
IEEE INTERNET COMPUTING 1089-7801/01/$10.00 ©2001 IEEE http://computer.org/internet/ MARCH • APRIL 2001 43

Vi
rt

ua
l M

ar
ke

tp
la

ce
s

Designing the Market
Game for a Trading
Agent Competition
The authors discuss the design and operation of a trading

agent competition,focusing on the game structure and some

of the key technical issues in running and playing the game.

Trading in electronic markets is a
topic of increasing interest within
the artificial intelligence (AI) and

electronic commerce research communi-
ties. As Internet marketplaces proliferate,
programs that monitor and bid in these
markets automatically—what we call “trad-
ing agents”—will play a significant role.

Various AI research communities have
held competitions to compare different
approaches to common problems, and
showcase the state of the art.1-3 Inspired by
their successes, we organized a trading
agent competition (TAC), held at the most
recent International Conference on Multi-
agent Systems. The competition pitted
agents from 20 teams around the world
against each other in a market game. The
agents ran from participants’ home institu-
tion using TCP/IP socket connections to
exchange messages with the auction serv-
er at the University of Michigan.

In this article, we discuss general cri-
teria for the design of a market game
using trading agents and present our
competition as a model problem descrip-

tion for this domain; we also describe the
competition’s genesis, its technical infra-
structure, and its organization. The arti-
cle, “Autonomous Bidding Agents in the
Trading Agent Competition”4 (page 52),
describes the competition from a partici-
pant’s perspective and describes the
strategies of some of the top-placing
agents. A visualization of the competition
and a description of the preliminary and
final rounds of the TAC are available in
IC Online (http://computer.org/internet/
tac.htm). Further information is available
on the TAC Web site (http://tac.eecs.umich.
edu/) and in other articles on TAC agents.5

Designing the Competition
Once we had resolved to organize a com-
petition for trading agents, our first charge
was to design a market game, that is, a
well-defined scenario that lets agents
interact through a market. We approached
this design with several criteria:

■ Strategic challenge. The game should
present difficult issues in real-world

TAC Team
University of Michigan
North Carolina State University

Michael P. Wellman
Peter R.Wurman
Kevin O’Malley
Roshan Bangera
Shou–de Lin
Daniel Reeves
William E.Walsh

44 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

bidding strategy. In particular, we were inter-
ested in scenarios that required traders to deal
in multiple interrelated goods.

■ Multiplicity of issues. Trading is inherently a
multifaceted problem. We attempted to balance
the kinds of issues the agents faced to avoid
enabling an agent with a particular competence
in one area to dominate the game.

■ Realism. The scenario should plausibly resem-
ble what automated traders might be practicing
within a few years.

■ Simplicity. To avoid prohibitive barriers to entry,
the competition rules and interfaces should be
as simple as possible. (We were perhaps least
successful on this criterion, as the features we
introduced to diversify the game and make it
challenging also contributed to its complexity.)

We used these criteria to evaluate
several candidate market games.6

For example, we ruled out an
abstract, continuous double auc-
tion (CDA) tournament (employed
in a pioneering competition at the
Santa Fe Institute ten years ago7)
primarily because it lacked multi-
ple interrelated goods. We ruled
out others, including some based
on problems in our research
group, because they seemed too
parochial.

The early design document was circulated
among an international organizing committee
comprising active researchers in the field. Their
deliberations, as well as suggestions from other
sources, led us to settle on a shopping scenario. In
addition to offering the challenges of interrelated
goods and multiple issues, automated shopping is
an active concern of agent researchers, and is plau-
sibly realizable in nontrivial form in the relatively
near term.8

Another issue in trading games is predicting or
influencing the behavior of other agents. In a game
with only one or two other agents, effective rea-
soning about one’s counterparts can be a dominant
factor. In games with very large numbers of (simi-
lar-sized) agents, it is possible to reason about oth-
ers only in the aggregate, and attempting to influ-
ence outcomes (for example, prices) is fruitless. To
avoid either extreme, we chose to include eight
agents in each game instance.

Travel Shopping Game Basics
In the TAC scenario, each trader is a travel agent

charged with arranging trips for its clients. At the
start of a game, or game instance, the agent
receives requests from eight clients for trips from
TACtown to Boston during a specified five-day
period. The travel agent’s objective is to maximize
the total satisfaction of its clients (the sum of the
client utilities) relative to the money expended
procuring travel resources in the TAC markets.

A client travel package consists of round-trip
flights, a hotel room for each night, and tickets to
various entertainment events. There are obvious
interdependencies, as the traveler needs a hotel for
every night between arrival and departure, and can
attend entertainment events only during that inter-
val. In addition, clients have individual preferences
regarding the days they are in Boston, the type of
hotel, and modes of entertainment.

Bidding
There are three types of auctions in the TAC: flight,
hotel, and entertainment (described in the sidebar
“TAC Auction Types,” next page). Agents submit
bids to the auctions, expressing offers (in dollars)
to buy or sell the corresponding goods. The auc-
tion server admits offers in the form of discrete
demand schedules—that is, sets of quantity-price
points:

{(q1, p1), …, (qn, pn)}.

A point (qi, pi) with qi > 0 means that the agent is
willing to buy qi units of the good for no more than
price pi per unit. If qi < 0, then the agent is willing
to sell |qi| units of the good at a price pi or greater.
For example, submitting the offer {(-2, $40), (3,
$20), (1, $10)} means, “I am willing to sell two
units if the price (per unit) is $40 or more. I am
willing to buy three units if the price is $20 or less,
and to buy one additional (or four total) if the price
is $10 or less.”

The rules for a particular auction specify any
restrictions on admissible bids, possibly as a func-
tion of bids received up to that point. Once a bid is
admitted to a TAC auction, the auction server
immediately updates its price quote, a summary
indicator of the current price. The rules for a par-
ticular auction specify when, or under what con-
ditions, the auction will match the bids and record
the transactions.

Client Preferences and Initial Endowments
At the start of each game instance, the agent
queries the auction server for its client travel
requests and initial endowment of entertainment

In games where
there are many
agents, it is
possible to
reason about
others only in
the aggregate.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 45

Trading Agent Competition

tickets. This information is randomly generated
according to distributions specified as part of the
game definition (and thereby made known to the
contestants). The client preferences consist of ideal
arrival and departure days and reservation values
(maximum willingness to pay) for a hotel upgrade
and for each type of entertainment.

The ideal arrival and departure days are gener-
ated for each client such that every legal pair of
days (clients must stay at least one night) is equal-
ly likely. By the nature of this distribution, nights
in the middle of the range tend to be in much
greater demand—an important element of agent
bidding strategies. The reservation values were all
chosen from uniform distributions $50 to $150
for hotel upgrades, and $0 to $200 for each enter-
tainment ticket type.

Finally, we endow each agent with entertainment
tickets, on average one of each kind. Specifically, for
each combination of entertainment type (baseball,
symphony, or theater) and day (1 through 4), agents

receive zero tickets with probability 1/4, one ticket with
probability 1/2, and two tickets with probability 1/4.

Utility Function
The utility score for an agent at the end of a game
instance is simply the sum of utilities achieved for
each client less its net expenditure in all auctions.
The utility function for an individual client is a
function of the travel package procured for that
client relative to the client’s preferences. If the
travel package is not feasible, the client receives
zero utility. A feasible package is one in which the
client stays at least one night, stays in the same
hotel for each night in town, and sees at most one
form of entertainment per night.

The general form of the client utility function (in
dollar units) is

1000 – travelPenalty + hotelBonus + funBonus,

where

TAC agents assemble trips for their clients by acquiring travel goods
in three different markets: flights, hotels, and entertainment tickets.
The agents must deal with distinct types of auctions, implementing
qualitatively different trading rules for the three markets.

Flight
TACair is the only airline to fly between TACtown and Boston,
operating one flight each way per day.Tickets for the flights are sold
in single-seller auctions one auction for each day and direction (in
or out). Since all clients must stay at least one night in Boston, there
are no flights to Boston on the last day, nor return flights on the
first day.TACair is represented in the marketplace by a bidder
defined by the competition to set prices according to a stochastic
pricing policy.The process used to update flight prices is a random
walk, starting between $250 and $400 and perturbed by -$10 to
$10 every 30 to 40 seconds. (Values are chosen uniformly in their
respective ranges.) Prices are adjusted if necessary to remain in the
range of $150 to $600.The supply of available seats on the flights
is, as far as TAC agents are concerned, unlimited.

There is a separate flight auction for every combination of day
and flight type (incoming or returning). The flight auctions are
continuous one-sided auctions, and do not close until the end of
the game instance.This means that whatever the current sell offer
is, a buyer can place a bid that matches it and immediately transact
for the item. In other words, the flights are sold at fixed prices that
randomly fluctuate over time.

Hotel
There are two hotels in Boston: the Boston Grand Hotel and Le
Fleabag Inn.The former is cleaner, more comfortable, and more

convenient all-around a nicer place to stay.There is no minimum
bid for either type of hotel; however, each client is willing to pay at
least $50 to upgrade to the Grand Hotel from the Fleabag. In turn,
clients receive a higher utility from the Grand Hotel. Since clients
need hotels only from the night they arrive through the night before
they leave, no hotels are available (or needed) on the last possible
day of travel (day 5).

Hotel auctions are standard English ascending,multi-unit auctions.
The hotel owners (representing the competition) submit a sell bid
to provide 16 rooms in each auction: {(-16, $0)}. By the rules of the
auction,price quotes are issued immediately in response to new bids.
The price quote is the ask price,calculated as the 16th highest price
among all buy and sell bid units. For instance, if the offers {(-16,$0)},
{(6,$6), (2,$4)}, {(4,$8)} were active in a hotel auction, the ask price
would be $0.For the set of offers {(-16,$0)}, {(6,$6), (2,$4)}, {(4,$8)},
{(7,$10)}, however, the ask price would be $6.

When agents submit new bids, they must adhere to a “beat the
quote” rule. Let ASK be the current ask quote, that is, the 16th
highest price.Any new bid b must satisfy the following conditions
to be admitted to the auction:

■ b must offer to buy at least one unit at a price of ASK + 1 or
greater.

■ If the agent’s current bid b0 would have resulted in a purchase
of q units in the current state, then the new bid b must offer to
buy at least q units at ASK + 1 or greater.

Agents may not withdraw bids from hotel auctions.
When a hotel auction clears, the 16 highest price buy units are

TAC Auction Types

continued on p. 46

46 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

travelPenalty = 100(|arrivalDay –idealArrival| +
|departureDay –idealDeparture|)

hotelBonus ={hotelReservation if Grand Hotel
0 otherwise

funBonus = sum of reservation values for
each type of entertainment in trip.

Note that no additional utility is given for seeing
the same type of entertainment on multiple nights.

Final Scores and Client Package Allocation
At the end of the game, the travel agent holds a
collection of plane tickets and hotel rooms bought
from the designated sellers, and entertainment
tickets bought and sold with other agents. Because
the auction server has no information about trad-
er inventory, it cannot prevent an agent from sell-
ing entertainment tickets it does not actually own.
Instead, we assume there are effectively an infi-
nite number of tickets available (say, from

scalpers) at a price of $200 each. At the end of the
game instance, we calculate scores under the
assumption that agents cover any ticket deficits by
buying from scalpers. Because the distribution of
client valuations ensures that no entertainment
ticket is worth more than the scalper price, a ratio-
nal agent will try to avoid this situation. However,
if an agent finds an overeager buyer, it may sell
more than it has, hoping to make up the difference
later and accepting the risk of a forced loss at the
end of the game.

An agent’s final task is to decide how to allocate
its plane tickets, hotel rooms, and entertainment
tickets to maximize total client utility. At the end
of the game instance when all the auctions
close the agent has four minutes to report this
allocation to the server. The allocation specifies, for
each client, an arrival and departure flight, a hotel
type, and entertainment tickets.

TAC Auction Server
The TAC auction server is based on the Michigan

matched, and the agents pay the ask price for the hotel rooms. For
instance, assume the following bids were in a hotel auction at
clearing time:

■ Hotel seller: {(-16, $0)}
■ Agent 1: {(8, $2)}
■ Agent 2: {(6, $6), (2, $4)}
■ Agent 3: {(4, $8)}
■ Agent 4: {(7, $10)}

In this example,Agent 4 would win seven rooms,Agent 3 would
win four rooms,Agent 2 would win five rooms, and Agent 1 would
not win any rooms.The price of all rooms would be $6.

To prevent the agents from waiting until the last seconds of the
game instance to bid,we trigger the clearing operation on a period of
inactivity.After a random, and unspecified, amount of time with no
bids admitted, the hotel auction clears and closes for the game.The
actual probability distribution for the amount of inactivity before
closing the auction (uniform from 30 seconds to 5 minutes) is not
disclosed to the contestants. In the actual competition,however, this
measure was not adequate to effect price formation in early stages of
the hotel auctions.As recounted by the entrants, successful agents
placed just enough incremental bids to keep the auctions open,saving
their serious offers for the very end of the game.

Entertainment
Three entertainment events are offered:Boston Red Sox baseball,
the Boston Symphony, and a Boston theater production.As with

the hotels, a client cannot use an entertainment ticket on the day
of departure.Unlike flights and hotels, there is no central seller for
entertainment tickets.Rather, each agent is endowed with an initial
set of tickets, which they can buy and sell to each other in
continuous double auctions (CDAs).There is one entertainment
CDA for each day/type combination,operating according to CDA
standard rules.That is, any agent can buy or sell, and incoming bids
are matched immediately with compatible standing bids. Price
quotes, which are also continuously updated, represent a bid-ask
spread, the bid quote being the highest standing buy bid price and
the ask quote being the lowest standing sell bid price.

As an example, consider the following standing bids in an
entertainment ticket auction: {(-1, $100)}, {(-4, $90), (-2, $50)}, {(-
6, $60)}, {(1, $40), (3, $10)}, {(1, $20)}.The bid-ask spread (price
quote) is [$40,$50].The following examples show what happens as
various new bids are submitted to the auction:

■ A new bid of {(-1, $55)} does not match and is added to the
list of standing bids.

■ A new bid of {(3, $48)} is treated as above, but in this case the
bid-ask spread is updated to [$48, $50].

■ A new bid of {(6, $70)} matches two units at $50 each (the
second in the list of standing bids), one unit at $55 (the first
new bid above), and three units at $60.The bid-ask spread
becomes [$48, $60].

■ A new bid of {(-7,$15)} matches three units at $48,one unit at
$40, and one unit at $20. Since this bid does not match
completely, the remaining portion stands in the auction as {(-
2, $15)}.The bid-ask spread becomes [$10, $15].

TAC Auction Types continued

continued from p. 45

Internet AuctionBot,9 and forms the core software
infrastructure for the competition. The AuctionBot
is a highly configurable auction server, operational
since 1996, built to support research on e-com-
merce and multiagent negotiation. The first-gen-
eration architecture was simple and robust,
designed to conduct a large number of simultane-
ous auctions with asynchronous and relatively spo-
radic bidder interactions conducted through a Web
interface. Details of the AuctionBot are presented
elsewhere, including a recent report focusing on
the TAC performance requirements.9,10

Once we introduced an automated trading facil-
ity (that is, a software API), we found that the fre-
quent interactions demanded by automated traders
resulted in performance bottlenecks. We redesigned
the control architecture to address these perfor-
mance issues as well as to meet our original design
goals.11 Figure 1 shows a diagram of the auction
server and its components.

Agent Programming Interface
TAC software agents interact with the AuctionBot
via an agent programming interface (API),12 which
consists of a query-based communications proto-
col and basic client software. The API supports all
agent/AuctionBot communications, including bid
submission and queries for next game time, client
preferences, auction IDs, bid state, price quotes, and
transactions. Sixteen API commands are available
to TAC agents.

An API call consists of an API command fol-
lowed by a list of attribute-value pairs in CGI for-
mat. For instance, the call submitbid?auction-
id=347&bidstring=“((2 30))” specifies that the
agent wishes to submit a bid to buy two units of
the good in auction number 347 for no more than
$30 per unit. The bidstring value contains a list
of price/quantity points as in the discrete demand
schedule described earlier. An agent can have at
most one bid active in an auction at any given
time; hence, if the new bid is admitted, it replaces
any previous standing bid from the agent.

The AuctionBot might reply with submitbid?
bidid=1234&bidhash=“((2 30))”&commandsta-

tus=0, indicating that the submitbid call was suc-
cessful (commandstatus=0) and that the submitted
bid’s ID is 1234 (bidid=1234). The bidhash field
helps avoid certain asynchrony problems, as we
discuss in the following section.

To exchange the API message strings, agents
maintain a TCP/IP socket connection with the Auc-
tionBot throughout a game. TAC players were free
to implement the string manipulation and socket

communication in their favorite language,
although we did provide low-level client software
in C/C++, Java, and Mathematica to streamline
development. This client software converts API
strings to and from attribute-value symbol tables
and handles the socket communications.

We also provided bidding agent classes in C++
to abstract away some of the API details. The bid-
ding agent classes execute a loop that automati-
cally queries for information on the auctions, next
game, bid state, auction prices, and transactions,
and assembles the information in convenient data
structures. The classes also provide hooks for the
agent designer to add bidding strategies and agent
termination conditions.

Full details on the API and other aspects of the
TAC infrastructure are available at http://tac.eecs.
umich.edu/software.html.

Asynchrony
Asynchrony in various forms poses a challenge to
designing effective agent strategies. The most obvi-
ous and fundamental cause of
asynchrony is communication
latency. The AuctionBot requires
some time to process API calls,
during which it asynchronously
processes bid submissions, price
quotes, and clear events. As a
result, the information contained
in any API response can be out-
of-date by the time an agent
receives it. Another source of
asynchrony is the separation of
bid reception and processing.
The AuctionBot informs the
agent upon submission if a basic error occurs, but
decides whether to admit the bid in a distinct pro-
cessing operation (that is, the bid may yet be reject-
ed if it violates the auction rules or bid syntax).

This phenomenon could be controlled by explic-
it synchronization, for example, by forcing agents
to take turns, as was done in the Santa Fe Institute
double auction tournament,7 and handling all
AuctionBot events synchronously between turns.
However, we rejected such an approach for several
reasons:

■ Turn-taking effectively reduces the system to
the speed of the slowest agent.

■ The internal asynchrony of the AuctionBot allows
for more responsive API handling and more
effective simultaneous usage of server resources.

■ Asynchronous operations is a more realistic

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 47

Trading Agent Competition

Asynchrony in
various forms
poses a
challenge to
designing
effective agent
strategies.

reflection of actual e-commerce. Indeed, some
agents effectively adapted to varying asyn-
chronous delays, a strategy we expect to be
generally useful for e-commerce trading agents.

Due to the internal asynchrony of the AuctionBot,
there is no strong relationship between the timing
of events across different auctions. Yet the Auction-
Bot does enforce strict logical sequencing of events
within an auction. That is, an unbounded real-time
delay may pass between internal events, but when
the event actually occurs, the AuctionBot performs
the event using the correct state present at the log-
ical time at which the event should have occurred.13

For instance, an “immediate” transaction in a con-
tinuous double auction may be performed some time
after a bid is admitted, but no other bids are allowed
to “sneak in” between the time the bid is admitted
and the transaction is recorded.

No single API call acquires the full (publicly
available) state of an auction at a single instant.

Rather, an agent has to make separate calls to get
bid state, price quote, and transaction information.
As a result, an agent’s most recent API calls can
have contradictory information. For instance, its
latest report about the quantity it is tentatively
“winning” may not jibe with its report of the going
price. This example demonstrates how some char-
acteristics of the trading interface not readily
apparent at design time can be ferreted out with
extensive use by multiple developers. Our experi-
ence with TAC led us to move the tentative win
quantity information to the price quote API call.
With TAC completed, we have been able to imple-
ment this and various other improvements to the
trading interface.

Information about bids and transactions is more
conceptually separate, and thus naturally main-
tained as distinct components of auction state. By
querying for information on its bid, the agent can
determine whether the AuctionBot admitted the
bid, and whether the bid has fully or partially

48 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

TAC game serverTAC client

Submit/withdraw/replace
active bid, load

events

API

CGI

Scheduler

Database

Auctioneers

ScorerTAC game
manager

Round
extractor

Visualization
extractor

All events

All events

Database

Select/insert
data

Select/insert data

Select/insert data

Select/insert
data

Select/
insert data

Select/
insert data

Select
data

Select
data

TAC game page

Display TAC
visualization

applet
Write
game
data

Internet

Figure 1.The TAC auction server and its components.The API, scheduler, auction-
eers, and database perform core operations of the AuctionBot; other elements
serve TAC-specific functions.

transacted. A separate API call yields direct infor-
mation about the transactions themselves. As a
result, the agent’s knowledge about the bid status
and remaining offer schedule may be inconsistent
with its knowledge of transactions on the bid. For-
tunately, the agent can infer much about the cor-
rect state from the combination of results and their
associated time stamps.

It would be particularly undesirable if asyn-
chrony caused an agent to unintentionally buy or
sell goods. Consider the following sequence of
events:

■ An agent’s current bid transacts in the auction.
■ The agent submits a new bid to the auction

before learning of the transaction.
■ The new bid transacts in the auction, causing the

agent to buy or sell more units than it had intended.

To ameliorate this problem, agents can use “replace
active bid” semantics when replacing a standing
bid. When replacing a bid, the agent includes a bid
hash, which will match the bid hash of the agent’s
current standing bid if and only if the bid has not
transacted since the agent last queried for infor-
mation on the bid. The bid replacement will suc-
ceed only if the agent has an active bid in the auc-
tion with a matching bid hash; if not, then the
agent did not have an accurate understanding of
the state of its standing bid.

Game Phases
The game manager controls the scheduling, invo-
cation, and operation of TAC game instances with-
in the competition. Each game runs for 15 minutes
(auction time), with a 10-minute interval between
each game. Eight trading agents participate in a
given instance, along with a predefined seller agent
representing the competition’s specified policy for
hotel and flight auctions.

We divide a game instance run into three oper-
ational phases: pregame, in-game, and postgame.

Pregame Phase
The game manager provides facilities for users to
schedule new game instances and sign up for future
games. Each game starts with eight available slots,
allocated on a first-come-first-served basis. Any
slots not taken by game time are filled by dummy
agents. Like popular Web-based recreational gam-
ing systems, the objective is to support distributed
organization of game instances reflecting the
schedule preferences of the participants. This was
especially useful during the development and prac-

tice periods. For tournament play, we prescheduled
the games according to competition rules.

The dummy agents were provided to generate
a representative distribution of bidding activity so
that agents could practice in a somewhat realistic
environment. In addition, the provided dummy
agent code served to illustrate the agent pro-
gramming facilities. We expressly did not pro-
gram the dummy to follow an exemplary or even
reasonable bidding strategy, to avoid biasing the
entrants according to some idea of the TAC
designers. Consequently, practice games involv-
ing dummies varied systematically from games
comprising real agents.

API calls inform agents of their next scheduled
game. Agents can thus run in a continuous loop of
determining next game time, sleeping until that
time, then awakening and initializing their state for
the game instance. Game preference and endow-
ment parameters are retrieved through the API, but
are not available until the game actually starts.

In-Game Phase
To run a TAC game, the game
manager selects the next game
from its pending game queue.
Before starting the game, it
checks to make sure all auctions
from the previous game were
closed properly. Next, the game
manager creates the auctions for
the new game and runs them. If
an error occurs, the game’s sta-
tus is set to NOTRUN, and the
game scheduler returns to its
main loop.

Next, the game manager launches the TAC sell-
er and any dummy agents participating in the
instance. It also distributes game parameter infor-
mation, so that participating agents can begin play.

The visualization extractor runs throughout the
game, passing data to the game visualization
tools. After 15 minutes of game time, the Auc-
tionBot scheduler queue contains final clear
events for all auctions that should be closed. Each
event is popped from the AuctionBot scheduler
queue and sent to the corresponding auction.
When the auction receives the final clear event, it
sends the scheduler a deactivated event inform-
ing it that the auction is exiting, and the auction
exits. When the AuctionBot scheduler processes
the deactivate event for an auction, it checks
whether the auction has exited and then clears it
from the process table.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 49

Trading Agent Competition

It would be
undesirable if
asynchrony
caused an agent
to unintention-
ally buy or sell
goods.

Postgame Phase
Once the game is complete, the game data extrac-
tor generates text files describing all the relevant
game events. These files serve as input for game
visualization, and are archived for later retrieval
through the Web interface.

After receiving the agents’ reported allocations,
the TAC game scorer confirms that each agent has
acquired sufficient goods for the packages it
assigned. If the agent has provided an invalid allo-
cation, the scorer deletes assigned resources (with-
out regard for optimality) until the allocation is fea-
sible. In the absence of an allocation, the scorer
produces an assignment based on (not very effec-
tive) greedy methods. Finally, it computes a score
based on the utility function.

Players view the game results through a summa-
ry page showing the final utility scores of all agents
in the game. Each agent’s score is linked to an allo-
cation page, which provides detailed information
about the player’s allocation, client preference pro-
file, expenditures, and unused travel resources.

The TAC Tournament
The TAC finals were held 8 July 2000, at a work-
shop preceding the main ICMAS conference. The
twelve finalists were selected from a pool of 20 con-
testants through a series of qualifying rounds held
over an eight-day period. Selections were based on
participants’ average scores in the preliminary
games.

On the day of the finals, we set up an ISDN net-
work in the workshop room, and prepared 20 Ether-
net connections for laptop computers. Most contes-
tants brought laptops, from which they launched and
monitored their agents running at their home institu-
tions. Two Sun workstations monitored the TAC serv-
er, and a laptop projected real-time visualizations.

The games were played in round-robin style, with
each agent participating in six games. The eight
agents with the highest average scores progressed to
the afternoon games. The final seven games were
played with a constant profile of the remaining con-
testants. Throughout the day, contestants presented
their agent designs in one part of the room, while
computers continuously projected displays of the
ongoing games on a side wall. This “two-ring circus”
format balanced interest in the game outcomes with
interest in strategy discussions. Most of the agents
presented at the workshop are discussed in the com-
panion article in this issue.4 Boman provides some
further observations on the event.14

We plan a follow-on trading agent event in con-
junction with the Third ACM Conference on Elec-

tronic Commerce in October 2001. The consensus
among participants was that we should retain the
basic structure of the game, but modify the rules to
eliminate some anomalies and unnecessary com-
plexities. In revising the game, through a review
process involving the TAC participant community,
we will also aim to reduce the contributions of ran-
dom elements on scores, and in other ways strength-
en the connection between strategic effectiveness
and outcome evaluations.

The TAC environment has been employed in
teaching e-commerce and artificial intelligence, and
we will continue to make it available for education-
al use. We are also optimistic about research progress
in understanding the implications of autonomous
trading agents on developments in e-commerce and
automated marketplaces. We believe that exercises
like this competition contribute to that progress by
creating complex, realistic settings for dynamic pro-
grammed trade. We hope this experience has show-
cased the competence that can be achieved with cur-
rent technologies, and has highlighted research
issues bearing on the construction and understand-
ing of the next generation of trading agents.

Acknowledgments
We are grateful to the TAC sponsors for making this event

financially possible: Andersen Consulting, Ariba, IBM, and the

North Carolina State University E-Commerce consortium. Work

on the underlying infrastructure was supported in part by relat-

ed projects funded by DARPA, the U.S. Air Force Office of Sci-

entific Research, and the U.S. National Science Foundation.

Christopher Healey provided interesting visualization software.

Members of the TAC Organizing Committee, Arne Andersson,

Dave Cliff, Toru Ishida, Jeffrey Kephart, John Miller, Juan Anto-

nio Rodriguez, Edmund Durfee (ex officio), and especially Fredrik

Ygge, offered helpful suggestions on the competition design. Most

of all, we thank the competition participants for their enthusiasm,

persistence, and intellectual contributions to this event.

References

1. S. Coradeschi et al., “Overview of RoboCup-99,” AI Mag-

azine, vol. 21, no. 3, 2000, pp. 11-18.

2. P. Bonasso and T. Dean, “A Retrospective of the AAAI

Robot Competitions,” AI Magazine, vol. 18, no. 1, 1997,

pp. 11-23.

3. D. Long et al., “The AIPS-98 Planning Competition,” AI

Magazine, vol. 21, no. 2, 2000, pp. 13-33.

4. A. Greenwald and P. Stone, “Autonomous Bidding Agents

for the Trading Agent Competition,” IEEE Internet Com-

puting, vol. 5, no. 2, Mar./Apr. 2001, pp. 52-60.

5. P. Stone et al., “ATTac-2000: An Adaptive Autonomous

Bidding Agent,” to be published in Proc. Fifth Int’l Conf.

Autonomous Agents, 2001.

50 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 51

Trading Agent Competition

6. M.P. Wellman and P.R. Wurman, “A Trading Agent Com-

petition for the Research Community,” IJCAI-99 Workshop

on Agent-Mediated Electronic Trading, Aug. 1999.

7. J. Rust, J.H. Miller, and R. Palmer, “Characterizing Effec-

tive Trading Strategies: Insights from a Computerized Dou-

ble Auction Tournament,” J. Economic Dynamics and Con-

trol, vol. 18, 1994, pp. 61-96.

8. A. Eisenberg, “In Online Auctions of the Future, It’ll Be Bot

vs. Bot vs. Bot,” New York Times, 17 Aug. 2000, p. D8.

9. P.R. Wurman, M.P. Wellman, and W.E. Walsh, “The Michi-

gan Internet AuctionBot: A Configurable Auction Server

for Human and Software Agents,” Proc. Second Int’l Conf.

on Autonomous Agents, ACM Press, New York, May 1998,

pp. 301-308.

10. K. O’Malley, “Auction Service for a Trading Agent Compe-

tition,” Dr. Dobb’s J., to appear.

11. P.R. Wurman et al., “A Control Architecture for Flexible

Internet Auction Servers,” IBM/IAC Workshop on Internet-

Based Negotiation Technology, Mar. 1999.

12. K. O’Malley and T. Kelly, “An API for Internet Auctions,”

Dr. Dobb’s J., Sept. 1998, pp. 70-74.

13. M.P. Wellman and P.R. Wurman, “Real-Time Issues for

Internet Auctions,” Proc. IEEE Workshop on Dependable

and Real-Time E-Commerce Systems, IEEE CS Press, Los

Alamitos, Calif., 1998.

14. M. Boman, “Trading Agents,” workshop report, AgentLink

News, no. 6, Jan. 2001; also available online at

http://www.agentlink.org/newsletter/6/.

Michael P. Wellman is an associate professor in computer sci-

ence and engineering at the University of Michigan. He

received a PhD in computer science from the Massachusetts

Institute of Technology. For the past nine years, his research

has focused on computational market mechanisms for dis-

tributed decision making and electronic commerce. He is a

AAAI Councilor, executive editor of the Journal of Artificial

Intelligence Research, and serves on the Steering Board of

ACM SIGecom.

Peter R. Wurman is an assistant professor in computer science

at North Carolina State University where he investigates

electronic auctions and trading agents. He received his PhD

in computer science from the University of Michigan in

1999. He is codirector of NCSU's E-commerce Initiative, and

editor in chief of SIGecom Exchanges, the official newslet-

ter of ACM SIGecom.

Kevin O'Malley is a systems research programmer at the Uni-

versity of Michigan Artificial Intelligence Laboratory. He

specializes in network programming, object-oriented devel-

opment, and software engineering. For the past four years

he has been the software architect and lead developer of the

Michigan Internet AuctionBot and the TAC software sys-

tem. O'Malley also holds a Master's degree in music.

Roshan Bangera completed his master's degree in computer sci-

ence and engineering at the University of Michigan in May

2000. He currently works for CommerceOne in New York.

Shou-De Lin will receive his master's degree in electrical engi-

neering and computer science from the University of Michi-

gan in May 2001. His current research focuses on resource

allocation problems and trading agent competition

postgame analysis.

Daniel M. Reeves is a PhD candidate in computer science and

engineering at the University of Michigan. His research

interests are in artificial intelligence for e-commerce, and

his recent work involves automating the negotiation of

declarative (rule-based) contracts. He is interested in vari-

ous aspects of trading agents and considers Mathematica

the programming language of choice for creating them.

William E. Walsh is a PhD candidate in computer science and engi-

neering at the University of Michigan. His research focuses

on automated negotiation technologies and market approach-

es to problems with complex dependencies, including supply

chain formation, constraint satisfaction, and scheduling. He

is a NASA/Jet Propulsion Laboratory graduate student

researcher. If all goes as planned, he will defend his disserta-

tion within a few months after this article is published.

Readers can contact the authors at the University of Michigan

Artificial Intelligence Laboratory, 1101 Beal Ave., Ann Arbor,

MI 48109-2110, USA, tac.support@umich.edu.

CLASSIFIED
Collective Communications

Dynamic early stage wireless
solutions provider working with leaders
like Sun and Palm has openings for
professionals who love working on
cutting-edge technology in an
energetic, flexible environment.
Research and development of high-
visibility, leading-edge wireless
software products; lucrative
compensation packages.

Senior Software Developers and
Software Architects: Experience in
distributed systems, multi-threaded
code, OOP, full software lifecycle, 3+
years Java. A plus includes operating
system design and implementation
experience.

E-mail: jobs@collective.com
Visit: www.collective.com

