
Unsupervised Feature Selection: Minimize Information Redundancy of Features

Chun-Chao Yen Liang-Chieh Chen Shou-De Lin
Department of Computer Science and Information Engineering

 National Taiwan University
Taipei, Taiwan

r96944016@csie.ntu.edu.tw aquariusjay@gmail.com sdlin@csie.ntu.edu.tw

Abstract—This paper proposes an unsupervised feature
selection method to remove the redundant features from
datasets. The major contributions are twofold. First, we
propose an eigen-decomposition method to rank the
hyperplanes (which describes the relations between features)
based on their linear dependency characteristic, and then
design an efficient Gaussian-elimination method to
sequentially remove the feature that is best represented by the
rest of the features. Second, we provide a proof showing that
our method is similar to removing the features that contribute
the most to the Principal Components with the smallest eigen-
value, but considering the effect of each removal of features
with complexity about max(O(nm), O(n2)) instead of O(n3),
where n is the number of features and m is the number of
observations. We perform experiments on an artificial and
real-world datasets. The results show that our method can
almost perfectly remove those dependent features without
losing any independent dimension in the artificial dataset and
outperforms two other competitive algorithms in the real-
world datasets.

Keywords-unsupervised feature selection; eigen-
decomposition; Gaussian-elimination; PCA

I. INTRODUCTION
A knowledge discovery and data mining (KDD) system

aims at extracting knowledge from data. Usually a KDD
method takes data as a set of observations which are
described by some features. Since different features can
provide different information about the observations, for
real-world tasks it is very common that human beings tend to
collect as many features as possible in the first place so as to
not omit any possible clues. Furthermore, in many real world
cases the data are collected through different resources by
different individuals, therefore very often certain level of
dependency or redundancy is introduced once the evidence
from different sources are merged. As a large number of
features bring the “curse of dimensionality” as well as the
increasing need of computational time and space, how to
remove redundant features becomes an important research
problem [1].

Feature selection methods can be generally divided into
two categories: supervised [2-4], and unsupervised [5-8]
methods depending on the involvement of the target with the
problem at hand (e.g. the prediction or classification
problems). In the case of unsupervised feature selection, the
methods search for a subset of features which is a best subset
under certain criteria. One of the interesting criteria that has

been used in the literature is the measurement of relatedness
or redundancy among features [6] [9]. One redundant feature
can be represented by some other features, and thus the
removal of a redundant feature causes no loss of information
if such representation can be captured by the classifier. There
are two types of methods to measure the redundancy among
features, namely clustering based methods and principal
component analysis (PCA) based methods that have been
investigated to solve this problem. Clustering based methods
first cluster the features based on certain similarity metrics,
and then select one representative feature in each cluster [10].
However, usually only pair wise similarity between two
features are measured to build the hierarchical tree. PCA-
based methods [11] project the data onto the principal
components, and each principal component is a linear
combination of original features. There are many criteria to
select the features defined in [11]. The simplest way is to
pick the features that have largest loadings in the most
important principal components, or to reject the features that
have largest loadings in the least important principal
components. One main drawback of many PCA-based
methods lies in the high computation to perform PCA
operation after each removal or selection of feature, and thus
usually suboptimal strategy is taken (e.g. only perform PCA
operation once). Recently, Cumming [12] evaluated the
average relatedness of features to all the principal
components and feed back the effect of forward selection of
each feature by recalculating the partial covariance matrix of
remaining unselected features. However, its summation
operation to identify the important features may be
dominated by extremely large eigenvalues, and thus
overlook some important features.

In this paper, we propose an unsupervised feature
selection method that considers the effect of backward
feature removal with acceptable complexity. The method we
proposed is based on the mapping of the concept of
redundancy to dependency. Our goal is to find dependent
features by choosing a set of coefficients with which the
linear combination of features is close to zero. Such near
linear dependency of features can be considered as the
equations of a hyperplane, and we propose an eigen-
decomposition method to rank the hyperplanes based on
their linear dependency characteristics. A backward process
is designed to remove the corresponding dependency by
substituting the feature with largest absolute coefficient.
Geometrically, if there are dependent features in the dataset,
our proposed method can find a hyperplane to which most

2010 International Conference on Technologies and Applications of Artificial Intelligence

978-0-7695-4253-9/10 $26.00 © 2010 IEEE

DOI 10.1109/TAAI.2010.49

247

data points lie close. Furthermore, we prove that our
proposed method is similar to removing the features that
have largest loadings in the least important principal
components, when features in the data matrix are
transformed to zero mean and unit variance. Different from
PCA-based operations which generally requires feeding back
the effect of each removal of features, our proposed method
only needs the computation complexity proportional to
max(O(nm), O(n2)), rather than O(n3), where n is the number
of features and m is the number of observations.

The major contributions of this paper can be summarized
as follows:
1. We propose a new backward linear feature selection that

uses eigen-decomposition to rank the linear dependency.
Furthermore, the geometrical meaning of our method is
explored.

2. We prove that our method is similar to PCA-based
feature selection methods when features in the data
matrix are transformed to zero mean and unit variance.
However, our method takes into consideration the effect
of removal of each feature with complexity proportional
to max(O(nm), O(n2)), rather than O(n3).

II. RELATED WORKS
Feature selection is an important topic which has been

studied for a long time [1]. It is possible to divide the works
of feature selection into two categories: supervised feature
selection and unsupervised feature selection. Supervised
feature selection is applied for classification or regression.
Generally, the methods consist of two major parts: goodness
measurement of features and search strategy.

The method to select features can be categorized as filters
and wrappers. For filters methods [4] [9] [13], the selection
is independent to the underlying learning model and thus,
this method is considered as a pre-processing step. However,
wrappers [14] directly appeal to the performance of the
learning model used. The features that can result in better
prediction accuracy will be selected. The search strategy
defines the way of producing possible feature subsets. Some
sequential methods [15] such as forward search or backward
search were proposed. To prune the size of search space, this
type of search generally takes the greedy strategy at the
sacrifice of optimality. There are other search methods [16]
trying to improve the chance of approaching the optimal
solution via “randomization” instead of searching the whole
feature space.

 In the case of unsupervised learning, the process of
feature selection searches a feature subset which is
considered as the best subset under some criteria. The
categorization of supervised feature selection can be applied
to unsupervised ones. However, the goodness measurement
of features is defined differently so as to meet the needs in
unsupervised learning. In the filter methods, without any
prediction target, the measurement can only be conducted
between features themselves. Madsen, et al. [8] introduced a
strategy to select features by analyzing the relatedness
between them through clustering. For unsupervised wrapper

methods, instead of prediction accuracy, other measurements
of performance of a learning algorithm are defined. Dy, et al.
[5] measured clustering results by how well each cluster is
separated under a specific algorithm. One interesting point
mentioned in the literature is that the redundancy of features
could be one criterion for measuring the goodness of
features, and the goal of selection is to reduce the
redundancy [6] [9]. The redundant features are those that
provide none or little information, which describes the
discrimination of targets (classification problems), or
represents the structure of a data set.

Discarding redundant variables is an often-seen
technique in multivariate analysis. Its goal is to throw away
those variables while leaving the analysis result unchanged
or only changed slightly. If each feature is considered as a
variable, reducing redundancy of a feature set is actually
performing unsupervised feature selection. To look for the
redundant variables, there are two main types of methods:
clustering based methods, and PCA based methods.

Grouping features into clusters is a way to remove
redundant features. Under the assumption that similar
features are redundant, one representative feature is selected
from each cluster, and the other features within the same
cluster are removed. Different measures of similarity in
clustering algorithms were proposed. Mitra, et al. [7] used
maximal information compression index to measure the
similarity and considered k-nearest-neighbors to find clusters,
while the hierarchical clustering was used with a degree-
based distance as the measure of similarity in [10]. The main
deficiency of clustering-based methods is that only the pair
wise relation of features is considered because usually the
pair wise similarity or distance is used to build the
hierarchical tree and to group the features iteratively.

The well-known PCA [17] method provides a way to
describe data by a set of important axes called principal
components. Each principal component is a combination of
original variables with some coefficients, and each
coefficient can be regarded as the relatedness between this
variable and the component. As a result, a variable with a
larger loading in a more important component will be
considered as a significant one in which more information of
data is kept; a variable with a larger loading in a less
important component can be discarded as a redundant one by
which no useful information is provided [18]. Rather than
directly looking into each principal component, other works
analyzed the variances in principal components. The
variances of selected variables should cover the variance of
the original data as much as possible [11]. Noting that the
methods discussed above measure the structural difference of
data represented by the original variables and selected
variables indirectly, Krzanowski [19] proposed that it is
better to compare each point. Given that the dimension is
reduced to K by PCA, each point described by the complete
feature space and the selected feature space will have two
different projections to two sets of K principal components
obtained by applying PCA to these two spaces. If the
selected variables model the variation of data well, then the
structures of both projections should be quite similar.
Considering that the structure is only under some distortion

248

Figure 1: The flowchart of the proposed method

of translation, rotation and reflection, Procrustes analysis can
measure the difference between the two data matrixes.
However, the complexity becomes a concern for many PCA
operations on different feature sets when the number of
features increases. A recent work [12] refocused on
measuring the importance of variables via the information of
loading and variance provided by each principal component,
but with a thorough estimation which evaluates the average
relatedness to all the components and feeds back the effect of
selection at each iteration. Although PCA-based methods can
analyze all the features at a time, greedy search strategy is
usually applied through a backward or forward selection due
to the high complexity of PCA. There is one problem with
greedy strategy: the effect of one selection or removal on the
remaining features is not considered, while it was shown in
[12] that an effective method was proposed to feed back this
effect via recalculating the partial covariance matrix of the n
remaining features given the removed feature with the
complexity of O(n2). However, in their method, the
importance of a feature was measured by sum of the product
of loading in each component and the corresponding
eigenvalue. The result of summing over the eigenvalues may
be dominated by larger eigenvalues, and therefore can cause
misjudgment of the importance of features in some cases. To
cope with the problem, we propose a new unsupervised
feature selection method as to remove features that have
large loadings in small eigenvalues for better performance in
real-world datasets. Our backward feature selection
algorithm also considers the effect of each removal with the
complexity of max(O(nm), O(n2)) to reweigh the n
remaining features in the case of m observations. Moreover,
the theoretical and geometrical interpretations are presented
to support this method.

III. METHODOLOGY
The main concept of our method is the mapping of

redundancy to dependence. A dependent feature can be
expressed as the linear combination of some independent
features. The removal of the dependent feature results in no

loss of information since the information is preserved by
those independent features. Our method finds a set of
coefficients with which the linear combination of features
(we denote it as E) is close to zero, implying the existence
of dependent features. Geometrically, our method finds a
hyperplane to which most observations lie close. Then, the
feature with largest absolute coefficient is replaced by the
other features, and the effect of its removal is updated. This
process is iterated until all the remaining E’s are smaller
than a threshold set by the user. The flowchart of our
method is shown in Fig. 1. In the following sections, each
component in the flowchart is furthered explained. The
definition of redundancy and the way to model it is
introduced in Section III. A, and its geometrical meaning is
presented in Section III. B. In Section III. C, the backward-
selection process for removing the redundancy of features is
proposed. We bring up the connection between our method
and the PCA-based methods in Section III. D.

A. Redundancy Examination
Suppose we are given an m-by-n data matrix A. Each

row of A represents an observation x∈Rn and each column
represents a feature f∈ Rm. The redundancy of features is
defined as the existence of dependent relations between each
feature. A dependent relation implies that one feature can
more or less be expressed by other features. In this case,
discarding this feature results in no loss of information, since
other features can make up its removal. If only linear relation
is considered, then this notion can be thought as to check
whether there is a non-zero column vector v with the length
n of the number of features such that

0
�

=⋅vA (1)

The vector v describes the linear relationship among
features. When dealing with real-world data, the truly linear
dependency between features may not exist, and the equation
becomes

249

E
e

e
vA

n

=
�
�
�

�

�

�
�
�

�

�
=⋅ �

1
 (2)

where each ei in equation (2) is the result of the linear
combination of each feature of an observation xi, and
possibly contains non-zero value. For each v, the
corresponding vector E can be thought as the error vector to
describe the linear dependency of features. If the error vector
E is close to a zero vector, the linear dependency of features
described by v is supposed to exist to some extent. This type
of dependency, or one can call it near linear dependency, is
needed to be considered when modeling the redundancy of
features. Therefore, finding v which minimizes the following
function is considered instead:

2

2

2

2

2

2
0 EAvvA ==−⋅
� (3)

The minimization of function (3) implies that the linear
dependency constraint is loosened to find some v such that
Avcan be close to a zero vector. Note that the l2 norm of Av
is taken to measure how different it is between Av and a zero
vector. The vector v which produces the minimal value can
be used to represent the relationship which best describes the
near linear dependency of features. If the assumption that
||v||2 = vtv=1 is used, by applying Lagrange multiplier, the
minimization of function (3) can be written as:

)1(min)1(min 2

2
−−=−− vvAvAvvvAv ttt

v

t

v
λλ (4)

In order to solve the minimization problem, one can take
the derivative of equation (4) with respect to v, and set it
equal to zero to obtain

vAvAt λ= (5)

It implies that v is one of the eigenvectors of AtA.
Moreover, the corresponding eigenvalue � is the l2 norm of
Av since

λλν === 2

2

2

2
vAvAvA tt (6)

Through the eigen decomposition of AtA, n eigenvectors
and their corresponding eigenvalues can be obtained, where
n is the number of features. Because all the eigenvectors
satisfy equation (5), these eigenvectors orthogonally describe
n linear dependency of features, with the degree of linearity
expressed by the corresponding eigenvalues.

B. Geometrical Interpretation
In Equation (3), we treat the error vector E as the

difference between a zero vector and the multiplication of
the data matrix A and an eigenvector v. Since this
multiplication can be thought as projecting the observations
in A on the v, the difference measured is actually along the
direction of v. This idea corresponds to estimate the distance
from each observation to the hyperplane with normal vector
v that passes through the zero point in the feature space. If
we adjust the mean of each column in A to zero and its

variance to one (the distribution of observations is centered
to zero and the effect of the scale of features is eliminated),
the hyperplanes which pass through the zero point can be
used to describe the observations linearly. As shown in Fig.
2, when E is close to a zero vector, the observations will be
all located at the positions near the hyperplane, which means
this hyperplane can linearly describe the distribution of the
observations. In this case, the corresponding eigenvalue,
which is equal to ||E||2, is small. On the contrary, when the
number of entries with large value in E becomes larger, as
shown in Fig. 3, the observations will spread around the
hyperplane rather than gather close to it. While such a
hyperplane is used to represent the linear distribution of the
observations, the error induced will be large, which can be
easily captured by the corresponding ||E||2 or the eigenvalue.
From those figures, the geometric relationship between the
error vector E and the hyperplane with normal vector v can
describe the linear dependency of features.

Figure 2. Left plot: the data points are clustered around a hyperplane with
normal vector (1,1,1). Right plot: the same distribution of data points, but

with a different view.

Figure 3. Left plot: the data points are located far away from a hyperplane
with normal vector (1,1,1). Right plot: the same distribution of data points,

but with a different view.

C. Feature Removal
In the previous sections, we have described how the

dependency vector v can be obtained from eigenvector
analysis. The next step is to utilize the information provided
in v to evaluate the degree of redundancy of each feature so
as to conduct the feature selection process. Considering that
the greedy strategy taken in stepwise algorithms of PCA-
based methods is not robust [20] without considering the
effect of removal, we propose a method to efficiently model
the effect induced at each iteration of selection to facilitate
better decision of features to be removed.

Ideally if there exists perfect dependency between
features, each eigenvector v can be seen as the normal
vector of a hyperplene that presents such dependency, and
consequently it is possible to obtain this following equation:

250

0...2211 =⋅++⋅+⋅ nn fvfvfv (8)

where fi is the ith column vector of A, and vi is the ith
element of v. However, observations do not usually lie on
the hyperplane perfectly. In the near linear-dependent case,
an error vector shall be introduced to represent the distance
of each observation to the hyperplane:

Efvfvfv nn =⋅++⋅+⋅ ...2211 (9)

For an m-by-n data matrix A (n features for one
observation and there are m observations), there will be n
equations of hyperplanes obtained from n eigenvectors:

nnnnnn

inniii

nn

nn

Efvfvfv

Efvfvfv

Efvfvfv
Efvfvfv

=⋅++⋅+⋅

=⋅++⋅+⋅

=⋅++⋅+⋅
=⋅++⋅+⋅

,22,11,

 ,22 ,11 ,

2,222,211,2

1 ,122 ,111 ,1

...

...

...
...

�

�

Here, the idea of Gaussian Elimination is utilized to
remove features in turn. At each iteration, we eliminate a
feature with the smallest ||E||2, which reflects the most
dependent relation. ||E||2 measures the degree of linear
dependency characterized by the corresponding equation,
and the equation with small ||E||2 represents a hyperplane
with more points lying close to it. Suppose that we have the
ith equation whose ||E||i2 is the smallest. In order to remove
the dependency in the equation, one feature, for example, fj
is substituted by rewriting it as

() jiinniiij vEfvfvfvf .,22,11, ... −⋅++⋅+⋅−= (10)

In order to preserve as much original information as
possible, we prefer removing a feature with minimum
effects on the other E’s of other equations. Considering the
case of substitution of fj by equation (10), the remaining
equations become

()
()

() nnnnjiinniijnnn

nnjiinniij

nnjiinniij

EfvvEfvfvvfvfv

EfvvEfvfvvfvfv
EfvvEfvfvvfvfv

=++−++−++

=++−++−++
=++−++−++

,,,11,,22,11,

2,2,,11,,222,211,2

1,1 , ,11 ,,122 ,111 ,1

.../......

.../......
.../......

�

After transposition we obtain

jiijnnnjinijnnnjiijnn

jiijnjinijnjiij

jiijnjinijnjiij

vEvEfvvvvfvvvv

vEvEfvvvvfvvvv
vEvEfvvvvfvvvv

,,,,,,1,1,,1,

,,22,,,2,21,1,,21,2

, ,11, , ,1,11,1, ,11 ,1

)(...)(

)(...)(
)(...)(

⋅−=⋅−++⋅−

⋅−=⋅−++⋅−
⋅−=⋅−++⋅−

�

(11)

It is apparent that if fj is the feature with largest |vi,j|,
substituting it will cause less effect on the other E’s, since
the term Ei/vi,j is smaller. Therefore, it is reasonable to
choose the features with largest absolute coefficient in the
selected equation for substitution. Now with the updated n-1
equations, the degree of the linear dependency needs to be

re-estimated by ranking the equations above based on the
updated error vector. To remove the next dependent feature,
we can repeat the process by replacing the feature with
largest absolute coefficient in the equation of the smallest
newly-updated ||E||2. This substitution reduces the size of
equations from n-1 to n-2. By repeating the process, the
number of features continues to decrease. Note that each
substitution requires to update all the coefficients of the
remaining equations plus each E. Since the length of E is m,
the inclusion of updating E’s or not determines the
complexity of a substitution to be O(nm) or O(n2), where m
is the number of observation (fixed during the selection
process); and n is the number of the features left, which is
equivalent to the number of the remaining equations. We
design the algorithm as an iterative procedure, and the
pseudo code of it is described in Fig. 4. One can set the
lower bound of the degree of linear dependency to decide
when to stop. We present this constraint in our algorithm as
a threshold of ||E||2. Those eigenvectors whose ||E||2 are
smaller than or equal to the threshold are selected as a set of
hyperplanes which describe dependent relations of features
in the procedure of selection. As a result, the number of the
features to be eliminated will depend on this threshold.

Figure 4. The backward unsupervised feature selection algorithm.

D. Connection to PCA-based methods
In this section, we provide a proof showing the

connection between our proposed method and PCA-based
methods. After standardizing A (with zero mean and unit
variance for each column fi of A), we can get the connection
between our proposed method and PCA-based methods.
Assume that the number of feature is n.

�
�
�

�

�

�
�
�

�

�

=

n
t

n

t

tt

t

ff
ff

ffff
AA

��
��
�

12

2111

251

()() ()()

()()

()()

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

⋅

−−
⋅

−−
⋅

−−

⋅

−−

=

�

�

��

=

=

==

11

00
11

00
11

00

11

00

1

1
12

1
21

1
11

n

j
jnnj

n

j
jj

n

j
jj

n

j
jj

ff

ff

ffff

��

��

�

()() ()()

()()

()()

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

⋅

−−

⋅

−−

⋅

−−

⋅

−−

=

�

�

��

=

=

==

)()(

)()(

)()()()(

1

12

1
1122

21

1
2111

11

1
1111

bn

n

j
njnnnj

n

j
jj

n

j
jj

n

j
jj

fstdfstd

ffff

fstdfstd

ffff

fstdfstd

ffff

fstdfstd

ffff

��

��

�

�
�
�

�

�

�
�
�

�

�

−=

nn ff

ff

ffff

n
ρ

ρ
ρρ

��
��
�

12

2111

)1(

(12)

Equations (6) and (12) show that finding such near
linear dependency relation is equivalent to doing eigen-
decomposition on the correlation matrix of features of A.
This is how PCA performs for analyzing the feature space
of A.

The above observation exhibits that the eigenvectors
used as the normal vectors of the hyperplanes to describe
the observations are identical to the principal components in
the feature space found by PCA (given features are
transformed to zero mean and unit variance before PCA
analysis). Considering that each eigenvector is equivalent to
a principal component, we conduct a similar procedure as
the method mentioned in [18] to choose the feature with the
largest loading on the least important component to be
removed. However, the major disadvantage of that method
lies in the fact that they did not model the effect of each
removal because to do that it is required to perform PCA
operation in every iteration, which takes a lot of time.
Consequently, as can be seen in the experimental section,
their selection process does not perform as well as ours.
Viewing the eigen-decomposition process from the
viewpoint of dependency-modeling (rather the maximizing-
variance point of view as PCA does) allows us to come up
with a theoretically more sound solution in the feature
removal process.

IV. EXPERIMENTS
Our proposed method is tested on four datasets. The first

experiment is to test the ability of removing the near linear
dependency in an artificial dataset, and then we try our
method on three real-world datasets. For our methods, we
experiment on two different settings: one uses the updating
equation (11) and one does not. The one without updating is
similar to the method motioned in [18] where features with
largest loadings in least important principal components are

removed sequentially. We also compare our method with a
PCA-based method [12], and a clustering-based method [10].

A. Aritificial Dataset
This artificial dataset contains 500 rows of observations

and 1000 columns of features. The first 500 columns are
designed to be linearly independent and are randomly (but
not necessarily equally) divided into 10 groups. As a result,
these 10 groups have different number of columns of
features, but nevertheless independent to each other. The
next 500 columns are created by the linear combinations of
columns within each group plus a small amount of noise.
Thus for every group, there are some near linear dependent
features. We would like to evaluate whether the dependent
features can be removed first in the process of selection. To
achieve such goal, we want to count how many of the first
500 removed features are independent to the remaining
features. The best result a method can reach in this
experiment is 0, which means all of the dependent features
are removed before any independent feature is removed. We
repeat this experiment 10 times and the experiment results
are shown in Table 2. We can see that our method and PCA-
based method can perform almost perfectly on this test,
while Clustering-based method and our method without
updating are not able to guarantee optimal solution in
removing dependency.

1 2 3 4 5 6 7 8 9 10 Avg

w/o updating 143 146 78 78 129 124 84 91 102 143 111.8

w/ updating 0 0 0 0 0 3 0 0 1 0 0.4

PCA 0 0 0 0 0 0 0 0 0 0 0

Clustering 123 95 146 77 117 60 127 47 164 119 107.5

Table 2. Number of remaining independent features after 500 removals in 10
experiments.

B. Real-World Datasets
We use three real-world datasets from UCI machine

learning repository for experiments. The first two datasets
are Arcene and Gisette, which were used in NIPS 2003
feature selection challenge. The last one is Arrhythmia.
Originally, it contains 16 classes to specify which type of
arrhythmia an observation belongs to, but we simplify the
classification problem as a binary decision problem to only
label each observation as “present” or “absent”. Since there
are some missing values in this dataset, we simply assign the
mean of each dimension (feature) to those missing values.
The number of observations and number of features about
these datasets can be seen in Table 3.

Table 3. Real-world datasets

252

Different from the artificial datasets, in the real datasets it is
not possible to identify completely independent feature sets
for evaluation. Therefore in this experiment, we would like
to evaluate whether the information can be retained after
removing features. Since the goal of unsupervised feature
selection methods is to retain as much information as
possible while removing some redundant features, ideally its
classification performance should not change too much after
redundant features are removed. To demonstrate this, the
performance under different number of selected features is
drawn to exhibit how the performance changes as the
number of selected features varies. Fig. 5 shows the results
of two-fold cross validation of different feature selection
methods on Arcene dataset, while Fig. 6 and Fig. 7 show the
five-fold cross validation result of Gisette and Arrhythmia
datasets. Note that the classifier package LibLinear [21] is
used as the learning algorithm for classification.

Figure 5. The two-fold average AUC curve of Arcene

(blue + line: our method w/o updating, red * line: PCA-based, green square
line: Clustering-based, pink circle line: our method w/ updating, and black

dotted line: all features used)

According to the criterion that as the number of
removed feature increases, the classification performance
should not vary too much, the better method shall have the
following properties: (1) have performance close to the
original performance (all features are used), represented by
the dotted line in the figures, (2) prevent a huge drop or
improvement of performance (which indicates some non-
replaceable features are just removed), and (3) hold such a
trend (close to the dotted line) as long as possible while more
features are removed. As shown in the figures, the green
curve for clustering-based method falls much earlier than the
other methods. The red curve for PCA-based method and our
methods (blue for method without updating and pink for
method with updating) have performances very close to the
dotted line as the number of removed features is small.
However, most of the cases our method stays closer to the
dotted line for longer period than the other methods. Unlike

clustering-based method, the performance of our method
without updating even changes smoothly without any huge
drops. Note that in our experiment, we use area under
receiver operating characteristic (ROC) curve (AUC) as a
measure of performance.

Figure 6. The five-fold average AUC curve of Gisette

Figure 7. The five-fold average AUC of Arrhythmia.

Given the above criteria, the performance can be
measured by area under offset curve of such chart. The
method with smaller area is considered as a better one with
respect to the criteria. We calculate the area covered by a
given curve and the dotted line (i.e. performance without
removal). To have better understanding of the results, we
define Average Change of Area (ACA) as follows:

)(
)()(

),(
xRange

dxxgxf
gfACA 	 −

=

ACA measures the area between two performance curves f(x)
and g(x), and normalizes the area by the range of x. In our
setting, f(x) is the AUC curve of one particular method, g(x)
is the AUC curve when no feature is removed, and x is the
percentage of removed features.

253

Some statistics are shown in Table 4. We consider the
case when there is 0.01 to 0.04 change of performance (e.g.
the AUC changes from 0.85 to 0.86 when considering 0.01
change of performance), the number of features are removed
(the more the better) and the average change of area (the
smaller the better). Smaller average change of area implies
the performance curve for the method satisfies the desired
properties mentioned above. As shown in Table 4, generally
our method can select a subset of features without affecting
the original performance significantly comparing with the
other methods. That is, the average change of area is small
for most of the cases. Also, the percentage of features
removed given same performance change for our method is
generally larger than those of the other methods. This
indicates that our unsupervised feature selection method with
updating can perform better in removing near-dependent
features. Note that our method without updating can still
attain comparable or even better results than PCA-based
method in Arcene and Giestte datasets.

performance change

w/o updating
w/ updating
PCA-based

Clustering-based

w/o updating
w/ updating
PCA-based

Clustering-based

w/o updating
w/ updating
PCA-based

Clustering-based
Table 4. The statistics of the performance curves of different methods when
there is 0.01 to 0.04 change of performance. (PFR: Percentage of Features

Removed. ACA: Average Change of Area).

V. CONCLUSION
We propose an unsupervised feature selection method to

remove the dependent features. Experiment results show that
our method performs significantly better than the other
competitive methods in terms of removing the dependent (or
redundant) features and retaining the information.
Geometrically, our proposed method tries to find a
hyperplane with normal vector equal to the principal
component of a data matrix (when features in the data matrix
are transformed to zero mean and unit variance) such that
most data points lie close to the hyperplane, implying the
existence of dependent or redundant features. We also
demonstrate the connection between our method and PCA-
based method. Moreover, our backward feature selection
method feeds back the effect of each removal of feature on
the remaining features with complexity about max(O(nm),

O(n2)), which outperforms the PCA-based methods under
some circumstances.

REFERENCES
[1] I. Guyon, and A. Elisseeff, “An Introduction to Variable and

Feature Selection,” in The Journal of Machine Learning
Research, 2003.

[2] D. Koller, and M. Sahami, “Toward Optimal Feature Selection,”
in 13th International Conference on Machine Learning, 1996, pp.
284-292.

[3] K. Kira, and L. A. Rendell, “The Feature Selection Problem:
Traditional Methods and a New Algorithm,” in In Proc. AAAI-
92, San Jose, CA, 1992, pp. 129-134.

[4] L. Yu, and H. Liu, “Feature Selection for High-Dimensional
Data: A Fast Correlation-Based Filter Solution,” in Proc. 20th
International Conference on Machine Learning, 2003, pp. 856-
863.

[5] J. G. Dy, and C. E. Brodley, “Feature Selection for Unsupervised
Learning,” in Journal of Machine Learning Research, 2004, pp.
845-889.

[6] P. H., L. F., and D. C., “Feature Selection Based on Mutual
Information: Criteria of Max-Dependency, Max-Relevance, and
Min-Redundancy,” in IEEE Transactions on Pattern and
Machine Intelligence, 2005, pp. 1226-1238.

[7] P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised Feature
Selection Using Feature Similarity,” in IEEE Transcations on
Pattern Analysis and Machine Intelligence, 2002, pp. 301-312.

[8] N. S.-. Madsen, C. Thomsen, and J. M. Pena, “Unsupervised
Feature Subset Selection,” in Workshop on Probabilistic
Graphical Models for Classification, pp. 71-82.

[9] C. Ding, and H. C. Peng, “Minimum Redundancy Feature
Selection from Microarray Gene Expression Data,” in Proc.
Second IEEE Computational Systems Bioinformatics Conf.,
2003, pp. 523-528.

[10] P. Krizek, J. Kittler, and V. Hlavac, “Feature Condensing
Algorithm for Feature Selection,” in International Conference on
Pattern Recognition, 2008.

[11] G. P. McCabe, “Principal Variables,” in Technometrics, 1984, pp.
137-144.

[12] J. A. Cumming, and D. A. Wooff, “Dimension Reduction via
Principal Variables,” in Computational Statistics & Data
Analysis, 2007, pp. 550-565.

[13] M. A. Hall, “Correlation-Based Feature Selection for Discrete
and Numeric Class Machine Learning,” in Proc. 17th
International Conference on Machine Learning, 2000, pp. 359-
366.

[14] R. Kohavi, and G. H. John, “Wrappers for Feature Subset
Selection,” in Artificial Intelligence, 1997, pp. 273-324.

[15] D. W. Aha, and R. L. Bankert, “A Comparative Evaluation of
Sequential Feature Selection Algorithms,” in Proc. 5th
International Workshop on Aritificial Intelligence and Statistics,
1995, pp. 1-7.

[16] L. R., R. R., and T. M., “Genetic Algorithms as a Strategy for
Feature Selection,” in J. Chemometrics, 1992, pp. 267-281.

[17] S. Wold, K. Esbensen, and P. Geladi, “Principal Component
Analysis,” in Chemometrics and Intell. Lab. Sys., 1987.

[18] I. T. Jolliffe, “Discarding Variables in a Principal Component
Analysis I: Artificial Data,” in Applied Statistics, Journal of the
Royal Statistical Society, 1972, pp. 160-163.

[19] W. J. Krzanowski, “Selection of Variables to Preserve
Multivariate Data Structure Using Principal Components,” in
Applied Statistics, 1987, pp. 22-33.

[20] J. Cadima, and I. T. Jolliffe, “Loading and Correlations in the
Interpretation of Principal Components,” in J. Appl. Statist, 1995,
pp. 203-214.

[21] E.-E. Fan, K.-W. Chang, C.-J. Hsieh et al., “LIBLINEAR: A
Library for Large Linear Classification,” in Journal of Machine
Learning Research, 2008, pp. 1871-1874.

254

