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Social Flocks: Simulating Crowds to Discover
the Connection Between Spatial-Temporal
Movements of People and
Social Structure

Cheng-Te Li

Abstract— Scientific studies from anthropologists, biologists,
and sociologists hypothesized people who live in the geo neighbor-
hood have more chances to contact with each other and construct
the social relationships. This paper exploits a simulation-based
approach to verify such hypothesis through unveiling the connec-
tion between the spatial-temporal movements of people and their
social relationships. Based on the crowd simulation technique,
we design an agent-based framework, social flocks, to model
the geo spatial correlation of social elements. We simulate
the movements of people to tackle two tasks, social network
generation and network community detection. By mapping nodes
in the network into agents in the simulation, we examine whether
the social networks generated by our model can satisfy the
network properties, such as high clustering coefficient, low
average path length, and power-law degree distribution. Besides,
given a social network, we simulate the social moving behaviors of
agents/nodes to study the formation of communities. Experiments
conducted for such two tasks verify the proposed hypotheses.
Social flocks can also serve as a visualization platform for experts
to explore the effects over the spatial, temporal, and social
contexts. Through demonstrating how the simulation models
are exploited to address social network problems, this paper
encourages more studies on this direction.

Index Terms— Community discovery, crowd simulation,
network generation, social network, spatio-temporal modeling.

I. INTRODUCTION

ANY anthropologists believed that spatial, temporal,

and social contexts are the three components that
have significant impact on the change of a society [5], [20].
Computer scientists had also found that the geographical
activities of people can reveal the social connections between
them [24], [29]. People who live within a certain geo-
graphical area have higher potentials to interact with each
other, comparing to those who live far apart. Members of a
tribe tend to construct social relationships through physical
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communications, and gradually form a tighter social group.
Sooner or later, some adventurists would explore outside areas
and develop new relationships with people from other cultures.
Motivated by the above observations, this paper proposes a
novel, intuitive, and anthropology-driven framework to study
how people interact with one another and emerge the social
structure.

Our main goal is to answer a scientific question: would the
real-world spatial-temporal interactions between people lead
to their social relationships and form the social structure?
Moreover, what is the mechanism that governs the geograph-
ical movements of people to emerge the real-life social struc-
ture? While anthropologists [5], [20], biologists [6], [22], and
sociologists [31] say yes to the first question, they can hardly
verify it or their claim for the second question scientifically.
This paper attempts to exploit the computational approach to
validate this hypothesis. To do so, the direct manner is looking
into the data. However, to really obtain the real data, we need
to obtain not only the moving trajectory of ancient peo-
ple (before a society is formed) but also “when” and “where”
those people first met and become friends. It is extremely
hard (if ever possible) to obtain such data. Therefore, we alter-
natively resort to the simulation-based approach to study and
verify the mentioned hypothesis. We first design a simulation
framework to model the spatial-temporal interaction among
people through their movements, and based on such framework
we examine whether social networks and social communities
that satisfy real-world properties can be created. If the answer
is yes, then we can confirm that there exists certain spatial-
temporal interaction model that is capable of reproducing a
real social network, which further provides a strong evidence
to support the hypothesis.

In the literature, there are few studies that combine crowd
simulation and social networks to unfold the interactions
between people movements and social behaviors. Although
MobiCrowd [23] uses social connections to guide the move-
ments of agents, it cannot be used to explain how social
communities are generated. Durupinar ef al. [12] impose the
theories of social psychology to simulate crowds, but the
collective social behaviors in the spatio-temporal aspect do
not be discussed. In addition, O’Connor et al. [35] introduce
the social force to drive collective behaviors. However, one
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cannot acquire how social forces are obtained from the social
network.

In particular, we consider two questions to answer. The first
is whether, based on the spatial encountering of people, it is
possible to form a social network that possesses some well-
known phenomenon, such as high clustering coefficient (CC),
low average path length (APL), and power-law degree dis-
tribution. The second is whether network communities can
naturally emerge from the spatial-temporal interactions of
people in the given social network. Eventually, we have found
positive validation for the hypothesis: based on the simulation
model we proposed, the spatial-temporal movements of people
can play a significant role in forming social networks as well
as establishing network communities.

To answer these two questions, we develop a novel sim-
ulation framework called social flocks. Social flocks aims to
integrate the spatial, temporal, and social contexts of human
beings to model the movement of people. Specifically, social
flocks exploits the technique of Crowd Simulation, which
belongs to computer animation, and aims at producing collec-
tive flocking behaviors of people by simulating the movement
processes of individuals. The central idea of social flocks is to
model each node as an agent that moves in the simulation
space. There are two major tasks that we would like to
establish through simulation in social flocks: 1) social net-
work generation and 2) social network community detection.
Since, social flocks can be regarded as a framework that
exploits spatial-temporal correlation between the movements
of people, being able to use such framework to produce real
social networks or communities would imply the discovery
of an underlying mechanism to form social networks and
communities through physical interactions among people. The
demonstration of social flocks framework can be accessed via
http://mslab.csie.ntu.edu.tw/socialflocks/.

In the following we provide a brief overview of the two tasks
we would like to focus on.

A. Social Network Generation

Social network generation models aim at producing arti-
ficial social networks satisfying some well-known properties
that have been observed in real-world social networks [32].
Three of the most essential properties are: 1) high CC
(nodes are densely connected to their neighborhood);
2) low APL (all pairs of nodes are connected via short
paths on average); and 3) power-law degree distribution.
As Watts and Strogatz [34] propose the random rewiring
model to generate the small-world networks with high CC.
Barabasi and Albert [7] propose the preferential attachment
mechanism to generate the scale-free networks that satisfy
both 2) and 3). More advanced generative methods [2], [8]
have been proposed to model a series of sophisticated network
properties as well. In reality, history shows that ancient people
who lived in the same geographical region gradually interacted
with each other to form societies. Therefore, in this paper,
rather than resorting to the graph theory or other topological
composition methods, we attempt to exploit the crowd sim-
ulation technique to simulate the people’s movements in the
spatial and temporal contexts for social network generation.

The general idea is to create links between moving agents
during the flocking simulation. We develop the CrowdNetGen
component in social flocks to achieve this goal. In Crowd-
NetGen, we propose three agent-based network generation
mechanisms, touch, neighborhood-density, and explorer mod-
els, where each of which possesses its own real-world phys-
ical meanings, to generate networks by gradually linking
agents/nodes that are in contact with each other. We find that
our approach is able to generate networks with high CC,
low APL, and the power-law degree distribution. Some
advanced properties mentioned by Akoglu and Faloutsos [2]
and Leskovec et al. [27], including Principal Eigenvalue
Power, Densification Power Law (DPL), Triangle Power
Law (TPL), and Next-Large Connected Components, can also
be modeled by our method as well. Though some previous
studies [4], [13], [18] have used the agent-based approach as
spatial clues to generate social networks, the studies do not
investigate or emphasize on whether the structural properties
satisfy those of the real world. Since using the proposed
agent-based simulation is able to generate the realistic social
networks, it can be the first case to verify and strengthen
the anthropologic hypothesis, when answering the scientific
question.

B. Network Community Detection

Network community detection is a well-studied problem in
the field of social network analysis and mining. Generally, it is
tackled by first devising an objective function that captures the
concept of the community structure (i.e., nodes within a cluster
are tightly connected while nodes between communities are
loosely connected) and then design a method to optimize such
criterion. Many methods of community detection have been
proposed and compared (see the review paper [28]). Most of
them belong to the topology-based approach. We revisit the
community detection problem by simulating the movements
of agents/nodes. Our central idea is that people who live in
a certain neighborhood tend to naturally form communities
because they interact or contact with each other in the contexts
of space and time [31] and have similar trajectories of daily
movement. We first use real spatial-temporal check-in data
to verify such hypothesis. Based on such hypothesis, given
a social network, we simulate the flocking movements of
agents/nodes. If communities emerge naturally, we can again
verify the impact of spatial-temporal movements of people
on their social relationship. Note that although it is generally
believed that people belonging to the same community usually
possess similar interests or attributes, here we concentrate on
investigating the effects of spatial-temporal behaviors among
agents on the formation of social communities. Based on the
above insights and motivations, we present a novel crowd
simulation-based approach, termed Crowdstering, to detect
communities in a given social network. Specifically, we aim at
producing social-based flocking behaviors among agents/nodes
and exploiting the trajectories of agents to identify flocks as
the network communities. In addition, Crowdstering is able to
find not only groups but also outlier nodes in the given net-
work. Finally, we compare our method with four conventional
community detection algorithms, and the results show that our
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agent-based method is competitive to the modern algorithms in
terms of accuracy. As a result, the anthropologic answer to the
correlation from the spatial-temporal to the social aspect can
be verified again. Note that our Crowdstering is not devised
to beat existing state-of-the-art community detection methods
in terms of efficiency and scalability. The main argument
of our model is that simulating people’s movements with
social guidance can lead to network communities. Hence
our experiments are devised to verify this argument. If the
performance of the proposed model is at least competitive to
the state-of-the-art community detection methods, we say the
hypothesis is hold and our model is indeed effective.

We summarize the contributions in the following.

1) We propose a computational approach to validate the
anthropologic hypothesis: the spatial-temporal move-
ments of people can lead to the construction of social
relationships and form social groups. To tackle such
a problem, we bring a marriage between Crowd Sim-
ulation and Social Network Analysis, and develop a
simulation platform Social Flocks to study how the
spatial, temporal, and social dimensions can affect one
another to produce the dynamics of network structures
and collective flocking behaviors. The hypothesis is
eventually verified.

2) CrowdNetGen, proposed based on Social Flocks, can
itself be regarded as a novel social network generation
method. It contains three spatial-temporal simulation-
based network generation models, touch, neighborhood-
density, and explorer. Each of the models possesses its
own physical meaning that corresponds to the real-life
human behaviors. Experimental results show that our
models can successfully produce the networks satisfy-
ing real-world properties including the small-world and
power-law effects.

3) Another model, Crowdstering, proposed on Social
Flocks, can be regarded as a network community for-
mation. Different from existing traditional community
detection methods based on graph clustering, our model
possesses the physical meaning to model how ancient
people form social groups through contacting each other
in space. We also conduct a series of experiments on
two real-world data sets to demonstrate the feasibility
and accuracy of our model.

4) Comparing to the traditional graph-based and topology-
driven approaches for social network analysis, Social
Flocks provides a new angle to handle such problems
through crowd simulation. One main advantage is that
through Social Flocks, we are able to visualize the
process of formulation of a society and community
through physical interaction while performing tasks
of social network generation and network community
detection. Furthermore, Social Flocks can provide an
experimental simulation platform for natural scientists
to study the social and complex system.

II. SociAL FLOCKS FRAMEWORK

We present the social flocks framework as shown in Fig. 1.
Social flocks takes advantage of the Reynolds’ flocking
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Fig. 1. Framework of the proposed social flocks.

simulation model [39] as the backbone, in which we associate
each node in the social network with a moving agent. The
social flocks framework is developed to perform two tasks:
social network generation and network community detection,
for answering the proposed scientific question. In CrowdNet-
Gen, we first propose the Touch model and the Neighborhood-
Density model to generate social networks that satisfy the
real-world properties such as high CC, low APL, and power-
law degree distribution. To enhance the scalability, we further
propose the explorer model that allows the generation of
large-scaled networks in parallel. Second, given an underlying
social network, we propose a spatial-temporal crowd simu-
lation method for community detection. Our method, named
Crowdstering, introduces the acquaintance force into the
flocking simulation using the information obtained from the
network structure. By simulating agents/nodes that constantly
move together and form a community, we can exploit their
trajectories for node clustering.

We first briefly describe the Reynolds’ flocking model [39],
which aims to produce the flocking behaviors among artificial
agents in a dynamic virtual environment. Reynolds’ model
consists of three steering rules. The first is the separation
force f;, which steers each agent to avoid crowding local
flockmates. If agents move too close to each other in space,
the separation force will drive them away from others. The
direction of the separation force is computed by summing up
the directions from the neighboring agents to that of the current
agent. The second is the alignment force f,, which steers each
agent to move toward the average heading of local flockmates
in its visible region. The direction of the alignment force is
derived by subtracting the average direction of the neighboring
agents from the direction of the current agent. The third is the
cohesion force f,., which steers each agent to move toward the
average position of the local flockmates. Note that each agent
is an independent actor and has his own local perception to
navigate. Also note that the cohesion force keeps a flock of
agents to move together while the separation force prohibits
the agents to collide with each other when they move too close.
Each agent is affected by only one cohesion force of another
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agent while each agent can be affected by multiple separation
forces given there are many other close agents. Furthermore,
even there is just one separation force existing, it is unlikely
this force would cancel the cohesion force since their direction
are very different. For any given agent, the direction of its
cohesion force points toward the “average position” of its
perceptible agents. For any given agent, there can be multiple
separation forces, each point to the opposite direction of the
close-by agent. Setting parameters at 0.5 for f; and f, will not
cancel their effects. More technical details about these forces
can refer to Reynolds et al. [39].

III. CROWDNETGEN: NETWORK GENERATION

Our first attempt to answer the scientific question is to
generate real-world social networks by simulating the spatial-
temporal moving agents. We rely on no topological clues for
the network generation. The agent-based approach allows us to
explore the relationships between the network structure and the
movements of agents in the space. The fundamental idea of our
model is to consider each node in the network as an agent in
the virtual environment. As the flocking simulation proceeds,
we gradually add edges to connect from one agent/node to
another based on one of the following three models. Note
that in this paper, we will use the term agents and nodes
interchangeably, which refer to vertices in a social network.
In addition, a round of simulation is finished when each agent
performs one action to move itself to another position.

The intuition of using the three steering forces to generate
social networks is threefold. First, the cohesion force creates
the possibility for agents to move together and then make
connections with each other. Such action can be mapped to
that people live in a certain neighborhood tend to interact
with one another. Second, once some small groups of agents
gather together, the alignment force plays the role of keeping
agents in each flocking group to move together. In the sense of
real-world movements of people, those lived and acquainted
with each other will keep their relationships and have higher
potential to gather in the space. Third, in the real-life society,
people in different social groups (e.g., family, association,
and organization) could be acquainted with each other. The
separation force allows agents belonging to a certain flock to
have some chance for creating connections with individuals
in other flocking groups. In other words, to some extent the
separation force will help create the weak ties which link
different communities in a network.

A. Touch Model

This fouch model aims to produce a network that reflects the
way people in the pretelecommunication era form relationships
by physically meeting each other in space. In the touch model,
an edge is added to connect agents (or equivalently, nodes)
u and v only when u and v have a physical touch in the simula-
tion during the simulating process. In the experiment of Fig. 2,
200 agents are allocated as the initial isolated nodes in the
network. They are randomly scattered in the space at the begin-
ning of the simulation. We assume that each person usually has
the half probability to interact with people in different flocking
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Fig. 2. (a) CC and APL and (b) log-log degree distribution (¢ = 1.52)
under the Touch model.

groups (i.e., communities) and have the high loyalty to interact
with the native group. And, thus we set the three steering
forces (fs, fa, and f:) to (0.5, 0.8, and 0.5), to have the
realistic effect of flocking behaviors among agents. That says,
agents tend to flock together and form some small groups,
but still allow few agents to move from one flocking group to
another. Note that the same setting is applied to the following
two models in Sections III-B and III-C. Fig. 2 shows that as
the number of rounds (#Round) increases from 0 to 1550,
the network quickly gathers edges and both CC! and APL
gradually increase. When the #round reaches 600 to 1000,
as highlighted by the orange rectangle, the generated networks
possess the small-world properties of high CC ~ 0.45 and low
APL ~ 6.5. Unfortunately, the touch model does not quite
produce the scale-free property. The power-law exponent o
is about 1.5. Though it is slightly smaller than that of many
real-world social networks (a ~ 2), it still demonstrates the
highly skew degree distribution.

B. Neighborhood-Density Model

To produce a network with higher power-law parameter o,
we propose an alternative neighborhood-density model to
generate the networks. The basic intuition is that an agent
has higher likelihood to develop connections with others when
there are more agents around, and furthermore it is more
likely to develop relationship with the centralized persons in a
group that the peripheral outliers. Therefore, for an agent/node
v, we define its neighborhood-density k, as the number of
neighboring agents within its surrounding region (a circle area
with a radius of ¢ pixels) in the space (set to be 40 pixels in the
experiment for Figs 2 and 3). During the flocking simulation,
for each agent/ node v, if k, is larger than a predefined density
threshold (set to be 5 for Fig. 3), the system adds an edge
to connect v to a node u with the highest k, value in v’s
local perception area because such node is more likely to be
a centralized leader.

Fig. 3(a) presents the values of CC and APL in the simu-
lation. We can see that as the rounds of simulation increases
from 0 to 150, the network quickly gathers edges and both
CC and APL increase drastically. The small-world properties
emerge with even higher CC =~ 0.75 and low APL ~ 6

lcc = (1/n) Z?:l (2l{ejk}1/d; (d; — 1)), where n is the number of nodes
in the networks, d; the degree of node i, |{ejx}| is the number of edges
between any pair of node i’s neighboring node j and k.
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Fig. 3. (a) CC and APL and (b) log-log degree distribution (¢ = 1.92) at

#round = 170 under the Neighborhood-Density model.

between round 150 and 200, as highlighted by the orange rec-
tangle. As #round further increases, more edges are introduced
to connect nodes, which cause the APL to decrease gradually.
The CC values remain stable because edges are added for all
nodes in a neighborhood at the same time (i.e., forming tri-
angles and tending to become cliques locally in the network).
Note that comparing with the Touch model, the neighborhood-
density model takes fewer rounds to produce the values of
high CC and low APL. It is because the touch situations
are relatively less likely to happen. In addition, the generated
networks under the neighborhood-density model follow the
power-law degree distribution. The log-scaled degree distribu-
tion at #round = 170 is shown in Fig. 3(b), where the power-
law exponent o is 1.92. In brief, the neighborhood-density
model can produce networks that satisfy the three properties
of real-world networks, i.e., high CC, low APL, and power-law
degree distribution (¢ &~ 2 in average).

C. Explorer Model

Though the neighborhood-density model is able to produce
networks that satisfy the three major properties of real-world
networks, it suffers a drawback on scalability since the simu-
lation will become slow when the number of agents increases.
To enhance the scalability, we devise an advanced explorer
model based on the neighborhood-density model that allows
the parallel computation of simulation-based social network
generation. The central idea is to divide the simulation space
into several smaller areas, and perform parallel simulation on
each individual area. That says, using a cloud or clustering
machine with n cores, we can scale up the size of networks
to n times. However, one major concern for such strategy
is that after doing so, graphs belonging to different areas
are not connected. And, thus the network could have no
giant component, which is against the real-world observation
that social networks generally have a giant component that
connects most people [14], [32]. To address such concern,
we propose the explorer model. The intuition is as follows.
As the world is composed by several geographical regions,
in general people lived in the same region contacted with
each other more frequently. Though in the beginning different
cultures were isolated without any connection, with time a
few individuals (which are usually called the explorers) start
to travel outside their own territory for exploration. Those
explorers may meet explorers from other cultures and there-
fore forms connections between different groups of people.

Explorative Simulating Space

Regular Simulating Spaces

Fig. 4. Simulating spaces for the Explorer model: the larger space is
divided into nine regions. Each region consists of normal agents (black ones)
and explorer agents (red ones). Those explorer agents are allowed to move
cross border to form cross-region connections. Technically, one can execute
9 + 1 different neighborhood-density models in parallel threads to create a
social network of larger size.
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Fig. 5. Resulting property values as the simulating run increases. (a) Small-
world effect gradually forms, especially after #Round = 40. (b) Long-tailed
degree distributions whose power-law exponent a is about 1.6—1.8.

We attempt to model such exploration phenomenon in our
simulation to connect different groups of people into a larger
giant component.

As shown in Fig. 4, the explorer model starts from dividing
spaces into different geographical regions and performing our
neighborhood-density model independently in each region.
That is, N agents are allocated randomly in each subarea
and create links between agents following the neighborhood-
density model. In addition, in each region we randomly pick
a small amount of agents as the explorer agents (the red
ones in Fig. 4) who are responsible for making interactions
with explorers belonging to other societies. We perform one
additional simulation that allows the explorers to move freely
in the whole area to form connections, also based on the
neighborhood-density model. Eventually, the explorers will
play the role of mediators to form relatively few links across
regions, and therefore closer regions have higher chance to be
connected more tightly.

We demonstrate the effectiveness of the explorer model for
generating the network containing 20 000 nodes. The results
are shown in Figs 5 and 6. The first part is to investigate
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ers (%Explorer). (a) Values of CC and APL decreases as the %Explorer
increases from 10% to 100%. (b) Power-law exponent a slowly decreases
as well. (c) Values of CC remains stable about 3.5 while the APL val-
ues decreases from 9 to 6 as the %Explorer increases from 1% to 10%.
(d) Power-law exponent o remains stable about 1.6. (e) number of connected
components (#Components) as the simulation proceeds from 1 to 100.

the properties of the generated networks as the simulating
runs increases, where the percentage of explorers in each
space is set to be 10%. In Fig. 5(a), we can find that the
values of CC quickly increase in the beginning and reaches
0.3 after #Round = 50 while the values of APL quickly
saturated to 6. Such phenomenon shows that the explorer
agents are able to effectively construct connections to be local
agents and play the role of bridges to shorten the distances
between agents in different societies. On the other hand,
in Fig. 5(b), we can find the power-law exponent a slowly
increases from 1.6 toward 1.8. We think it is due to that as
the simulation proceeds, few explorer agents/nodes not only
be active to make connections to the flockmates in each of
their own society, and further accumulate their links (degree
vales) to other explorer agents from different societies. On the
other hand, we investigate the effect of the percentage of
explorers, denoted by %Explorer, on the network properties.
Fig. 6(a) shows the values of CC and APL decreases toward
0.2 and 3, respectively, as the %Explorer increases from 10%
to 100%. It is reasonable as that the more explorers are there,
the more connections are established between groups which
can significantly reduce APL. Furthermore, since the explorers
are allowed to move more freely in a larger space, when more
regular persons become explorers, it becomes harder to create
triangle relationships (since people are moving more freely)
and therefore reduce the CC. In Fig. 6(c) and (d), we further
study the interval of %Explorer between 1% and 10% on the
network properties. We can find that the APL is sensitive to
the percentage of explorers while the CC is not. In Fig. 6(e),
we show that the explorer model is able to emerge the
giant components as the simulation proceeds. The results
demonstrate the importance of explorers who are in charge
of maintaining the weak links to agents in different societies.
In short, to generate the networks satisfying real-world prop-
erties under the proposed explorer model, it needs only about
3%—-10% explorers, which does match some real-world
scenarios.

0.2 +
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Fig. 7. Using the explorer model, our generated networks can satisfy
advanced properties of (a) principal eigenvalue power law, (b) DPL, (c) TPL,
and (d) constant size secondary and tertiary connected components.

Here we response to our goal, answering the scientific
question, mentioned in the beginning of this paper. Since
the networks generated by the flocking simulation of spatial-
temporal moving agents satisfy the common network proper-
ties, we obtain a positive echo to the anthropologic hypothesis:
the spatial-temporal movements of people have effects on
the formation of social structure. Those interact in a certain
neighborhood, along with some explorers who travel around
different geographic regions, tend to naturally compose the
real-world social networks.

D. Advanced Network Properties

We further investigate whether the networks generated from
the Explorer model can satisfy four additional advanced
properties, described by Akoglu and Faloutsos [2] and
Leskovec et al. [27]. The first is called Principal Eigenvalue
Power Law (11 P L), which describes that there is a power-law
relationship between the largest eigenvalue 41 of the adjacency
matrix of a network and the number of edges E, denoted
by A1(r) o E(r)° with § < 1, over time. The second is the
DPL, which points out that the number of nodes N and the
number of edges E follow a power-law distribution, denoted
by E(t) o« N(t)* with 2 > o > 1, over time. The third is
the TPL, which says that the number of triangles A and the
number of nodes that involve in these triangles follow a power-
law distribution, denoted by f(A) & A? with ¢ < 0. The
fourth is the constant size secondary and tertiary connected
components. It indicates that accompanied with the growth
of the giant component, the secondary and tertiary connected
components tend to remain constant in size or grow very
slowly with small oscillations.

In Fig. 7, we show the quantitative results of the above
four properties for the networks generated by the Explorer
model. Note that the distributions of A;PL, DPL, and TPL are
generated from the snapshot at #Round = 50. We conclude
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that the Explorer model is able to satisfy all the desired static
and dynamic properties: for 1;PL: 6 = 0.58 < 1, for DPL:
1 <a =129 < 2, for TPL: ¢ = —0.74 < 0. All these
observations help confirm our model can produce realistic
social structures.

IV. CROWDSTERING: CROWD SIMULATION-BASED
COMMUNITY DETECTION

Anthropology history tells us that the geographic informa-
tion plays a significant role on the formation of different kinds
of human societies [31], which indicates that people who have
similar moving behaviors tend to have higher potential to
interact with one another and then form community. In this
section, we first investigate the real spatial-temporal data to
verify such hypothesis. Then, we would like to show that
the real network communities can indeed be formed under
a spatial-temporal moving model by introducing the Crowd-
stering method, which models the spatial-temporal movements
of individuals who belongs to a given social network. Specifi-
cally, given a social network, by mapping nodes into agents in
the simulation space, we aim to use the moving trajectory of
each agent generated from the flocking simulation to make
communities emerge naturally. In other words, we model
how people with tight connections flock together, and exploit
such geographical moving patterns to discover the social
communities.

Crowdstering consists of two parts. First, an acquaintance
force based on the underlying social relationships is proposed
to guide the flocking behaviors. Second, a trajectory-based
clustering mechanism, which aims at grouping agents/nodes
with similar flocking behaviors, is introduced to discover
communities. We also conduct a series of experiments to
compare the effectiveness of our method with conventional
community detection algorithms. Note that Crowdstering is
not devised to outperform the existing or state-of-the-art
methods in terms of accuracy, efficiency, and scalability. Our
idea is that if simulating the moving agents in a space is able to
naturally emerge network communities (i.e., the performance
of Crwodstering is competitive to some of existing methods in
terms of effectiveness), we can response to the anthropologic
hypothesis with a positive echo.

A. Hypothesis Verification From Real Data

We first use real spatial-temporal data to verify the underlin-
ing hypothesis: people who have close social relationship tend
to have similar moving behaviors. We verify the hypothesis
by testing whether pairs of individuals in the same com-
munities have more similar daily trajectories than pairs in
different communities. Gowalla location-based social check-
in data [24] are employed for such purpose. We extract two
sets of the check-in records from two urban districts, San
Francisco Bay Area and New York City. We first extract
users whose check-in frequency is higher than certain thresh-
old (i.e., 10-30). The Gowalla data reveal the underlining
social network for users in each district. Given the social
network, we then use the methods, Fast Modularity [11],
WalkTrap [37], MapGen [36], and CFinder [1], to find the
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New York City
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Fig. 8. Eucliean time-uniform distance (in kilometer) on BtwComm and
InComm for two cities. The results verify the hypothesis that users in the
same communities have more similar moving behaviors than those belong to
different communities.

communities of users from four different aspects. The details
of these methods are described in Section V-C. The commonly
used Eucledean Time-uniform Distance (ETD) [25] is adopted
to measure the spatial-temporal distance of trajectories. The
average ETD is computed over pairs of users belonging to
different communities (BtwComm) to compare with pairs of
users in the same communities (InComm). Fig. 8 shows the
results that the average pairwise ETD distances of people in
the same communities are much lower than those belonging
to different communities. Such results confirm our hypothesis
and provide the empirical justification of the models we
propose.

B. Acquaintance Force

In the Reynolds’ flocking model, the concept of social
interaction is not considered. Nevertheless, the spirit of any
community detection algorithm is to use the targeted social
network to detect communities. Therefore, our first step is
to design a simulation framework that considers the given
social network. In other words, we aim at exploiting the social
network to direct the simulation of agents such that those
acquainted with each other will flock together in the space.
We introduce an additional force, the acquaintance force fy,
into the simulation. Different from the original three forces
that are purely based on the spatial closeness or the agent’s
individual circumstance, the acquaintance force considers the
social closeness between agents/nodes to bring attraction for
agents that are close to each other in the network and repulsion
to agents that are away from each other.

We devise the acquaintance force according to the distance
between two agents in the given network. For an agent u,

—_

the acquaintance force f,(u) is computed by

Fo) = Z M) ' (6 — Lengtg(u, v) + 1)

veERs(u)

where Rs(u) is the set of surrounding agents under a certain
neighboring threshold J of an agent u, which is used to control
the influence range of the acquaintance force. Length(u, v) is
the length of shortest path between the node u and v in the
network, and 0 is a boundary parameter which determines
the boundary between the attraction and repulsion forces. That
says, if Length(u, v) < 6, the agent v will exert an attraction
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force to u. If Length(u, v) = 6 + 1, v will exert neither attrac-
tion nor repulsion force to u. And if Length(u,v) > 6 + 1,
v exert a repulsion force to u. In our experiment, 8 is set to
be 2 and J is set to be 200 pixels. In addition, the direction
vector from the current agent u to the neighboring agent o,

denoted by d(u, v), is the difference of their position vectors:

du,v) = E — E where E is the position vector of the
agent u in the simulating space. Note that the “plus 17 in
the numerator of the parentheses is to ensure those nearest
nodes (i.e., Length(u,v) = 1) do not get any discount and
can acquire the highest force values among all kinds of graph
length. In the end, by integrating our acquaintance force with

_

original three steering forces, the eventual force f(u) to guide
an agent u is

) = w5 - f5 ) 104 - fal) +w0e - fo )+, - fi 1)

where wy, w,, we, and w, are the weights of separation,
alignment, cohesion, and acquaintance forces, respectively.
In the later experiment, we set them to be (wg, wg, W,
and wy) = (0.3, 0.3, 0.3, and 0.1).

Note that the fundamental difference between Reynolds’
three forces and our acquaintance force is that acquaintance
force is created because of the social network (the length
means the distance between nodes in the graph, not the real
geo distance in a geographical area). Nearby neighbors in
the network can attract each other while faraway ones repel
each. Reynolds’ three forces rely mainly on the geographical
distance rather than social distance. In other words, if we have
only the acquaintance force (i.e., no Reynolds’ forces), agents
acquainted with each other in the social network would gather
and move locally at certain areas and cannot form a global
collective flocking.

C. Trajectory-Based Community Detection

Normally people are involved in a variety of events every
day. They sometimes act on their own, for example typ-
ing or reading, and sometimes interact with others, for
example sports, carpooling, and hanging out with friends.
Nevertheless, people tend to interact more frequently with
friends, colleagues, or family members than strangers. From
the geographical point of view, it is reasonable to assume
that people in the same community have higher chance to
move in the neighborhood for a longer period of time. Such
fact is the main idea behind our simulation-based community
detection.

Since the acquaintance force together with the Reynolds’
separation, alignment, and cohesion forces are capable
of producing the social-based flocking behaviors among
agents/nodes, we move one step further to exploit them for the
task of community detection. During the simulation, we have
observed that agents which are closer to each other tend
to walk together for longer period of time, and the outliers
in the graph might not have too many accompanies along
the way. Based on such observation, we have developed a
hypothesis that the moving trajectories of nodes in the same

community should resemble one another comparing with those
that were not in the same community. Therefore, we consider
the trajectories of agents during the simulation as a clue to
find the communities in a given social network.

In the beginning of the simulation, the agents are scattered
randomly in the space. Note that here we do not assign the
agent’s initial position based on the topology of the underlying
social network, rather the topological information is used only
for producing the acquaintance force. We attempt to avoid
using too much topological information in order to distinguish
our approach with other topology-driven community detection
algorithms. During the early runs of simulation, agents wonder
around from their initial random positions and gradually form
groups. Once a group is formed, most of the members stick
with each other for longer period of time. Therefore, we ignore
the trajectory in the early rounds for clustering. Then based on
the trajectories, the system groups those agents with similar
trajectories into the same community.

We exploit the conventional data clustering techniques to
group agents based on their trajectories. For each agent v,
we consider the positions in its trajectory segment 7, =
((-xtf/H»l» yt7/1+1)7 (-xtf/H»Z’ yl‘f/1+2)a R (-xf, yl‘)>7 where 1
is the considered trajectory length and ¢t = #Round, as the
attributes in clustering. The above essentially says that we
choose a trajectory of length A starting from time r — 4
to time f. We combine the density-based spatial cluster-
ing DBSCAN technique [15] with the k-means clustering
method to achieve our final goal. The DBSCAN is used to
determine the number of clusters & and the outliers. Then,
we remove the outliers, and apply the determined value & in the
k-means clustering method to group the trajectories into
different clusters.

The complete algorithm is shown in Algorithm 1.
Lines 1 and 2 initialize the setting of the social flocking
simulation. Lines 3-11 perform the simulation and store
the look-based trajectories as the simulation enters into the
(2 + D)th round (Lines 7-9), in which we use the previous
one-round (i.e., r_1) positions of agents to compute the
steering forces and determine the positions in current round
t (Lined 5 and 6). We also store the trajectory and snapshot
information for future clustering (Lines 7 and 8). Based on
the last snapshot (t = #Round) of the space, Line 12 runs the
DBSCAN algorithms to obtain the number of communities k
and the set of outlier agents/nodes Op. Line 13 removes the
set of discovered outlier agents Op from the trajectories of
agents 7. Line 14 executes the k-means clustering algorithm
to find a set of flocking groups as the communities.

We use Fig. 9 as an example to demonstrate the effect of
the proposed trajectory-based community detection. Given a
social network shown in the right panel of Fig. 9, we can
figure out there are two apparent communities in green and
orange. With the trajectories of agents, our Crowdstering
can find two social-based flocking groups, as shown in the
left panel. In addition, our method is also able to recognize
the outliers whose corresponding agents and trajectories are
labeled by the gray color. Moreover, the trajectories also show
that in the early rounds, the agents did scatter around in the
space; but later the trajectories of the agents belonging to the
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Algorithm 1 Trajectory-Based Community Detection
Input: (a) G = (V, E): the given social network, where V is
the set of nodes as well as the set of agents in the simulating
space and E is the set of edges; (b) A: the length of look-
back trajectory used to detect communities; (c) #Round: the
number of total rounds which determines when to terminate
the simulation and stop recording the trajectories; (d) S;:
the visual snapshot of the simulating space at round 7. Note
that the look-back trajectory of an agent u is a sequence of
spatial positions is represented as T, = ((x;—j+1, Yr—i+1)
(Xr—)42, Yi—142)5 - - - » (X1, ¥¢)), and the set of trajectories of
all agents/nodes is denoted by T = {T1, Tz, ..., Ty |}.
Output: Cp = {di, da,...,dr}: a set of detected com-
munities, where d; is a set of nodes and k is the number of
detected communities. Op: the set of detected outlier nodes.
1:  Associate each node with an agent for the simulation.
2:  Scatter the agents/nodes randomly in the space.
3: fort =1 to #Round do:

4: for u =1 to |V]| do:

5

6

—_

Compute the steering force f(u).
Coord, = (x4, y;) : update u’s coordinate into S;

by f(u).

7: if (t > 1) do:

8: Add (x;, y;) into the trajectory record 7, of
agent u.

9: (k, Op) = DBSCAN(S#Round, epsilonRadius, minPts).
/lepsilonRadius = 50, minPts = 2 in this work.

10: Remove outlier agents from 7.

11: Cp = k-MEANS(T, k).

12: Return: (Cp, Op).

— _:; t”,,, = @9%%
(S Dt

Fig. 9. Exampling trajectory-based clustering for a network with two com-
munities. Social network (right). Trajectories of agents in two communities
are colored (left).

same community gradually converge to the similar area, which
justifies our assumption of ignoring the early trajectories while
performing clustering.

V. EXPERIMENTS

We conduct a series of experiments to demonstrate the effec-
tiveness of the proposed crowd simulation-based approach for
finding the communities in a social network. The evaluation
plan consists of three parts: 1) we provide a visualization demo
of the simulation process that allows the users to view how
agents interact with each other and naturally form commu-
nities; 2) we compare the performance of Crowdstering with

other graph-based community detection algorithms; and 3) we
perform a series of sensitivity analysis on some parameters.
The general goal is to show whether the spatial-temporal
simulation of agents can make some groups of agents, which
belongs to the actual network communities, naturally emerge
during the flocking process. It is important to emphasize
that our method is not designed to outperform the existing
or state-of-the-art methods in terms of accuracy, efficiency,
and scalability. The comparison to other community detection
method aims to assist us to validate the anthropologic hypoth-
esis and answer the scientific question. If the effectiveness of
our detected communities is competitive to some conventional
algorithms, we can justify the spatial-temporal movements of
people actually have some effect on the formation of social
structure.

A. Evaluation Settings

Two networks are used for the experiments. The first
is extracted from DBLP?> Computer Science Bibliography
Database. It is a subgraph of the entire DBLP coauthor-
ship networks. Such DBLP subgraph contains 83 nodes and
283 edges. We manually investigate the authors and identify
two communities in the graph, as shown in the upper-right
and lower-left panels. The second is the well-known friendship
network of the Zachary’s karate club [3] that is commonly used
to evaluate the performance of community detection methods.
The karate friendship network consists of 34 nodes and
78 links. This network contains two ground-truth communities:
{1,2,3,4,5,6,7,8, 11, 12, 13, 14, 17, 18, 20, 22} and
{9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34}. It is apparent that the community structures in
the DBLP subgraph are more obvious than that in the karate
friendship network, which is nontrivial to be identified by
human eyes. Hence, one can expect that the performance of
community detection in the DBLP subgraph is better than that
of the karate friendship network. Note that these two networks
are used for the simulation and the evaluation. We need not to
consider whether the nodes (e.g., authors in DBLP subgraph)
come to have physical contacts in the real world.

There are two ways to evaluate a community detection
algorithm. If the ground truth is missed, we can use the
internal criteria to make sure the output communities are
faithful. If the gold standard exists, one can simply compute
the accuracy of an algorithm and compare it with the true
answers. We exploit both strategies for the evaluation. First,
we employ the measure of conductance [28], which evaluate
whether the members of a detected community are tightly
connected to each other and whether it is the opposite case for
the nodes from different communities. Given a set of nodes C
in a community, the conductance value can be generated using
¢(C) = c¢p/min(Vol(C), Vol(V\C)), where cp is the size of
boundary edges of a community, cpg = [{(u,v) :u € S,v ¢ S|,
and Vol(S) = >, g d(u), where d(u) is the degree of node u.
For a network G detected to have a set of communities Scom,
its conductance ¢(G) = ZC’_ €Seam P (C). Lower conductance
reflects implies better quality.

Zhttp://dblp.uni-trier.de/
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Experimental results on the DBLP subgraph as the simulation proceeds for the (a)-(d) conductance, NMI, RI, and F| measure. (¢) Number of

outliers discovered by our Crowdstering is reduced to fewer than 10 when the simulation stabilized.
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Fig. 11.
our Crowdstering is reduced to be around 5 when the simulation stabilized.

Second, based on the ground truth, we employ three inter-
nal measures, Normalized Mutual Information (NMI), Rand
Index (RI), and Fi measure, to examine the performance. The
NMI score follows the idea in the information theory to mea-
sure the mutual dependence between the detected communities
and the gold standard. Higher scores of these three measures
indicate better performance. The NMI formula is as below

|diNce | Nl|drNcil
2h 2 TN log T

NMI(Cp, Co) = ST (1)

' (H(Cp)+ H(Cg))/2
where Cp = {di, do,...,dy} is the set of detected com-
munities, C¢ = {c1, ¢2,...,¢;} is the set of ground-truth

communities, and H is the entropy calculated by H(Cp) =
2k (dkl/N)log(ldk|/N).

RI can be computed via RI = (TP + TN)/(TP + FP +
FN 4 TN), where TP is the true positive rate, TN is the true
negative rate, FP is the false positive rate, and FN is the false
negative rate. In addition, the F; measure is computed via
Fy = 2P*R/(P 4+ R), where P is the precision score and
R is the recall score. For more details about the above
measures, please refer to [30]. In addition to the above criteria,
we will also report how many outliers are discovered in the
experiments.

B. Comparison to Existing Methods

We compare our method with four well-known community
detection algorithms. The first is FastModularity [11], which
aims to maximize the objective function modularity. The
second is WalkTrap [37] that assumes those nodes within the
same community are much easier to reach from each other, and
exploits the Random Walk technique to find communities. The
third is CFinder [1], whose idea is to regard the community as
a kind of relaxation of clique. CFinder uses Clique Percolation
to find the communities. The fourth is MapGen [36] that

Experimental results on the karate friendship network for the (a)—(d) conductance, NMI, RI, and F| measure. (¢) Number of outliers discovered by

decomposes the given network into communities by optimally
compressing a description of information flows.

We use the measures conductance, NMI, RI, and F| mea-
sure (note that except the first, the rest three prefers larger
values) for the evaluation. We also show the number of outliers
discovered by our approach. Note that the other four methods
do not have the capability to find nodes that might not belong
to any group in a network. Figs. 10 and 11 demonstrate the
experimental results as the simulation proceeds. Note that
since the values of the four traditional methods are fixed
as a certain value for those metrics, we draw horizontal
lines to represent them in Figs 10 and 11. The experiments
are conducted on the two data sets of the DBLP subgraph
and the karate friendship network, respectively. Note that the
resulting curves in our model are derived through calculating
the average values of performing the simulation 10 times.

For the DBLP subgraph, as shown in Fig. 10, Crowdstering
is competitive to the others for all the four measures after
certain rounds of simulation. It can be commonly observed
that the resulting curves of our method are fluctuant in the
beginning rounds of the simulation. It is due to that the agents
started from randomly assigned initial positions in the space,
and are trying to find the right path in the beginning. When the
simulation gets into the stable state, the fluctuation situation
becomes mild. In Fig. 10(e), the number of outliers discovered
by our approach turns out to become stable because the
movements of agents gradually saturate.

The experimental results on the karate friendship network
are shown in Fig. 11. We can apparently find that the extents
of fluctuation for the curves are much bigger than those of
the DBLP subgraph. Such effects are resulted from that the
two communities of the karate friendship network are much
closer and therefore harder to distinguish. The boundary of
the two communities is quite indistinct even by human eyes.



LI AND LIN: SIMULATING CROWDS TO DISCOVER CONNECTION BETWEEN SPATIAL-TEMPORAL MOVEMENTS 43

NV m  F1-Measure

WNMI_mRandindex mFi-Measure |

0.9

IR N B BN BT E— 08
07 —g
06 1 06
05
04
03 | 03
0.2
0.1 7 [ 0.1 +
0

50 100 150 200 250 300 350 400 450 500
Neighboring Threshold

50 100 150 200 250 300 350 400 450 500
Neighboring Threshold

(a) (b)

Fig. 12. Sensitivity tests about the neighboring threshold of the acquaintance
force. We vary the neighboring threshold from 50 to 500 on (a) DBLP
subgraph and (b) karate friendship network.
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Fig. 13. Sensitivity tests about the boundary parameter of the acquaintance
force. We set the boundary parameter as 1-4 on (a) DBLP subgraph and
(b) karate friendship network.

Nevertheless, the results of our method are still competitive to
WalkTrap and MapGen and outperform the other two methods
when entering into the stable state (#Round > 1200).

C. Sensitivity Tests for Parameters

1) Neighboring Threshold: We first examine how the
acquaintance force affects the discovered communities.
The neighboring threshold ¢ (i.e., local perception) controls
the influence range of the acquaintance force. Note that all the
results are based on the average values under the simulation
rounds from 1000 to 2000, which are the stable states of
the flocking behaviors. Fig. 12 shows the effects of different
neighboring thresholds on the DBLP subgraph and karate
friendship network. We can find that generally the best results
locate from 200 to 250. We believe such result is due to
that when the neighboring threshold is too small, the flocking
behaviors will become very local and the size of each flock
tends to be very small. Eventually, agents/nodes belonging to
the same community are split into several smaller groups.
On the contrary, if the neighboring threshold is too large,
agents/nodes belonging to different communities will easily
flock together. In this sense, the groups originally belong to
different communities are prone to mix with one another and
make the performance worse.

2) Boundary Parameter: Recall that in our Acquaintance
fource, the boundary parameter 6 determines the boundary
between the attraction and repulsion forces. The experimental
results of varying the boundary parameter are shown in Fig. 13.
We can find that the boundary parameter 2 can have the
best results. We believe it results from that looser boundaries
allow more neighboring agents to exert the attractive force,

which hurts the performance since agents/nodes from differ-
ent communities are prone to form larger flocking groups.
However, when the boundary parameter is set to 1, the negative
acquaintance force dominates and leads to many small sized
or even isolated groups, because fewer agents are considered
to be acquainted with each other. Hence the performance
becomes worse. In general we suggest that the most suitable
value of the boundary parameter is 2.

VI. RELATED WORK
A. Network Generation

We review topology-based network generation models. The
earliest model is Erdos—Renyi (ER) model [14]. Though ER
model does not fit real-world phenomena perfectly, it is the
basis of many existing topology-based network generation
models. The Barabasi-Albert (BA) model [7] introduces the
idea of preferential attachment to produce networks with
the power-law degree distribution. The Watts—Strogatz (WS)
model [34] models the small-world phenomenon, and is
able to create networks satisfying the small-world property.
Leskovec et al. [27] propose the forest fire model to capture
two observed properties, the DPL (i.e., the number of edges
grows super linearly with the number of nodes) and the shrink-
ing diameter properties, in evolving information networks.
Recursive Tensor Model [2] is proposed to model a series of
network properties. They exploit the idea of the entropy plot
to discover the structure’s fractal patterns during a graph’s
evolution. They propose to use a 3-D tensor to represent a
graph by adding a time dimension, and combine Zipf’s law
and 2-D Random Typing to produce graphs that fit a list
of observed properties. Moreover, AGM [10] generates and
samples networks considering the attributes of nodes.

Though many methods are able to generate networks sat-
isfying real-world properties, they consider the generative
processes from the pure topological perspective and neglect the
facts that the social networks are essentially the outcome under
the spatial and temporal contexts. In this paper, we use the
agent-based simulation approach that enables us to consider
the spatial, temporal, and social factors together, comparing to
existing works that utilize rule-based heuristics or topological-
driven heuristics (e.g., ER model, WS model, BA model).
On the other hand, though some existing studies [4], [13],
[17], [18] have used the agent-based approach as spatial
clues to generate graphs, they do not investigate or empha-
size on whether the structural properties satisfy those of the
real-world.

B. Network Community Detection

A number of methods were proposed to detect communities.
The general approach to find dense subgraphs is by partition-
ing the graph recursively [16]. Recently, researchers utilize the
modularity-based approach [32], [33] to detect communities.
The idea behind modularity is to ensure the number of
edges across groups is not only small but also smaller than
expected. Leskovec et al. [28] exploit the conductance measure
to define the network community profile plot for comparing
the effectiveness of different community detection algorithms.
To increase the time efficiency, Raghavan er al. [38] propose
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a label propagation algorithm to find the communities in
large networks. Yin et al. [21] detect seed-based communities
based on network motifs. In addition, though a multiagent
simulation is proposed to detect communities [26], the method
cannot explain how communities are formed in the geograph-
ical space. In short, existing approaches to find community
structures ignore the dynamic process of forming communities,
which is the main goal of our approach. That is, we can not
only produce groups but also demonstrate how the groups are
generated. To the best of our knowledge, this paper is the
first work to exploit the spatial-based simulation for finding
communities in a social network.

VII. CONCLUSION

This paper aims to answer a scientific question: do the
spatial-temporal movements of people affect the formation
of social relationships and community structure, and how?
By discovering a connection between crowd simulation (as the
spatial and temporal factors) and social network analysis
(as the social context), we are able to provide a positive asser-
tion on this hypothesis. Note that the main goal of this paper is
not about proposing a more efficient or accurate social network
generation and community detection algorithms, rather we
want to show that it is possible to tackle such problems
from a different angle, which to some extent captures how a
real society or community is formed. Through demonstrating
how the simulation models can be exploited to address social
network problems, we hope to point out and encourage more
studies on this new direction of solutions for social network
analysis.
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