formulation also meets

3https://wsdmcupchallenge.azurewebsites.net/
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our attribute assumption: if an attribute vector pair xi ≈
xj , then ri ≈ rj such that πi ≈ πj when d → 0. Lemma
1 also holds because the transition matrix becomes R′ ≡
(1− d)r1T + dP where 1 is the vector of all elements equal
to 1. Since r1T consists of all positive elements, we can
verify aperiodicity and irreducibility of R′ in the same way.

3.3.2 Approximation of r
Despite the replacement of Qπ with r, the generation of

the vector r still takes O(N2K) due to pairwise similarity
computation in (6). To avoid the quadratic time relative to
the number of nodes, we first approximate the unnormal-
ized element r̂i =

∑
j∈V sij . Since RBF kernel similarity

includes the exponential function, Taylor expression offers
an inspiration to eliminate complex computation. As vari-
able y → 0, Taylor expression ey ≈ 1 + y + 1

2
y2 > 0. r̂i can

be derived as follows:

r̂i =
∑
j∈V

e−γ‖xi−xj‖
2
2 =

∑
j∈V

e−γ(‖xi‖
2
2+‖xj‖

2
2−2xTi xj)

≈ e−γ‖xi‖
2
2
∑
j∈V

e−γ‖xj‖
2
2

(
1 + 2γxTi xj +

1

2
(2γxTi xj)

2

)

= e−γ‖xi‖
2
2

[∑
j∈V

e−γ‖xj‖
2
2 + xTi

(
2γ
∑
j∈V

e−γ‖xj‖
2
2xj

)

+ xTi

(
2γ2

∑
j∈V

e−γ‖xj‖
2
2xjx

T
j

)
xi

]

≡ wi
[
a+ xTi b+ xTi Cxi

]
.

Let {wi∀i ∈ V, a, b, C} be the corresponding dummy vari-
ables. After obtaining the values of these variables, we can
compute r̂i for each node i and then normalize the entire
vector to avoid directly computing z. Each of the above
variables requires O(NK2) computation time at most. Since
N � K in most real-world large networks, the N -linear time
complexity is sufficiently scalable in practice.

A concern lies in the value of y ≡ 2γxTi xj ∀ i, j. Taylor
expression achieves high approximation accuracy as y → 0.
Fortunately, the assumption is reasonable in AttriRank. As
long as we apply common standardization (Z-score) tech-
nique for each dimension of an attribute vector, the mean of
these attribute dimensions must be 0 and their variance be
1. Lemma 3 roughly summarizes the consequence of stan-
dardization.

Lemma 3. Suppose that all elements, as random variables
with zero mean and unit variance, in attribute matrix X are
independent of each other, then mean E(y) = 0 and variance
Var(y) = 4γ2K.

Proof. For any pair of attribute vectors (xi, xj),

E(y) =

K∑
k=1

E(2γxikxjk) = 2γ

K∑
k=1

E(xik) E(xjk) = 0

Var(y) =

K∑
k=1

Var(2γxikxjk) = 4γ2
K∑
k=1

E(x2ik) E(x2jk) = 4γ2K.

Here we remark the connection between RBF kernel param-
eter γ and Var(y). In real implementation we suggest setting

γ = 1
K

. Thus by Lemma 3, we have Var(y) = 4
K

such that
any sample of y is more concentrated toward E(y) = 0 when
K is larger. It guarantees the Taylor approximation accu-
racy.

3.4 Modelling Parameter d

AttriRank has another parameter d that determines the
preference of two model assumptions. PageRank consists of
a similar parameter called“damping factor”, which is usually
recommended to be 0.85. However, as shown in our experi-
ments, d = 0.85 does not produce the best performance for
AttriRank.

Without training labels, it is not possible to adopt the val-
idation technique to choose a suitable d. Here we propose to
view d ∈ (0, 1) as a random variable and model its probabil-
ity distribution. Then AttriRank returns expectation E(π)
over d, which is less sensitive to individual d values. We re-
fer readers to [9] which has a complete investigation of this
topic.

At first, we express vector π to be a function of d by (8):

π = (1− d)r + dPπ

⇒ π = (1− d)(I − dP )−1r = (1− d)

∞∑
k=0

dkP kr.

The last equation holds due to Neumann series. Then the
expected value of π is written as:

E(π) =

∞∑
k=0

(
E(dk)− E(dk+1)

)
P kr, (9)

where E(dk) is the k-th order moment. The right-hand side
of (9) is composed of infinitely many terms; hence, we ap-

proximate E(π) ≡ π(∞) by iteratively summing the terms:

ρ(0) = π(0) ≡ (1− E(d))r (10)

ρ(k) ≡ (E(dk)− E(dk+1))P kr =
E(dk)− E(dk+1)

E(dk−1)− E(dk)
Pρ(k−1)

π(k) ≡
k∑
t=0

ρ(t) = π(k−1) + ρ(k).

Since P, r are non-negative variables and E(dk)−E(dk+1) =
E(dk(1−d)) > 0 as d ∈ (0, 1) and k ≥ 0, all elements in vec-

tor ρ(k) are non-negative. As our novel contribution, Lemma
4 ensures that π(k) should be summed in the increasing order
of k regardless of probability distributions, while [9] derives

its convergence rate ‖π(k) − E(π)‖ ≤ E(dk+1).

Lemma 4.

1T ρ(k) < 1T ρ(k−1) ∀ k ≥ 1,

where inner product 1T ρ(k) equals to the sum of elements in
ρ(k), 1 is the N-dimensional vector with all 1’s.

Proof. First, we have a few observations:

• 1T (P kr) = 1 ∀ k ≥ 0 because P kr is always a vector of
Markov chain probability distribution among N nodes.

•
(

E(dk−1)−E(dk)

)
−
(

E(dk)−E(dk+1)

)
= E(dk−1(d−

1)2) > 0 as d ∈ (0, 1) and k ≥ 1.
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Based on these observations, for all k ≥ 1,

1T ρ(k) = 1T
((

E(dk)− E(dk+1)

)
P kr

)
=

(
E(dk)− E(dk+1)

)
1T (P kr)

<

(
E(dk−1)− E(dk)

)
1T (P k−1r)

= 1T ρ(k−1).

Finally, we comment on the choice of the probability dis-
tribution. If d follows a uniform distribution, then (9) is
equivalent to TotalRank [4], with [3] reporting its conver-
gence rate. [9] establishes the probabilistic viewpoint of To-
talRank, and then analyzes it with more general beta dis-
tribution (uniform = beta(α = β = 1)). In Section 4.2,
we conduct experiments to examine AttriRank performance
with respect to both distributions.

3.5 Complexity Analysis
Integrating all the proposals in the previous sections, we

present the pseudo code of AttriRank as Algorithm 1. The
pseudo code is also used for our complexity analyses.

3.5.1 Time
As Section 3.3.2 mentions, implementation of vector r

takes overall O(NK2) time. Using sparse matrix structure,
the generation of P requires O(|E|) time only. Since the
total number iterations to convergence depend on the in-
put data, here we consider time consumption of one update.
Given fixed P and r, it takes O(|E|) time to calculate the
most dominant multiplication Pρ. The overall complexity
is linear to the number of nodes N = |V | or the number of
edges |E|. Thus, AttriRank is feasible for big datasets.

3.5.2 Space
To store the input data, it takes O(N + |E|) for graph G

and O(NK) for attribute matrix X. Sparse matrix P needs
O(|E|) space; vector r and π require O(N) only. Hence, the
space complexity of AttriRank is also linear to N or |E|,
suitable for large training data.

4. EXPERIMENTS

4.1 Setup

4.1.1 Datasets
To verify whether our proposed model adapts to various

graph-ranking applications, we collect overall four datasets
with distinct ranking goals. Among them, one contains ex-
ternal features and we generate internal features for all of
them.

• Webspam 4: In 2008, Webspam Challenge competi-
tion uses this dataset to evaluate anti-spam ranking
systems. A qualified ranking model should give low
ranking scores to spam webpages. Beside a large net-
work of 114529 webpages and 1836441 hyperlinks, the

4http://chato.cl/webspam/datasets/uk2007/

Algorithm 1 AttriRank

Input: Graph G = (V,E) where each node i ∈ V has at-
tribute vector xi, RBF kernel parameter γ, tolerance ε,
distribution parameters for parameter d

Output: Ranking score vector π
1: Standardize xi for each i ∈ V
2: Scalar wi ← e−γ‖xi‖

2
2 for each i ∈ V

3: Scalar a←
∑
j∈V wj

4: Vector b← 2γ
∑
j∈V wjxj

5: Matrix C ← 2γ2∑
j∈V wjxjx

T
j

6: Scalar r̂i ← wi(a+ xTi b+ xTi Cxi) for each i ∈ V
7: Vector r ← 1

z
r̂ where z =

∑
i∈V r̂i

8: Generate matrix P by (2)
9: Vector π ← ρ← (1− E(d))r . 1

2
r for uniform

distribution, β
α+β

r for beta distribution
10: k ← 1
11: while ‖ρ‖ > ε do

12: ρ← E(dk)−E(dk+1)

E(dk−1)−E(dk)
Pρ . k

k+2
Pρ for uniform

distribution, k+α−1
k+α+β

Pρ for beta distribution
13: π ← π + ρ
14: k ← k + 1
15: end while

competition provides 138 transformed link-based at-
tributes (internal, extracted inside the graph) and 96
content-based attributes (external, extracted outside
the graph). The top-ranked solutions in this compe-
tition confirmed the effectiveness of these attributes.
The dataset contains overall 122 labeled spam web-
pages and 1933 labeled non-spam webpages.

• Hep-Ph 5: The dataset includes 34546 papers and
421578 citations from 1993 to 2003. Prior works such
as [19] rank paper importance depending on the cita-
tion links. There is no external attribute or label in
this dataset. We follow [19] which counts the number
of citations after the year 2000 as the ground truth
for the importance of papers; citations before the year
1999 are kept for model training. Also, we extract
13 internal attributes as described previously. Paper
publishing time is used in our preprocessing stage as
mentioned in Section 3.2.5.

• FB Friendship and Wall Post 6: The authors in
[11] apply a weighted PageRank algorithm for active-
user detection on Facebook (FB) activities, including
friendship and posts (i.e. individual posts an article
on the other’s wall), from the city of New Orleans, in
2009. Following the design in [11], we label every user
a binary class: a user is justified as an “active user” if
the user writes at least one post in next three weeks,
and“inactive user”otherwise. The dataset is composed
of 63731 users who have total 817090 friendship links
and 831401 wall post edges.

Both friendship and wall post networks share the 14862
positive labels and 48869 negative labels. Each net-
work is extracted 13 internal attributes. A user’s join-
ing time is defined as the average timestamp of all the
user’s posts.

5http://snap.stanford.edu/data/cit-HepPh.html
6http://socialnetworks.mpi-sws.org/data-wosn2009.html
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4.1.2 Evaluation
In datasets Webspam, FB Friendship and FB Wall Post,

we take Area under ROC Curve (AUC) due to their binary
ground-truth labels. That says, a better ranking model shall
rank the positive labels higher than the negative ones. This
evaluation metric is the same as the one used in Webspam
competition [11]. For the citation network, since the ground
truths are real values instead of binary, we follow the exper-
iments of [19] to use Spearman’s rank correlation coefficient
as the evaluation metric.

4.1.3 Compared Models
Since AttriRank is an unsupervised ranking model de-

signed for arbitrary graphs, we choose several unsupervised
graph ranking models to compare with:

• PageRank (PR) [14]: It is our baseline solution to
node importance ranking.

• Closeness and Betweenness Centrality [7]: Cen-
trality metrics is defined to identify the most impor-
tant nodes in a social network. Here we compare with
two common centralities: closeness and betweenness.
Closeness centrality assumes that the most important
nodes should have shorter path lengths to the other
nodes. Betweenness centrality claims that the most
important nodes must be involved in more shortest
paths.

• Semi-Supervised PageRank (SSP) [8]: To our knowl-
edge, it is a state-of-the-art semi-supervised general
graph ranking model. It consists of a supervised com-
ponent and an unsupervised component. We adopt its
unsupervised part as one of our competitors. The ob-
jective function of the unsupervised SSP is shown as
below:

arg min
π≥0,φ≥0

‖(1− d)Xφ+ dPπ − π‖22,

where φ ∈ RK is the attribute weight vector. Since
SSP accepts non-negative X, we normalize attributes
to [0, 1] instead of performing standardization. The op-
timization problem is solved using projected gradient
descent, as suggested in the original paper. Note that
similar to AttriRank, SSP also exploits the attribute
information.

• Weighted PageRank (WPR) [21]: Utilizing the in-
degree Ii and out-degree Oi information of a node i,
WPR determines the edge weights to improve ranking
reliability. The update rule of WPR is as follows:

π(t+1) = (1− d)
1

N
1 + dPπ(t)

Pij =
1

zj

Ii∑
k∈Fj

Ik

Oi∑
k∈Fj

Ok
,

where Fj is the set of nodes pointed to by node j, and
zj denotes the normalization term for column j.

4.2 Results
We will verify a few hypotheses about AttriRank in this

section.
H1: Does AttriRank outperform other unsuper-

vised ranking models? At first, let us compare the perfor-
mance of experimented models with suggested parameters.

For PageRank, SSP and WPR, we follow what the original
papers suggested to fix d = 0.85. For AttriRank, we suggest
d follows Beta(α = 2, β = 3) to generate the expected rank-
ing of nodes as described previously. RBF kernel parameter
is set to γ = 1

K
, as has shown previously to guarantee the

validity of our approximation. We confirm three observa-
tions from the results in Table 1 and 2. First, Table 1 shows
that AttriRank significantly outperforms other competitors
with Webspam dataset while using only external attributes.
The performance is further improved when the internal at-
tributes are added. Second, for the other three datasets, At-
triRank utilizes internal attributes to outperform the other
models significantly. Third, comparing to SSP which mod-
els attributes through regression, AttriRank with pairwise
attribute similarities is a superior strategy.

We draw Figure 5 to show the model performance with
different parameter d. The experiments confirm that re-
gardless of the value of the parameter d, AttriRank almost
always performs the best. The best AttriRank performance
in Webspam occurs as d = 0.02, meaning that the attributes
contribute much more significantly than the graph structure.
It is reasonable since the real-world spam pages might try to
obtain as many connections as possible to raise their PageR-
ank values. Finally, compared to the other attribute-aware
solution SSP, AttriRank is relatively insensitive to parame-
ter selections.

H2: Is using external attributes better than inter-
nal attributes? Table 3 shows that for Webspam dataset
the external attributes seem to be more useful than internal.
Nevertheless, combining both of them always yields the best
results, regardless of the distribution of the parameter d.

H3: Do the two approximation tricks affect the
performance? Due to page limits, we only report the
results on Webspam dataset, but similar observations are
made on the other datasets. Figure 6 shows that the rank-
ing produced by the approximated solution is almost identi-
cal to the ranking without approximation, regardless which
d is used. It demonstrates that both tricks have produced
approximates fairly close to the true values.

H4: What is a better distribution for d? Table
3 shows two common distribution choices for d ∈ (0, 1).
Without prior knowledge, uniform distribution is the nat-
ural choice. The results show that uniform distribution is a
better choice than common recommendation d = 0.85. Fur-
thermore, Figure 5 shows that the performance of our model
seems to follow a right-skewed shape in regards of d. Thus,
we tried a right-skewed beta distribution of hyperparame-
ters α = 2, β = 3. The results confirmed such choice, and
eventually we recommend users to use such beta distribution
as the default selection for AttriRank.

H5: Is our current selection for RBF Kernel pa-
rameter γ = 1

K
appropriate? We examine the perfor-

mance of different setup of γ in Table 4. We found that
γ = 1

K
does bring better performance than extreme selec-

tions {1, 1
K2 }. Although our approximation prefers smaller

γ, values too small will cause the RBF-kernel similarities be-
tween all node pairs to be close to 1, and AttriRank is thus
reduced to PageRank where vector r = 1

N
1. Besides, we

notice the competitive alternative 1√
K

, which is also reason-

able since according to Lemma 3 the variance than becomes
a constant. Finally, though there exist a well-known method
[22] to automatically determine γ, we do not implement it
due to its inefficient O(N2) time complexity.
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Table 1: Model performance comparison (AUC) using Webspam. (e) denotes using external node attributes;
(e)(i) denotes using both external and internal attributes.

PageRank Closeness Betweenness SSP(e) SSP (e)(i) WPR AttriRank (e) AttriRank (e)(i)
0.553 0.577 0.556 0.558 0.559 0.509 0.659 0.666

Table 2: Model performance comparison with internal attributes available.
Dataset Evaluation PageRank Closeness Betweenness SSP WPR AttriRank
Hep-Ph Rank Corr. 0.434 0.286 0.445 0.252 0.406 0.605

FB Friendship AUC 0.741 0.674 0.708 0.722 0.730 0.796
FB Wall Post AUC 0.775 0.755 0.765 0.786 0.765 0.810

Table 3: AUC of AttriRank with different attribute
sets and parameter d choices with Webspam dataset.

Parameter d Internal External In. and Ex.
d = 0.85 0.609 0.616 0.619

d ∼ Uniform 0.641 0.649 0.654
d ∼ Beta(α = 2, β = 3) 0.648 0.659 0.666

Table 4: AttriRank with different values in γ . Pa-
rameter d ∼ Beta(α = 2, β = 3); both internal and
external attributes are used for Webspam dataset.

γ 1 1√
K

1
K

1
K2

Webspam 0.626 0.704 0.666 0.562
Hep-Ph 0.546 0.601 0.605 0.497

FB Friendship 0.741 0.792 0.796 0.753
FB Wall Post 0.802 0.828 0.810 0.795
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Figure 5: Model performance comparison with dif-
ferent parameters d (i.e. damping factor in PageR-
ank, SSP and WPR).
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Figure 6: We draw the results on Webspam(e)(i)
and FB Wall Post datasets. There are three curves
in each feature, representing the original AttriRank
model and two approximation models. The results
demonstrate that the approximation tricks show no
significant effects on the outputs.

5. CONCLUSION
We believe that PageRank could gain better ranking qual-

ity while considering the contribution from external attributes,
and thus propose a general PageRank-attribute model, At-
triRank, to achieve this goal. By constructing a random-
walk model based on our PageRank and attribute assump-
tions, we have incorporated the node-attribute information
into the PageRank framework without sacrificing the orig-
inal theoretical benefits of PageRank. We further suggest
and verify that our model can be applied to include inter-
nal attributes even when external information is unavailable.
Another major contribution lies in the two approximation
tricks we have proposed that allow the whole model to per-
form in linear time without sacrificing the performance. Ac-
knowledging the challenge of parameter selection in an unsu-
pervised model, in this paper we provide not only practical
suggestions but also theoretical analyses on every parameter
in our model. Finally, we conduct a series of experiments to
verify the validity of the arguments throughout this paper.

Our future works are two-fold. First, we would like to
extend the model to edge attributes. Second, we would
like to investigate the qualify of ranking when integrating
our model with node attributes learned from more complex
models such as [5, 15, 17].
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