
Issues of Verification for Unsupervised Discovery Systems
Shou-de Lin

Information Science Institute
University of Southern California

sdlin@isi.edu

Hans Chalupsky
Information Science Institute

University of Southern California
hans@isi.edu

ABSTRACT

Developing systems that perform discovery presents
unique challenges, e.g., when compared to learning programs,
since in general there is no teacher or example library available
to train or evaluate a discovery system. In particular, the lack of
gold-standard methods or examples makes the verification of
discovered results and evaluation of system performance a very
difficult problem. In this paper we address several issues of
verifying a machine discovery system and discuss what one
should and should not expect from the evaluation report of a
discovery system. Recognizing that there is no direct way to
verify the validity of a true discovery system, this paper
proposes several indirect strategies one can adopt to assess the
validity of discovered results. We then present our own set of
novel link discovery tools as a case study to show how the
proposed concepts can be applied to verify a real-world
discovery system. In a time where computer science research
has become extremely evaluation driven, researchers sometimes
shy away from areas where results are difficult to evaluate. By
discussing these issues with respect to discovery systems, we
hope to provide a useful overview as well as – hopefully - a
positive and encouraging signal to attract more researchers to
work on machine discovery problems.

1. INTRODUCTION
 Discovery is, by definition1, a procedure of finding out or
ascertaining something previously unknown or unrecognized.
Since the products of discovery are previously unknown or
unrecognized, it is usually non-trivial to convince ourselves and
others whether the discoveries are truly correct. In fact, many
scientific discoveries (e.g. Copernicus’ statement that earth is
not the center of the universe, or Fermat's Last Theorem) do
take years or even centuries to be proven true or false.
Machine discovery has been an important research area of
artificial intelligence (AI) for more than twenty years. Herbert
Simon described it as "gradual problem-solving processes of
searching large problem spaces for incompletely defined goal
objects” [27]. The majority of traditional machine discovery
programs (e.g. AM [15] and BACON [14]) focus on discovering
(or rediscovering) theories and laws in natural science. These
programs usually rely on some pre-requisite knowledge in a
specific domain and some more general knowledge to guide the
search (e.g. heuristics).
More recently, researchers have encountered another problem:
there is more and more data available to us and we do not know
how to make use of it. This started a new type of discovery
research called knowledge discovery and data mining (KDD)
that mainly focuses on discovering and extracting previously
unknown, valid, novel, potentially useful and understandable
patterns from lower-level data [8].

1 The American Heritage® Dictionary of the English Language

Researchers have developed various kinds of discovery systems
that utilize many different approaches. Nevertheless, one can
divide them into two general categories: “supervised discovery
systems” and “unsupervised discovery systems”. Most systems
that aim at predicting a future trend based on history data belong
to the first category [2]. These systems are closer to supervised
learning systems, since they have (historic) examples available
for training. On the other hand, there are some discovery
systems that naturally do not (and cannot) have training
examples to use. For example, ARROWSMITH [31] is a
literature-based discovery tool that hypothesizes the possible
treatments of medical diseases. This type of system needs to be
an unsupervised discovery system, since it targets diseases
whose treatments are not developed yet.
In general, machine discovery research faces the same
verification problems as human discovery. Due to its
incompletely defined goal objects, there is no universal way or
“gold standard” to determine whether or how well a goal has
been achieved. Nevertheless, the verification of supervised
discovery systems is relatively easier than that of unsupervised
systems. To verify a supervised system, one usually performs
the same cross-validation as for a typical learning system. That
is, a certain amount of history training data is held out and the
system is then evaluated by seeing how well it performs on the
held-out data. This means one can evaluate the system by
standard recall and precision and related measures. Therefore,
verifying a supervised discovery system (or a prediction system)
is very similar to verifying a typical supervised learning system.
The basic assumption underlying this verification strategy is that
the distribution of future unseen data is the same or very similar
to the distribution of the history [2]. Said differently, if we can
use a part of the history to predict the other part of the history,
then we should also be able to use the history to predict the
future.
This paper, however, focuses on the verification of unsupervised
discovery systems where no training examples or historic data
are available. The rest of the paper is organized as follows: in
Section 2 we describe several indirect strategies to evaluate
discovery systems. These are rediscovery, explanation-based
discovery, exploiting independent resources, minimum
description length and unexpectedness measures. In Section 3
we show how recall and precision measures play a different role
in machine discovery compared with machine learning. In
Section 4 we use the verification of a set of novel link discovery
tools as a case study to demonstrate how the methodologies
described here can be applied to verify a real-world
unsupervised discovery system. Section 5 presents concluding
remarks.

2. VERIFYING DISCOVERY SYSTEMS
In this section we describe several independent strategies to

verify an unsupervised discovery system. For each strategy, we
will address its strength and as well as some potential
weaknesses.

2.1 Rediscovery
Since for a true discovery system there is no “gold standard”
available to check the validity of discovered results, one
strategy we can use in some cases is to test whether the system
works on some domain that we already have some knowledge
about. Rediscovery is an indirect verification procedure in the
sense that we are testing the validity and generality of the
program instead of the discovered results. Using rediscovery as
a verification strategy is supported by the following reasoning:
if the program is general enough to perform discovery
successfully in certain rediscovery domains, and these are
reasonably similar to the original or target domain, then there is
a good chance that the program will also generate good results
in the target domain. Often the rediscovery and target domains
are the same and rediscovery simply means – as its name
implies – automatic discovery of previously human-discovered
results.

Most AI researchers working on scientific discovery adopt
this strategy to verify the value of their discovery system. Lenat
justifies his heuristic discovery system AM by showing that it
can rediscover various mathematic laws and concepts such as
natural numbers and Goldbach’s conjecture [15]. Pericliev and
Valdes-Perez justify their maximally parsimonious
discrimination program by rediscovering several linguistic
phenomena such as the structure of kinship-related terms in
Seneca (originally found by Lounsbury in 1964) [32] as well as
Greenburg’s language universal rules [22].

The most important concern we have with rediscovery is
with the amount, representation and use of background
knowledge in the rediscovery domain provided to the program.
The more domain-specific knowledge is encoded, the harder it
is to make the claim that the discovery is a product of our
program rather than already “built-in” via background
knowledge which might be missing in the target domain. This is
particularly difficult for systems that do need a significant
amount of background knowledge to work successfully, such as,
for example, scientific discovery systems.

Another concern is with the claim that “since the discovery
program works for domain X, it should also work for domain Y”
which is only valid if the two domains are fairly similar. The
more different they are, the weaker this analogy becomes. Even
if rediscovery and target domains are the same, say mathematics,
it is not known whether past discovered results are in any way
similar to any as yet undiscovered results to be found by the
program.

2.2 Explanation-Based Discovery
The idea of explanation-based discovery is to use natural
language (or some other easily understandable expressions) to
explain how or why the discovery is made. By providing this
information, the users are given more data to judge whether they
should trust the discovered results or not. Explanation plays an
important role in many learning systems [5, 11, 24, 25]. Haynes
suggests that users would not accept recommendations that
emerge from reasoning that they do not understand [11] and we
believe the same reasoning applies to discovery results as well.
To our knowledge, however, there are only very few KDD or
scientific discovery programs that have explanation capabilities.
Probably the best example is Yao’s work using rough set theory
as well as supervised classification technologies to explain

discovered association rules [33, 34]. Knorr proposed a way to
generate explanation for distance-based outlier mining by
categorizing them into stronger and weaker outlier groups [13].
Similar to rediscovery, explanation-based discovery focuses on
verifying the methodologies instead of the results, because it
tries to describe how and why the results are generated not
whether the results are “correct”. Both methods assume that
trust in a discovered result can be formed by trust in the
underlying discovery methods.

2.3 Exploiting External Resources
In many complex, real-world systems, verifying whether a
candidate solution is right or wrong takes much less time than
generating the solution. For example, verifying the correctness
of a proof is usually much simpler than generating the proof in
the first place. The idea of exploiting external resources to
evaluate a discovery system exploits this characteristic.
Knowledge can be represented in various forms as well as
acquired from difference sources. For example, suppose our
system somehow discovered that “Y’s car will develop a
problem today”. One might discredit such a result using some
external knowledge not available to the system such as “Y is a
3-year-old that cannot drive”. Or one might find it supported by
observing that Y on average has to go to the garage once per
week to fix various problems or that he just posted an
advertisement looking for another car on the Internet. This
shows that logical inference, statistical analysis or external
sources such as the Web could all serve as different methods to
verify a particular piece of knowledge. Similarly, to verify a
discovered result, one can try to find support for it from external
sources and reasoning independent of the discovery methods.
The basic idea stems from the observation that for a specific
discovery problem some resources are more suitable for
generating the results while others are more adequate to verify
them. In our example, it might have been impossible to make
the discovery or prediction using Web sources, but once the
discovery was made a focused search might have revealed the
car-for-sale advertisement in support of the discovery.

To exploit external resources for verification, we have to
make sure that those resources were not explicitly or implicitly
used to generate the discovery. In Section 4 we will describe an
example on how the methods described above can be applied to
verify discovered results.

2.4 Minimum Description Length
Minimum Description Length [29], minimal encoding length
[16] and the principle of parsimony (Occam’s razor) [30] all try
to formalize the notion that knowledge should be represented in
a concise way. Information theory researchers have studied
these measures extensively [3]. As pointed out by Milosavljevic,
the relativity of MDL is addressed by the first central theorem
of algorithmic information theory, which states that there exists
a language that gives encodings of the data that are as concise as
the encodings in any other language [20]. He also shows that the
shortest program can give the best predictions about unseen data
in molecular evolution patterns [19]. This concept has not only
been used for coding and communication problems, but also
been applied widely in machine learning research for model
selections. To verifying discovery results, we propose to exploit
MDL in two different ways:

 First, if a program is designed to discover rules or patterns
from existing data or observations, then the MDL principle tells
us that the fewer patterns needed to describe the data the better.
Said differently, the pattern that has higher coverage implies
higher validity [23, 28]. In mining of association rules such as
X Y, the concepts of support (the percentage of transactions
that contains both X and Y items) and confidence (given the
transactions which contain X, the probability that it also
contains Y) [1] are used to quantify the coverage of rules.
Sufficiency (the probability that the evidence occurs given the
hypothesis is true divided by the probability of the evidence
given the hypothesis is false) and necessity (the probability that
the evidence does not occur given the hypothesis is true divided
by the probability that the evidence does not occur given the
hypothesis is false) can be used to measure the confidence of a
classification rule [12] as well.
Secondly, the MDL principle also tells us that a pattern
discovered by a program will be more convincing if it can be
described in a concise way. This claim is similar to applying
Occam’s razor for learning because Occam’s razor prefers
simple models over complicated ones. So, not only the fewer
patterns the better, but also the simpler the patterns the better.
History shows that scientific discovery can satisfy this MDL
criterion. For example Maxwell’s equations play a more
important role in physics than Faradays’ law and Ampere’s law,
because they are more general and can explain the entire
phenomenon that is explained by the other two. Also the
equations are very concise:

0

/ 0

0

/ 0

B

E B t

D

H D t

→

→ →

→

→ →

∇⋅ =

∇× + ∂ ∂ =

∇ ⋅ =

∇× − ∂ ∂ =
However, there are several issues we have to be aware of when
applying MDL to verify discovery results. First, in many
discovery systems the usage described above has been
implemented (maybe implicitly) as a heuristic to generate the
results. In this case it is not fair to also apply it for evaluation.
Moreover, the MDL criterion is usually not a suitable
measurement for an instance discovery system (e.g. a system
that tries to identify a potential suspect in a police database or a
network intrusion event from network traffic data). On the
contrary, an instance discovery system might prefer rich,
“informative” instances which will require longer description
length.
The last concern with applying MDL as an evaluation strategy is
that the description length is highly related to the language used
for encoding [20]. That is, an apparently complex result with
larger encoding length might not imply that the discovery
strategy is poor, rather that the encoding for the knowledge or
data might not be suitable.

2.5 Measuring Unexpectedness
 Intuitively, unexpected findings have a higher chance to catch
one’s eye, but it is risky to utilize unexpectedness alone as an
indicator for the validation of a discovery. Nevertheless,
unexpectedness could be a sign for a discovery that a researcher

might find interesting. Various methods have been proposed to
measure unexpectedness either subjectively or objectively.
Subjective measures in general require the representation of a
user’s beliefs or background knowledge. The surprising
discoveries are then those that bring completely new knowledge
about a domain or that contradict current belief [21, 26].
Objective measures, in a nutshell, regard discovered results to
be surprising if they are different from other candidates based
on certain distance metrics [6, 10]. Freitas points out a variety of
alternative unexpectedness indicators that are worth noticing
such as “small disjuncts” (rules whose coverage is small), rules
whose antecedent contains attributes with low information-gain,
and the occurrence of Simpson’s paradox (that is, an association
between a pair of variables can consistently be inverted in each
subpopulation of a population when the population is partitioned)
[9].
The major concern for this strategy is to distinguish between
unexpected results and noise. In noisy domains, many
unexpected findings might be due to noise. To make things
worse, a collection of small exceptions could indicate a
meaningful phenomenon [4] although each individual one looks
irrelevant. The other issue is that most of the methods and
systems we mentioned in this section are domain dependent.
The subjective measures could carry bias and the distance
metrics in objective measures might be hard to define in some
domains. Finally we would like to emphasize that these
measures, which quantify the discovered results based on certain
criteria of unexpectedness, can only strengthen our beliefs about
the interestingness but not necessary the validity of the
discovery.

3. RECALL AND PRECISION
In this section we discuss why traditional recall and

precision cannot and should not play a critical role when trying
to verify a discovery system. Recall and precision are widely
accepted ways to evaluate the performance of machine learning
systems, for example, to measure how well a learned classifier
classifies test instances. When applied to the discovery domain,
recall measures how many things that are supposed to be
discovered have been discovered. Thus, it is measurable only
when one knows exactly what there was to be found. In this
sense, asking an unsupervised discovery system to report its
recall is similar to asking Isaac Newton what percentage of
physical laws relating to gravity, etc. he has discovered so far.
Trying to measure discovery recall unavoidably runs into a
paradox: to measure recall one has to know what there is to be
found, but if one already knows that then there is no need to
build a discovery system at all. For unsupervised systems, the
recall measurement is therefore only suitable when the
“rediscovery strategy” is applied for verification.

Precision, on the other hand, focuses on measuring how
accurate the discovered results are (i.e. are the discovered
results among those that are supposed to found). Though there is
still no systematic way for us to compute the precision for an
unsupervised discovery system, the concept of precision is not
as inapplicable as recall in terms of verification. It tells us that
the discovered results have to be at least plausible. Explanation-
based discovery, minimum description length, the methodology
of applying external resources as well as the unexpectedness
measures all try to assure some level of discovery precision, that
is, was something found that was worth finding.

It is usually unacceptable for a learning system to produce
results of low recall and precision. However, in this section we
would like to point out that for a discovery system, having low
recall and precision does not necessary imply the system is
valueless. Let us assume for the moment that there is somehow a
way for us to know the recall and precision of a discovery
system. Given that, what would the value of a discovery system
be? To answer this question, we introduce a “utility function of
discovery” in terms of precision (P), recall (R), total number of
outputs produces by the discovery system (D), the total cases to
be discovered (N), the expected utility value of a true discovery
(v+), the cost of a false positive (wrong discovery) (cf+), and cost
of a false negative (missed discovery) (cf-). The utility function
of discovery will be equal to the total utility gain minus the
penalty of wrong discovery minus the penalty of missed
discovery:

U= P • D • v+ - (1-P) •D • cf+ - (1-R) • N • cf-
With this utility function of discovery, we can then answer the
question what is the “value” of a discovery system. We claim
that it is simply the difference of the utility value with and
without the system or U - U0. U0 stands for the penalty of not
being able to discover anything, which will be equal to the
system with zero precision/recall.

U - U0 = P • D • v+ - (1-P) • D • cf+ - (1-R) • N • cf- - (-N • cf-)
= P • D • v+ - (1-P) • D • cf+ + R • N • cf-

 From this equation we can see that low precision can still
produce high utility if v+ >> cf+. Similarly, low recall can
produce large amount of utility given cf- is very large.
 Let us illustrate this with an example: Assuming there is a
discovery system aiming at discovering the threat events (e.g.
bomb or hijacking) from some database. Saying that it predicts
the location and time for five events (D=5) but only one of them
is correct (P= 20%). Also assuming that there are in fact a total
of 10 true threats all over the area (N=10, R=10%) and each of
them causes on average 1 million dollars in damage (cf-=1
million). Discovering a true event earns no financial profit
(v+=0) and each wrong finding will cost 10000 dollars
(cf+=10000) in wasted resources. According to the equation the
value of this discovery system is 0.2*5*0 - (1-0.2)* 5 * 10000+
0.1* 10 * 100000= 60000 dollars. The shows that in this
situation it is still worth 60000 dollars to develop a discovery
system achieving only 10% in recall and 20% in precision.
In general, a discovery system aims at finding something that
has not yet been found, which in many cases leads to a very
high v+ (e.g. in many science discovery tasks such as gene
decoding or the invention of new medicines) or cf- (e.g. in the
domain of homeland security, credit card fraud detection, law
enforcement, and network intrusion detection), and, therefore,
makes high recall and precision less important. A typical
supervised learning system requires much higher precision and
recall, since in general its utility is lower. The above observation
is an encouraging message to researchers working on machine
discovery problems because it tells us that it is still worthwhile
and important to work on machine discovery problems, even
though true precision and recall is hard or even impossible to
measure.

4. CASE STUDY: VEFIFYING NOVEL
LINK DISCOVERY TOOLS
In this section we present a case study on how some of the
above strategies can be applied to verify a discovery tool suite
developed by us which we call “novel link discovery (NLD)
tools”. We did not use the MDL strategy because they are more
suitable for pattern discovery instead of instance discovery
program such as our NLD tools. Note that the goal in this
section is not to justify our specific approaches but to show how
we can apply various indirect methods to check the validity of
discovered results. We therefore focus mainly on the
verification part. More detailed descriptions of our
methodologies are published elsewhere[17, 18].

4.1 Novel Link Discovery (NLD) Tools
Our NLD tools are designed as unsupervised tools to discover
interesting evidences and connections in multi-relational
networks such as the bibliography network shown in Figure 1.
In this case study, we will focus on how to verify three NLD
tools that aim at discovering different type of interesting facts in
the network:
1. Novel loop discovery [18]: given a multi-relational network,
find the most interesting loop path (or type of loop) in it. For
example, we might want to find the most interesting loop that
goes through node A1 or find the most interesting type of loop
in the whole network. Our basic approach to this problem
(which we call rarity analysis) is that the loops that look
different from most others have a higher chance to be interesting.
2. Significant node discovery [17]: given a pair of nodes,
finding whether they are significantly connected to each other
relative to other nodes. For example, for all pairs of nodes in
Figure 1, find those that are the significantly connected to each
other. The basic concept behind our solution is that two nodes
are significantly connected to each other if there are many “rare
paths” between them.
3. Interesting instance discovery [18]: given an arbitrary source
entity in a network, find entities that are most interestingly
connected to it. For example, find the most interesting
organizations in Figure 1 or find organizations most
interestingly connected to node A1. The solution we use for this
problem is to characterize each node by its semantic profile

Figure 1: A multi-relational bibliography network

based on the nodes and paths surrounding it and extracting those
nodes with abnormal profiles.
In terms of verification, those tools face exactly the problems
outlined above. In other words, if there were gold-standard
measures for interestingness or novelty, we could simply
implement them as our discovery tools. Since there are no such
measures, there is no perfect way to verify our system, thus, we
need to exploit indirect methods for verification.

4.2 Verifying Significant Node Discovery
We applied the rediscovery method to verify our significant
node discovery tool. To perform rediscovery, we need a dataset
for which we already know the solutions to allow us to test
whether our program can rediscover them. The data we used
came from a suite of simulated data sets developed as part of
DARPA’s Evidence Extraction and Link Discovery program. It
simulates a Russian Mafiya domain with a large number of
entities involved in contract murders, gang wars and industry
takeovers. For each dataset we are given an answer key, which
describes higher-level information of interest that is not
explicitly mentioned in the data but needs to be inferred from
lower-level, incomplete and noisy simulated evidence. Using
these answer keys we can test our program by checking if the
significantly connected nodes it discovered are truly the ones
that the simulator or the developers of the simulator deemed to
be interesting.
4.2.1 The Russian Contract Kill Dataset
The Russian Contract Kill (or RCK) data sets were developed
by Information Extraction & Transport, Inc. to serve as a
challenge problem domain for different link discovery
approaches. The data is generated by a simulator and describes
activities of fictitious Russian Mafiya groups and the people and
organizations they operate or come in contact with. The
simulator has a model of high-level threat events such as
contract murders, gang wars and industry takeovers and their
decomposition into lower-level events (or tasks) such as
observations, payments, wire transfers, information exchange,
killings, etc. The hierarchy of event types used by the simulator
is shown in Figure 2. The two highest-level (Lv5) threats are
GangWar and IndustryTakeOver. Gang wars occur between
mafiya groups and involve multiple contract murders. Industry
takeovers are attempts by one mafiya group to take over an
industry controlled by another, which also involves multiple
contract murders. The simulator is plan-based and starts with an
initial world state and some goals to generate a certain number
of high-level threat events. It then hierarchically decomposes
them into lower level subevents (or subtasks) until they bottom
out into evidence producing actions. Most tasks can be achieved
in multiple ways with various random choices along the way.
Omission, corruption and noise can be used to obfuscate the
generated evidence and correspondingly there are parameters
one can choose to adjust the level of each.
The output of the simulator describes a set of typed entities such
as mafiya groups, people, victims, hit men, banks, etc. and
relationships between them, as well as evidence of events that
occurred such as money transactions, meetings, killings, etc. We
can build a semantic network similar to figure 1 base on the
given information. The link discovery goal is to discover what
high-level threat events occurred by looking at the lower-level
evidence.

Higher-Order threat

Lower-Order threat

Gangwar IndustryTakeOver

MurderForHire

PlanningToDoSomething Paying PremediataedMurder

EmailSending

MeetingTakingPlace

MakingAPhoneCall

WireTransferOfFunds Observing Murder

Lv 5

Lv 4

Lv 3

Lv 2

Figure 2: Russian Contract Kill data event type hierarchy

4.2.2 Experimental results
The RCK datasets where not designed to evaluate significant
node discovery programs and our program was not designed to
detect gang wars or contract murders in RCK datasets.
Nevertheless, the information provided in answer keys can be
used to evaluate our program. Answer keys give full
descriptions of high-level cases such as gang wars and industry
takeovers along with all participants such as the involved
mafiya groups. Turning this around, we can view two mafiya
groups involved in a high-level threat event as interestingly
connected and then test how well our significant node discovery
program can detect such interesting connections automatically
looking only at low-level, incomplete evidence data. Since there
is at most one gang war instance in each data set, it is reasonable
to expect that the mafiya groups involved in it should have some
interesting connections between them.
To do this we enumerate the set of all possible mafiya group
pairs in a dataset, calculate the node-based n-rarity for each pair
[17], and then rank the pairs according to the computed scores.
For example, for one of the datasets there are 42 mafiya groups,
hence, there are 42*41/2=861 candidates pairs to evaluate.
Ideally, the mafiya group pair involved in the gang war should
be among the top scoring pairs. Similarly, we can do the same
for all pairs of mafiya groups and industries to detect pairs that
are involved in an industry takeover.
We tested our program on six data sets turned up by different
parameters and summarized the results in Table 1. Data set
names are formatted as “ObservabilitySizeNoise” to indicate
their simulator parameter settings. Observability describes how
frequently the higher-level evidences are revealed, Size stands
for the number of nodes and links in the data and Noise
indicates how accurate the given evidences are. The results
show that our program can perfectly predict the participants of
GangWar and IndustryTakeOver events in data sets with high
observability and no noise. In those cases the top-scoring pair
was actually the one we were supposed to find. For data sets
with lower observability and more noise, the relevant pair can
still be found in the top 1-2% of ranked pairs.
In each dataset we have on average 42 mafiya groups and 21
industries connected to 8500 entities by 13500 evidence links;
therefore, it would be very difficult for human beings to
manually figure out the answers. Additionally, since our

program was not given any background knowledge about the
event patterns nor the semantics of entities and links, the
experiment also assures the generality of our discovery tool (e.g.,
the program does not even know what “mafiya” or “murder”
means). This satisfies one of the important conditions discussed
in section 3.1, namely, that rediscovery as a verification strategy
is most convincing if very little domain-dependent background
knowledge is used.
Table 1: Results for different data sets: Top 1 indicates the
pair with highest rarity is the one we were supposed to find.
Top x% indicates the pair we were supposed to find has the
top x% score among all the possible pairs. There is no gang
war in medium-size files.

 GangWar IndustryTakeOver
veryHighLg0 Top 1 Top 1
veryHighMed0 n/a Top 1
averageLg1 top1 top 0.5%
averageMed1 n/a top 1.36%
veryLowLg2 top 2.50% top1.6%
veryLowMed1 n/a Top 0.4%

4.3 Verifying novel loop discovery and
interesting instance discovery
Rediscovery is generally only applicable if the data is synthetic,
historic with previously discovered results or small to allow
manual discovery. Large real-world datasets that have known
answers usable to evaluate a discovery program via rediscovery
are, unfortunately, difficult to find. This section shows how we
can apply some of the other strategies described in Section 3 to
verify unsupervised discovery tools.

4.3.1 The high-energy physics bibliography dataset
The "High Energy Physics - Theory" (HEP-Th) bibliography
dataset was provided as a test dataset for the 2003 KDD Cup.
We translated the data into a semantic net similar to the one
shown in Figure 1. We extracted six different types of nodes
(entities) and six types of links (relations) from the dataset to
generate the semantic network. Nodes represent paper IDs
(29014), author names (12755), journal names (267),
organization names (963), keywords (40) and the publication
time encoded as year/season pairs (60). Numbers in parentheses
indicate the number of different entities for each type in the
dataset. We defined the following types of relationships to
connect various types of nodes:
writes(a, p) : connects author a to one of his/her papers p.
date_published(p, d) : connects paper p to its publication date d.
organization_of(a, o) : connects author a to an organization o they
belong to.
published_in(p, j) : connects paper p to journal j it appears in.
cites(p, r): connects paper p to a paper r it cites.
keyword_of(p,k) : connects paper p to keyword k in its title.
These links are viewed to be directional with an implicit inverse
link. Thus, there are a total of 12 different relations. The
network generated is similar to the one in Figure 1, only that
there are 43095 different nodes and 477423 links overall.

4.3.2 Verifying interesting instance discovery
The goal of interesting instance discovery (IID) is to discover a
set of interesting entities in the network. Our program does this

by first generating the semantic profiles of the nodes. A
semantic profile contains various path types (a path type can be
seen as a specific event a node involved) as features and the
node’s contribution to each path type (the contribution can be
regarded as a measurement of how deeply a node is involved in
this event) as feature values. Then we extract the nodes of
abnormal (different from others) profiles as interesting ones.
In our experiments we use two different ways to evaluate the
discovered results: (1) Examine the original network to learn the
reason why instances are chosen as abnormal ones. Since our
program does not have any knowledge about the semantics of
the nodes, manually inspecting which path types contributed the
most together with our knowledge of what these path types
mean is a good way of evaluating whether the program has
indeed found something interesting. This verification method
reflects the idea of explanation-based discovery, since we are
examining the results by explaining how and why our program
chooses them. In the current system we still need to inspect and
explain results manually, but ongoing work aims at generating
such explanations automatically. (2) Use the Web as an external
source to find supporting evidence. Since the nodes represent
real-world entities such as people, we can “verify” the computed
results by investigating whether they reflected a real-world,
semantically interesting profile or connection visible through
the World-Wide Web. This method therefore uses the idea of
using external resources to verify discovered results. It is fair to
apply the Web information for verification, since that
information was not used by our discovery tool to generate
results.
The results show that C.N. Pope, Ashoke Sen, and Edward
Witten are the top three interesting people discovered by our
program. After looking into the data and feature distribution, we
find that the reason why C.N.Pope is chosen is twofold: First, he
contributed significantly in most of the path types. However this
fact itself is not enough to distinguish him from other nodes that
also contribute significantly. The second reason is that he
contributes 0 to the path organization_of(x,o1) ∧
organization_of(y,o1) ∧ organization_of (y,o2) ∧ organization_of(x,o2).
That is, there is no other person in the data that has ever
belonged to any two organizations he has ever worked in, which
is abnormal for people who contribute significantly in most
other dimensions. Ashoke Sen is chosen as abnormal because
some features suggest he has very focused research directions
(e.g. he contributes the most to the loop “a single paper cites
multiple of his papers”) while some suggests he has a broad
research directions (e.g. he contributes relatively low to the loop
“his papers are published in the same journal”) which is not
common at all in this data. The reason Edward Witten is chosen,
in short, is because he did not contribute much for most events
(e.g. he does not publish or co-author frequently with others in
this data set), but also that a relatively large amount of people in
this data cite more than one of his publications. After searching
on the Web we found that Edward Witten is a famous
mathematical physicist who has won the Fields Medal, the
highest honor a mathematician can receive. This fact strengthens
the validity of our discovery, since even though his research is
not fully focused on high-energy physics, some of his
contributions to the fundamental mathematics must be valuable
to this community and thus attract many citations.

4.3.3 Verifying Novel Loop Discovery
The goal of novel loop discovery is to find interesting loops

in multi-relational datasets. The program models interestingness
via a rarity measure. It tries to determine which types of loops
are rare compared with the whole dataset [18]. We verified the
tool based on the high-energy physics data as well. The rarest,
least frequent types of loops we found are listed in Table 2. The
most rare loops represent papers citing themselves directly,
which only occurs 28 times in the whole dataset. We do not
have a real world explanation for this and can only attribute it to
errors in the dataset. The second, third and fourth paths are
citation loops of different length. The rationale behind this
finding is that for a paper to cite another, the cited paper needs
to be published earlier. In this sense a citation loop such as “P1
cites P2 cites P3 cites P1” is really a contradiction in time and
should not occur at all. One explanation for such
“contradictions” is that sometimes an author (or close colleague)
might cite one of his/her own submitted but not yet published
papers P2 (which has already cited P1) in a paper P1. The other
explanation is that a journal might have a very long revision
period and during that period other people can access the
previous version. For both explanations we have found
supporting instances (e.g. “0110099 cites 0110200 cites
0110186 cites 0110099” for the first case and “9912210 cites
9906151 cites 9509140 cites 9912210” for the second).
However, there are still some other unexplainable citation loops
(e.g. “9912288 cites 0004011 cites 9911183 cites 9912288”)
that might occur due to the difference between the true
publication date and the SLAC-date. The fifth path shows a
similar concept where it is rare for a paper to cite another paper
that was published during the same time period. This type of
loop could also be an indicator for authors that work closely
with each other. Finally, the last path shows that people seldom
publish multiple papers at the same time.

This case study exploits another external resource to verify
the results which is our background knowledge of the scientific
publication domain (e.g. for P1 to cite P2, P1 has to publish later
than P2) as well as some simple inference capability (e.g. if A
occurs earlier than B and B occurs earlier than C, then C can’t
occur earlier than A). The results of the program are verified to
be “interesting” (at least to some extent), because they are
against the common knowledge or expectations we have.
Besides that, the discovery of citations loops is somehow
unexpected, since they are rare despite the fact that citation
paths (A cites B cites C…) themselves are very common.

5. CONCLUSIONS
There is much less research being done in unsupervised machine
discovery compared to, for example, machine learning. We
believe this to be the case not only because of the difficulty of
the problem, but also because of the difficulty to verify the
results. However, this fact does not justify that unsupervised
machine discovery should deserve less attention than other
problems. In fact, as we motivated in Section 3, the utility value
for discovery can be much higher than for learning which is a
strong reason to engage in machine discovery research. Take the
mathematical conjecture discovery program GRAFFITI [7] for
example: its author Dr. Fajtlozicz published a fair amount of
conjectures discovered by his program in a mathematical journal,
but without evaluating them or proving their correctness.
Despite that (or probably because of that), this then led to tens
of publications (including Ph.D. theses) in mathematics centered
on proving or disproving those conjectures. Had he waited until
he was able to verify the conjectures before publishing them,
GRAFFITI would probably still be an unknown program.

In applied sciences such as computer or information
science, it is hard for research to receive credit without verifying
its validity. The success story of GRAFFITI tells us, however,
that the value of a discovery program is sometimes large enough
to outweigh the problem of not having straightforward and
convincing verification methods. To further help with this
situation, this paper addresses various indirect verification
methods for discovery systems and their application to a suite of
link discovery tools. We hope that this overview will help and
encourage more researchers to work on machine discovery
problems.

6. REFERENCES
1. R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. in ACM
SIGMOD. 1993. Washington D.C.
2. P.S. Bradley. Data Mining as an Automated Service. in
PAKDD 2003. 2003: Springer-Verlag Heidelberg.
3. T. Cover and J. Thomas, Elements of Information Theory.
1991: Wiley.
4. A.P. Danyluk and F.J. Provost. Small Disjuncts in Action:
Learning to Diagnose Errors in the Local Loop of the Telephone
Network. in In Proceedings of the Tenth International
Conference on Machine Learning. 1993.
5. J.S. Dhaliwal and I. Benbasat, The use and effects of
knowledge-based system explanations: theoretical foundations
and a framework for empirical valuation. Information Systems
Research,, 1996. 7: p. 342-362.
6. G. Dong and J. Li. Interestingness of Discovered Association
Rules in terms of Neighborhood-Based Unexpectedness. in
Proceedings of Pacific Asia Conference on Knowledge
Discovery in Databases. 1998.
7. S. Fajtlowicz, On conjectures of Graffiti. Discrete
Mathematics, 1988. 72: p. 113-118.
8. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, The KDD
Process for Extracting Useful Knowledge from Volumes of Data.
Communications of the ACM, 1996. 39(11): p. 27-34.

Table 2 The rare loops
Top 6 rarest loops

1. PaperX cites PaperX
2. PaperX cites Paper1 Paper1 cites PaperX
3. PaperX cites Paper1 Paper1 cites Paper2 Paper2 cites
PaperX
4. PaperX cites Paper1 Paper1 cites Paper2 Paper2 cites
Paper3 Paper3 cites PaperX
5. PaperX cites (or cited by) Paper1 Paper 1 published at
Time1 At Time1, PaperX also published.
6. PaperX is written by Person1 Person 1 has another
Paper1 Paper1 published at the same time period as PaperX

9. A.A. Freitas. On objective measures of rule surprisingness. in
Principles of Data Mining & Knowledge Discovery (PDDD).
1998.
10. P. Gago and C. Bento. A Metric for Selection of the Most
Promising Rules. in European Conference on Principles of Data
Mining and Knowledge Discovery. 1998.
11. S.R. Haynes, Explanation in Information Systems: A Design
Rationale Approach, in The London School of Economics. 2001,
University of London.
12. M. Kamber and R. Shinghal. Evaluating the interestingness
of characteristic rules. in Second Int'l Conference on
Knowledge Discovery and Data Mining. 1996.
13. E. Knorr and R. Ng. Finding Intensional Knowledge of
Distance Based Outliers. in VLDB. 1999: Endiburgh Scotland.
14. P. Langley, et al., Scientific discovery: computational
explorations of the creative process. Cambridge, MA: The MIT
Press, 1987.
15. D. Lenat, The Nature of Heuristics. Artificial Intelligence,
1982. 19: p. 189-249.
16. L. Li and P. Vitanyi, An Introduction to Lolmogorov
Complexity and its applications. 1993: Springer Verlag.
17. S. Lin and H. Chalupsky. Unsupervised Link Discovery in
Multi-relational Data via Rarity Analysis. in Proceedings of
IEEE International Conference on Data Mining (ICDM). 2003.
Florida.
18. S. Lin and H. Chalupsky, Using Unsupervised Link
Discovery Methods to Find Interesting Facts and Connections
in a Bibliography Dataset. KDD Explorations, 2003. 5(2): p.
173-179.
19. A. Milosavljevic, Discovery by minimal length encoding: A
case study in molecular evolution. Machine Learning Journal,
1993. 12: p. 69-87.
20. A. Milosavljevic, Discovery Process as a Search for
Concise Encoding of Observed Data, in Machine Discovery, Jan
Zytkow, Editor. 1997, Kluwer Academic Publishers.
21. B. Padmanabhan and A. Tuzhilin, Unexpectedness as a
measure of interestingness in knowledge discovery. Decision
Support Systems, 1999. 27: p. 303--318.

22. V. Pericliev, A linguistic discovery system that verbalizes its
discoveries. 19th International Conference on Computational
Linguistics, 2002: p. 1258-62.
23. G. Piatesky-Shapiro, Discovery, analysis and presentation of
strong rules. Knowledge Discovery in Databases, 1991: p. 229-
248.
24. J. Pitt, Theory of Explanation. Oxford University Press.
1988: Oxford.
25. R. Schank and A. Kass, Explanations, machine learning,
and creativity. Machine Learning: An Artificial Intelligence
Approach, 1990. 3: p. 31-48.
26. A. Silberschatz and A. Tuzhilin. On subjective measures of
interestingness in knowledge discovery. in First International
Conference on Knowledge Discovery and Data Mining. 1995.
27. H. Simon, Machine Discovery. Foundations of Science,
1995. 2: p. 171-200.
28. P. Smyth and R.M. Goodman, Rule Induction Using
Information Theory. In Knowledge Discovery in Databases,
1991: p. 159-176.
29. E. Sober, Reconstructing the Past: Parsimony, Evolution,
and Inference. 1988: MIT Press.
30. R. Solomonoff, A formal theory of inductive inference, Part
I. Information and control, 1964. 7: p. 1-22.
31. D.R. Swanson, Fish Oil, Raynaud's syndrome and
undiscovered public knowledge. Perspectives in Biology and
Medicine, 1986.
32. R.E. Valdes-Perez and V. Pericliev, Computer Enumeration
of Significant Implicational Universals of Kinship Terminology.
Cross-Cultural Research: The Journal of Comparative Social
Science, 1999. 33(2): p. 162-174.
33. Y. Yao, Y. Zhao, and R.B. Maguire. Explanation-Oriented
Association Mining Using a Combination of Unsupervised and
Supervised Learning Algorithms. in Canadian Conference on AI.
2003.
34. Y.Y. Yao, Y. Zhao, and R.B. Maguire. Explanation-oriented
association mining using a combination of unsupervised and
supervised learning algorithms. in Conference of the Canadian
Society for Computational Studies of Intelligence. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

