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Abstract—This paper proposes an unsupervised feature 
selection method to remove the redundant features from 
datasets. The major contributions are twofold. First, we 
propose an eigen-decomposition method to rank the 
hyperplanes (which describes the relations between features) 
based on their linear dependency characteristic, and then 
design an efficient Gaussian-elimination method to 
sequentially remove the feature that is best represented by the 
rest of the features. Second, we provide a proof showing that 
our method is similar to removing the features that contribute 
the most to the Principal Components with the smallest eigen-
value, but considering the effect of each removal of features 
with complexity about max(O(nm), O(n2)) instead of O(n3), 
where n is the number of features and m is the number of 
observations. We perform experiments on an artificial and 
real-world datasets. The results show that our method can 
almost perfectly remove those dependent features without 
losing any independent dimension in the artificial dataset and 
outperforms two other competitive algorithms in the real-
world datasets. 

Keywords-unsupervised feature selection; eigen-
decomposition; Gaussian-elimination; PCA 

I. INTRODUCTION 
A knowledge discovery and data mining (KDD) system 

aims at extracting knowledge from data. Usually a KDD 
method takes data as a set of observations which are 
described by some features. Since different features can 
provide different information about the observations, for 
real-world tasks it is very common that human beings tend to 
collect as many features as possible in the first place so as to 
not omit any possible clues. Furthermore, in many real world 
cases the data are collected through different resources by 
different individuals, therefore very often certain level of 
dependency or redundancy is introduced once the evidence 
from different sources are merged. As a large number of 
features bring the “curse of dimensionality” as well as the 
increasing need of computational time and space, how to 
remove redundant features becomes an important research 
problem [1].  

Feature selection methods can be generally divided into 
two categories: supervised [2-4], and unsupervised [5-8] 
methods depending on the involvement of the target with the 
problem at hand (e.g. the prediction or classification 
problems). In the case of unsupervised feature selection, the 
methods search for a subset of features which is a best subset 
under certain criteria. One of the interesting criteria that has 

been used in the literature is the measurement of relatedness 
or redundancy among features [6] [9]. One redundant feature 
can be represented by some other features, and thus the 
removal of a redundant feature causes no loss of information 
if such representation can be captured by the classifier. There 
are two types of methods to measure the redundancy among 
features, namely clustering based methods and principal 
component analysis (PCA) based methods that have been 
investigated to solve this problem. Clustering based methods 
first cluster the features based on certain similarity metrics, 
and then select one representative feature in each cluster [10]. 
However, usually only pair wise similarity between two 
features are measured to build the hierarchical tree. PCA-
based methods [11] project the data onto the principal 
components, and each principal component is a linear 
combination of original features. There are many criteria to 
select the features defined in [11]. The simplest way is to 
pick the features that have largest loadings in the most 
important principal components, or to reject the features that 
have largest loadings in the least important principal 
components. One main drawback of many PCA-based 
methods lies in the high computation to perform PCA 
operation after each removal or selection of feature, and thus 
usually suboptimal strategy is taken (e.g. only perform PCA 
operation once). Recently, Cumming [12] evaluated the 
average relatedness of features to all the principal 
components and feed back the effect of forward selection of 
each feature by recalculating the partial covariance matrix of 
remaining unselected features. However, its summation 
operation to identify the important features may be 
dominated by extremely large eigenvalues, and thus 
overlook some important features.  

In this paper, we propose an unsupervised feature 
selection method that considers the effect of backward 
feature removal with acceptable complexity. The method we 
proposed is based on the mapping of the concept of 
redundancy to dependency. Our goal is to find dependent 
features by choosing a set of coefficients with which the 
linear combination of features is close to zero. Such near 
linear dependency of features can be considered as the 
equations of a hyperplane, and we propose an eigen-
decomposition method to rank the hyperplanes based on 
their linear dependency characteristics. A backward process 
is designed to remove the corresponding dependency by 
substituting the feature with largest absolute coefficient. 
Geometrically, if there are dependent features in the dataset, 
our proposed method can find a hyperplane to which most 
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data points lie close. Furthermore, we prove that our 
proposed method is similar to removing the features that 
have largest loadings in the least important principal 
components, when features in the data matrix are 
transformed to zero mean and unit variance. Different from 
PCA-based operations which generally requires feeding back 
the effect of each removal of features, our proposed method 
only needs the computation complexity proportional to 
max(O(nm), O(n2)), rather than O(n3), where n is the number 
of features and m is the number of observations. 

The major contributions of this paper can be summarized 
as follows: 
1. We propose a new backward linear feature selection that 

uses eigen-decomposition to rank the linear dependency. 
Furthermore, the geometrical meaning of our method is 
explored. 

2. We prove that our method is similar to PCA-based 
feature selection methods when features in the data 
matrix are transformed to zero mean and unit variance. 
However, our method takes into consideration the effect 
of removal of each feature with complexity proportional 
to max(O(nm), O(n2)), rather than O(n3).  

II. RELATED WORKS 
Feature selection is an important topic which has been 

studied for a long time [1]. It is possible to divide the works 
of feature selection into two categories: supervised feature 
selection and unsupervised feature selection. Supervised 
feature selection is applied for classification or regression. 
Generally, the methods consist of two major parts: goodness 
measurement of features and search strategy.  

The method to select features can be categorized as filters 
and wrappers. For filters methods [4] [9] [13], the selection 
is independent to the underlying learning model and thus, 
this method is considered as a pre-processing step. However, 
wrappers [14] directly appeal to the performance of the 
learning model used. The features that can result in better 
prediction accuracy will be selected. The search strategy 
defines the way of producing possible feature subsets. Some 
sequential methods [15] such as forward search or backward 
search were proposed. To prune the size of search space, this 
type of search generally takes the greedy strategy at the 
sacrifice of optimality. There are other search methods [16] 
trying to improve the chance of approaching the optimal 
solution via “randomization” instead of searching the whole 
feature space. 

 In the case of unsupervised learning, the process of 
feature selection searches a feature subset which is 
considered as the best subset under some criteria. The 
categorization of supervised feature selection can be applied 
to unsupervised ones. However, the goodness measurement 
of features is defined differently so as to meet the needs in 
unsupervised learning. In the filter methods, without any 
prediction target, the measurement can only be conducted 
between features themselves. Madsen, et al. [8] introduced a 
strategy to select features by analyzing the relatedness 
between them through clustering. For unsupervised wrapper 

methods, instead of prediction accuracy, other measurements 
of performance of a learning algorithm are defined. Dy, et al. 
[5] measured clustering results by how well each cluster is 
separated under a specific algorithm. One interesting point 
mentioned in the literature is that the redundancy of features 
could be one criterion for measuring the goodness of 
features, and the goal of selection is to reduce the 
redundancy [6] [9]. The redundant features are those that 
provide none or little information, which describes the 
discrimination of targets (classification problems), or 
represents the structure of a data set.  

Discarding redundant variables is an often-seen 
technique in multivariate analysis. Its goal is to throw away 
those variables while leaving the analysis result unchanged 
or only changed slightly. If each feature is considered as a 
variable, reducing redundancy of a feature set is actually 
performing unsupervised feature selection. To look for the 
redundant variables, there are two main types of methods: 
clustering based methods, and PCA based methods.  

Grouping features into clusters is a way to remove 
redundant features. Under the assumption that similar 
features are redundant, one representative feature is selected 
from each cluster, and the other features within the same 
cluster are removed. Different measures of similarity in 
clustering algorithms were proposed. Mitra, et al. [7] used 
maximal information compression index to measure the 
similarity and considered k-nearest-neighbors to find clusters, 
while the hierarchical clustering was used with a degree-
based distance as the measure of similarity in [10]. The main 
deficiency of clustering-based methods is that only the pair 
wise relation of features is considered because usually the 
pair wise similarity or distance is used to build the 
hierarchical tree and to group the features iteratively. 

The well-known PCA [17] method provides a way to 
describe data by a set of important axes called principal 
components. Each principal component is a combination of 
original variables with some coefficients, and each 
coefficient can be regarded as the relatedness between this 
variable and the component. As a result, a variable with a 
larger loading in a more important component will be 
considered as a significant one in which more information of 
data is kept; a variable with a larger loading in a less 
important component can be discarded as a redundant one by 
which no useful information is provided [18]. Rather than 
directly looking into each principal component, other works 
analyzed the variances in principal components. The 
variances of selected variables should cover the variance of 
the original data as much as possible [11]. Noting that the 
methods discussed above measure the structural difference of 
data represented by the original variables and selected 
variables indirectly, Krzanowski [19] proposed that it is 
better to compare each point. Given that the dimension is 
reduced to K by PCA, each point described by the complete 
feature space and the selected feature space will have two 
different projections to two sets of K principal components 
obtained by applying PCA to these two spaces. If the 
selected variables model the variation of data well, then the 
structures of both projections should be quite similar. 
Considering that the structure is only under some distortion
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Figure 1: The flowchart of the proposed method

of translation, rotation and reflection, Procrustes analysis can 
measure the difference between the two data matrixes. 
However, the complexity becomes a concern for many PCA 
operations on different feature sets when the number of 
features increases. A recent work [12] refocused on 
measuring the importance of variables via the information of 
loading and variance provided by each principal component, 
but with a thorough estimation which evaluates the average 
relatedness to all the components and feeds back the effect of 
selection at each iteration. Although PCA-based methods can 
analyze all the features at a time, greedy search strategy is 
usually applied through a backward or forward selection due 
to the high complexity of PCA. There is one problem with 
greedy strategy: the effect of one selection or removal on the 
remaining features is not considered, while it was shown in  
[12] that an effective method was proposed to feed back this 
effect via recalculating the partial covariance matrix of the n 
remaining features given the removed feature with the 
complexity of O(n2). However, in their method, the 
importance of a feature was measured by sum of the product 
of loading in each component and the corresponding 
eigenvalue. The result of summing over the eigenvalues may 
be dominated by larger eigenvalues, and therefore can cause 
misjudgment of the importance of features in some cases. To 
cope with the problem, we propose a new unsupervised 
feature selection method as to remove features that have 
large loadings in small eigenvalues for better performance in 
real-world datasets. Our backward feature selection 
algorithm also considers the effect of each removal with the 
complexity of max(O(nm), O(n2)) to reweigh the n 
remaining features in the case of m observations. Moreover, 
the theoretical and geometrical interpretations are presented 
to support this method.  

III. METHODOLOGY 
The main concept of our method is the mapping of 

redundancy to dependence. A dependent feature can be 
expressed as the linear combination of some independent 
features. The removal of the dependent feature results in no 

loss of information since the information is preserved by 
those independent features. Our method finds a set of 
coefficients with which the linear combination of features 
(we denote it as E) is close to zero, implying the existence 
of dependent features. Geometrically, our method finds a 
hyperplane to which most observations lie close. Then, the 
feature with largest absolute coefficient is replaced by the 
other features, and the effect of its removal is updated. This 
process is iterated until all the remaining E’s are smaller 
than a threshold set by the user. The flowchart of our 
method is shown in Fig. 1. In the following sections, each 
component in the flowchart is furthered explained. The 
definition of redundancy and the way to model it is 
introduced in Section III. A, and its geometrical meaning is 
presented in Section III. B. In Section III. C, the backward-
selection process for removing the redundancy of features is 
proposed. We bring up the connection between our method 
and the PCA-based methods in Section III. D. 

A. Redundancy Examination 
Suppose we are given an m-by-n data matrix A. Each 

row of A represents an observation x∈Rn and each column 
represents a feature f∈ Rm. The redundancy of features is 
defined as the existence of dependent relations between each 
feature. A dependent relation implies that one feature can 
more or less be expressed by other features. In this case, 
discarding this feature results in no loss of information, since 
other features can make up its removal. If only linear relation 
is considered, then this notion can be thought as to check 
whether there is a non-zero column vector v with the length 
n of the number of features such that 

0
�

=⋅vA  (1) 

The vector v describes the linear relationship among 
features. When dealing with real-world data, the truly linear 
dependency between features may not exist, and the equation 
becomes 
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where each ei in equation (2) is the result of the linear 
combination of each feature of an observation xi, and 
possibly contains non-zero value. For each v, the 
corresponding vector E can be thought as the error vector to 
describe the linear dependency of features. If the error vector 
E is close to a zero vector, the linear dependency of features 
described by v is supposed to exist to some extent. This type 
of dependency, or one can call it near linear dependency, is 
needed to be considered when modeling the redundancy of 
features. Therefore, finding v which minimizes the following 
function is considered instead: 

2

2

2

2

2

2
0 EAvvA ==−⋅
�  (3) 

The minimization of function (3) implies that the linear 
dependency constraint is loosened to find some v such that 
Avcan be close to a zero vector. Note that the l2 norm of Av 
is taken to measure how different it is between Av and a zero 
vector. The vector v which produces the minimal value can 
be used to represent the relationship which best describes the 
near linear dependency of features. If the assumption that 
||v||2 = vtv=1 is used, by applying Lagrange multiplier, the 
minimization of function (3) can be written as: 

)1(min)1(min 2

2
−−=−− vvAvAvvvAv ttt

v

t

v
λλ  (4) 

In order to solve the minimization problem, one can take 
the derivative of equation (4) with respect to v, and set it 
equal to zero to obtain 

vAvAt λ= (5) 

It implies that v is one of the eigenvectors of AtA. 
Moreover, the corresponding eigenvalue � is the l2 norm of 
Av since 

λλν === 2

2

2

2
vAvAvA tt  (6) 

Through the eigen decomposition of AtA, n eigenvectors 
and their corresponding eigenvalues can be obtained, where 
n is the number of features. Because all the eigenvectors 
satisfy equation (5), these eigenvectors orthogonally describe 
n linear dependency of features, with the degree of linearity 
expressed by the corresponding eigenvalues.  

B. Geometrical Interpretation 
In Equation (3), we treat the error vector E as the 

difference between a zero vector and the multiplication of 
the data matrix A and an eigenvector v. Since this 
multiplication can be thought as projecting the observations 
in A on the v, the difference measured is actually along the 
direction of v. This idea corresponds to estimate the distance 
from each observation to the hyperplane with normal vector 
v that passes through the zero point in the feature space. If 
we adjust the mean of each column in A to zero and its 

variance to one (the distribution of observations is centered 
to zero and the effect of the scale of features is eliminated), 
the hyperplanes which pass through the zero point can be 
used to describe the observations linearly. As shown in Fig. 
2, when E is close to a zero vector, the observations will be 
all located at the positions near the hyperplane, which means 
this hyperplane can linearly describe the distribution of the 
observations. In this case, the corresponding eigenvalue, 
which is equal to ||E||2, is small. On the contrary, when the 
number of entries with large value in E becomes larger, as 
shown in Fig. 3, the observations will spread around the 
hyperplane rather than gather close to it. While such a 
hyperplane is used to represent the linear distribution of the 
observations, the error induced will be large, which can be 
easily captured by the corresponding ||E||2 or the eigenvalue. 
From those figures, the geometric relationship between the 
error vector E and the hyperplane with normal vector v can 
describe the linear dependency of features. 

 
Figure 2. Left plot: the data points are clustered around a hyperplane with 
normal vector (1,1,1). Right plot: the same distribution of data points, but 

with a different view. 

Figure 3. Left plot: the data points are located far away from a hyperplane 
with normal vector (1,1,1). Right plot: the same distribution of data points, 

but with a different view. 

C. Feature Removal 
In the previous sections, we have described how the 

dependency vector v can be obtained from eigenvector 
analysis. The next step is to utilize the information provided 
in v to evaluate the degree of redundancy of each feature so 
as to conduct the feature selection process. Considering that 
the greedy strategy taken in stepwise algorithms of PCA-
based methods is not robust [20] without considering the 
effect of removal, we propose a method to efficiently model 
the effect induced at each iteration of selection to facilitate 
better decision of features to be removed. 

Ideally if there exists perfect dependency between 
features, each eigenvector v can be seen as the normal 
vector of a hyperplene that presents such dependency, and 
consequently it is possible to obtain this following equation: 

250



0...2211 =⋅++⋅+⋅ nn fvfvfv  (8) 

where fi is the ith column vector of A, and vi is the ith 
element of v. However, observations do not usually lie on 
the hyperplane perfectly. In the near linear-dependent case, 
an error vector shall be introduced to represent the distance 
of each observation to the hyperplane: 

Efvfvfv nn =⋅++⋅+⋅ ...2211  (9) 

For an m-by-n data matrix A (n features for one 
observation and there are m observations), there will be n 
equations of hyperplanes obtained from n eigenvectors: 
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Here, the idea of Gaussian Elimination is utilized to 
remove features in turn. At each iteration, we eliminate a 
feature with the smallest ||E||2, which reflects the most 
dependent relation. ||E||2 measures the degree of linear 
dependency characterized by the corresponding equation, 
and the equation with small ||E||2 represents a hyperplane 
with more points lying close to it. Suppose that we have the 
ith equation whose ||E||i2 is the smallest. In order to remove 
the dependency in the equation, one feature, for example, fj 
is substituted by rewriting it as 

( ) jiinniiij vEfvfvfvf .,22,11, ... −⋅++⋅+⋅−= (10) 

In order to preserve as much original information as 
possible, we prefer removing a feature with minimum 
effects on the other E’s of other equations. Considering the 
case of substitution of fj by equation (10), the remaining 
equations become 

( )
( )
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After transposition we obtain 
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(11) 

It is apparent that if fj is the feature with largest |vi,j|, 
substituting it will cause less effect on the other E’s, since 
the term Ei/vi,j is smaller. Therefore, it is reasonable to 
choose the features with largest absolute coefficient in the 
selected equation for substitution. Now with the updated n-1 
equations, the degree of the linear dependency needs to be 

re-estimated by ranking the equations above based on the 
updated error vector. To remove the next dependent feature, 
we can repeat the process by replacing the feature with 
largest absolute coefficient in the equation of the smallest 
newly-updated ||E||2. This substitution reduces the size of 
equations from n-1 to n-2. By repeating the process, the 
number of features continues to decrease. Note that each 
substitution requires to update all the coefficients of the 
remaining equations plus each E. Since the length of E is m, 
the inclusion of updating E’s or not determines the 
complexity of a substitution to be O(nm) or O(n2), where m 
is the number of observation (fixed during the selection 
process); and n is the number of the features left, which is 
equivalent to the number of the remaining equations. We 
design the algorithm as an iterative procedure, and the 
pseudo code of it is described in Fig. 4. One can set the 
lower bound of the degree of linear dependency to decide 
when to stop. We present this constraint in our algorithm as 
a threshold of ||E||2. Those eigenvectors whose ||E||2 are 
smaller than or equal to the threshold are selected as a set of 
hyperplanes which describe dependent relations of features 
in the procedure of selection. As a result, the number of the 
features to be eliminated will depend on this threshold. 

          
Figure 4. The backward unsupervised feature selection algorithm. 

D. Connection to PCA-based methods 
In this section, we provide a proof showing the 

connection between our proposed method and PCA-based 
methods. After standardizing A (with zero mean and unit 
variance for each column fi of A), we can get the connection 
between our proposed method and PCA-based methods. 
Assume that the number of feature is n. 
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Equations (6) and (12) show that finding such near 
linear dependency relation is equivalent to doing eigen-
decomposition on the correlation matrix of features of A. 
This is how PCA performs for analyzing the feature space 
of A. 

The above observation exhibits that the eigenvectors 
used as the normal vectors of the hyperplanes to describe 
the observations are identical to the principal components in 
the feature space found by PCA (given features are 
transformed to zero mean and unit variance before PCA 
analysis). Considering that each eigenvector is equivalent to 
a principal component, we conduct a similar procedure as 
the method mentioned in [18] to choose the feature with the 
largest loading on the least important component to be 
removed. However, the major disadvantage of that method 
lies in the fact that they did not model the effect of each 
removal because to do that it is required to perform PCA 
operation in every iteration, which takes a lot of time. 
Consequently, as can be seen in the experimental section, 
their selection process does not perform as well as ours. 
Viewing the eigen-decomposition process from the 
viewpoint of dependency-modeling (rather the maximizing-
variance point of view as PCA does) allows us to come up 
with a theoretically more sound solution in the feature 
removal process. 

IV. EXPERIMENTS 
Our proposed method is tested on four datasets. The first 

experiment is to test the ability of removing the near linear 
dependency in an artificial dataset, and then we try our 
method on three real-world datasets. For our methods, we 
experiment on two different settings: one uses the updating 
equation (11) and one does not. The one without updating is 
similar to the method motioned in [18] where features with 
largest loadings in least important principal components are 

removed sequentially. We also compare our method with a 
PCA-based method [12], and a clustering-based method [10].  

A. Aritificial Dataset 
This artificial dataset contains 500 rows of observations 

and 1000 columns of features. The first 500 columns are 
designed to be linearly independent and are randomly (but 
not necessarily equally) divided into 10 groups. As a result, 
these 10 groups have different number of columns of 
features, but nevertheless independent to each other. The 
next 500 columns are created by the linear combinations of 
columns within each group plus a small amount of noise. 
Thus for every group, there are some near linear dependent 
features. We would like to evaluate whether the dependent 
features can be removed first in the process of selection. To 
achieve such goal, we want to count how many of the first 
500 removed features are independent to the remaining 
features. The best result a method can reach in this 
experiment is 0, which means all of the dependent features 
are removed before any independent feature is removed. We 
repeat this experiment 10 times and the experiment results 
are shown in Table 2. We can see that our method and PCA-
based method can perform almost perfectly on this test, 
while Clustering-based method and our method without 
updating are not able to guarantee optimal solution in 
removing dependency. 

1 2 3 4 5 6 7 8 9 10 Avg

w/o updating 143 146 78 78 129 124 84 91 102 143 111.8

w/ updating 0 0 0 0 0 3 0 0 1 0 0.4

PCA 0 0 0 0 0 0 0 0 0 0 0

Clustering 123 95 146 77 117 60 127 47 164 119 107.5

Table 2. Number of remaining independent features after 500 removals in 10 
experiments. 

B. Real-World Datasets 
We use three real-world datasets from UCI machine 

learning repository for experiments. The first two datasets 
are Arcene and Gisette, which were used in NIPS 2003 
feature selection challenge. The last one is Arrhythmia. 
Originally, it contains 16 classes to specify which type of 
arrhythmia an observation belongs to, but we simplify the 
classification problem as a binary decision problem to only 
label each observation as “present” or “absent”. Since there 
are some missing values in this dataset, we simply assign the 
mean of each dimension (feature) to those missing values. 
The number of observations and number of features about 
these datasets can be seen in Table 3.  

         
Table 3. Real-world datasets 
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Different from the artificial datasets, in the real datasets it is 
not possible to identify completely independent feature sets 
for evaluation. Therefore in this experiment, we would like 
to evaluate whether the information can be retained after 
removing features. Since the goal of unsupervised feature 
selection methods is to retain as much information as 
possible while removing some redundant features, ideally its 
classification performance should not change too much after 
redundant features are removed. To demonstrate this, the 
performance under different number of selected features is 
drawn to exhibit how the performance changes as the 
number of selected features varies. Fig. 5 shows the results 
of two-fold cross validation of different feature selection 
methods on Arcene dataset, while Fig. 6 and Fig. 7 show the 
five-fold cross validation result of Gisette and Arrhythmia 
datasets. Note that the classifier package LibLinear [21] is 
used as the learning algorithm for classification.  

                       
Figure 5. The two-fold average AUC curve of Arcene 

(blue + line: our method w/o updating, red * line: PCA-based, green square 
line: Clustering-based, pink circle line: our method w/ updating, and black 

dotted line: all features used) 

According to the criterion that as the number of 
removed feature increases, the classification performance 
should not vary too much, the better method shall have the 
following properties: (1) have performance close to the 
original performance (all features are used), represented by 
the dotted line in the figures, (2) prevent a huge drop or 
improvement of performance (which indicates some non-
replaceable features are just removed), and (3) hold such a 
trend (close to the dotted line) as long as possible while more 
features are removed. As shown in the figures, the green 
curve for clustering-based method falls much earlier than the 
other methods. The red curve for PCA-based method and our 
methods (blue for method without updating and pink for 
method with updating) have performances very close to the 
dotted line as the number of removed features is small. 
However, most of the cases our method stays closer to the 
dotted line for longer period than the other methods. Unlike 

clustering-based method, the performance of our method 
without updating even changes smoothly without any huge 
drops. Note that in our experiment, we use area under 
receiver operating characteristic (ROC) curve (AUC) as a 
measure of performance. 

                   
Figure 6. The five-fold average AUC curve of Gisette 

                   
Figure 7. The five-fold average AUC of Arrhythmia. 

Given the above criteria, the performance can be 
measured by area under offset curve of such chart. The 
method with smaller area is considered as a better one with 
respect to the criteria. We calculate the area covered by a 
given curve and the dotted line (i.e. performance without 
removal). To have better understanding of the results, we 
define Average Change of Area (ACA) as follows: 

)(
 )()(

),(
xRange

dxxgxf
gfACA 	 −

=  

ACA measures the area between two performance curves f(x) 
and g(x), and normalizes the area by the range of x. In our 
setting, f(x) is the AUC curve of one particular method, g(x) 
is the AUC curve when no feature is removed, and x is the 
percentage of removed features.  

253



Some statistics are shown in Table 4. We consider the 
case when there is 0.01 to 0.04 change of performance (e.g. 
the AUC changes from 0.85 to 0.86 when considering 0.01 
change of performance), the number of features are removed 
(the more the better) and the average change of area (the 
smaller the better). Smaller average change of area implies 
the performance curve for the method satisfies the desired 
properties mentioned above. As shown in Table 4, generally 
our method can select a subset of features without affecting 
the original performance significantly comparing with the 
other methods. That is, the average change of area is small 
for most of the cases. Also, the percentage of features 
removed given same performance change for our method is 
generally larger than those of the other methods. This 
indicates that our unsupervised feature selection method with 
updating can perform better in removing near-dependent 
features. Note that our method without updating can still 
attain comparable or even better results than PCA-based 
method in Arcene and Giestte datasets. 

performance change

w/o updating
w/ updating
PCA-based

Clustering-based

w/o updating
w/ updating
PCA-based

Clustering-based

w/o updating
w/ updating
PCA-based

Clustering-based   
Table 4. The statistics of the performance curves of different methods when 
there is 0.01 to 0.04 change of performance. (PFR: Percentage of Features 

Removed. ACA: Average Change of Area). 

V. CONCLUSION 
We propose an unsupervised feature selection method to 

remove the dependent features. Experiment results show that 
our method performs significantly better than the other 
competitive methods in terms of removing the dependent (or 
redundant) features and retaining the information. 
Geometrically, our proposed method tries to find a 
hyperplane with normal vector equal to the principal 
component of a data matrix (when features in the data matrix 
are transformed to zero mean and unit variance) such that 
most data points lie close to the hyperplane, implying the 
existence of dependent or redundant features. We also 
demonstrate the connection between our method and PCA-
based method. Moreover, our backward feature selection 
method feeds back the effect of each removal of feature on 
the remaining features with complexity about max(O(nm), 

O(n2)), which outperforms the PCA-based methods under 
some circumstances.  
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