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Abstract—The vertex-betweenness centrality index is an es-
sential measurement for analyzing social networks, but the
computation time is excessive. At present, the fastest algorithm,
proposed by Brandes in 2001, requires O(|V ||E|) time, which is
computationally intractable for real-world social networks that
usually contain millions of nodes and edges.

In this paper, we propose a fast and accurate algorithm
for estimating vertex-betweenness centrality values for social
networks. It only requires O(b2|V |) time, where b is the average
degree in the network. Significantly, we demonstrate that the local
dynamic information about the vertices is highly relevant to the
global betweenness values. The experiment results show that the
vertex-betweenness values estimated by the proposed model are
close to the real values and their rank is fairly accurate.

Furthermore, using data from online role-playing games, we
present a new type of dynamic social network constructed
from in-game chatting activity. Besides using such online game
networks to evaluate our betweenness estimation model, we
report several interesting findings derived from conducting static
and dynamic social network analysis on game networks.

Index Terms—Betweenness, MMORPG, Text-Conversation

I. INTRODUCTION

Betweenness centrality [1], one of the most important
measurements for analyzing social networks, ranks vertices
according to their global positions in the network. More
specifically, it is used to interpret the relative importance of
vertices, which serve as bridges connecting different parts of
the network.

However, calculating the betweenness centrality for all the
vertices in a network is time consuming because it involves
finding shortest paths between all pairs, which takes Θ(|V |3)
time with the Floyd-Warshall algorithm. To improve the
time complexity, Brandes [2] proposed a BFS-based search
algorithm that requires O(|V ||E|) time, where |V | is the
number of vertices and |E| is the number of edges in a
network. However, at present, most well-known online social
networks, such as MySpace, Flickr, Twitter and other large-
scale online communities, consist of millions of vertices and
edges. Thus, even with the Brandes algorithm, computing
the vertex-betweenness centrality scores for such large-scale
networks is still computationally intractable.

This work tries to resolve the above issue. First of all,
we consider that a social network is more than a cumulative
summary of the interactions among actors in a certain period.
Instead, we emphasize the dynamics of a network, such as
the time when vertices joined and the links were generated.
Networks that carry dynamic social information are called
dynamic social networks [3]. To describe the evolution of each

vertex in a dynamic social network, we propose several local
dynamic indicators. Along with a fast and accurate method for
estimating the value of vertex-betweenness centrality. The time
complexity of our approach is O(b2|V |), where b is a small
number equivalent to the average degree of the nodes in the
network. For most large-scale social networks, b is far smaller
than the number of edges |E|. For example, for the networks
described in [4], the average number of edges is 97, 719, 006,
but the average degree is only 14.79.

To collect useful dynamic information about the vertices and
their neighbors, we introduce two local indicators: attraction
and dynamic transitivity. Attraction models the capability of a
vertex to attract connections from new vertices; and dynamic
transitivity measures an entity’s capability as a mediator to
refer one of its friends to another. We then use a linear
regression model to integrate the two variables to predict the
global vertex-betweenness values in a dynamic social network.

We demonstrate the efficacy of the proposed fast estimation
approach in a practical application by identifying the influ-
ential individuals in game social networks. According to the
MMO-Chart website [5], there has been a dramatic increase
in the number of online-game subscriptions worldwide during
the last 10 years. Although more players are joining massively
multiplayer online games (MMOGs) and establishing virtual
social communities, our approach attaches more importance
to identifying influential individuals.

Our contribution in this work is two-fold:
1) We report an interesting phenomenon whereby it is pos-

sible to use certain local dynamic indicators to predict
global betweenness centrality values. Our experiments
show that the values estimated by the proposed model
are close to the real values, and their rank is fairly
accurate.

2) We propose a new type of dynamic social network,
called a MMORPG-network, which is constructed from
in-game chatting activity. Besides using the network to
evaluate our method for estimating vertex-centrality, we
also report some static and dynamic analysis results for
it.

II. DYNAMIC SOCIAL NETWORKS

A social network is comprised of a set of vertices joined
by edges. Traditionally, such networks summarize the social
interactions or relations between the actors within a given
period in a static manner. They provide a cumulative rather
than temporal overview of the interactions and relations among



entities. Hence, it is difficult to answer questions like “Is the
network growing or shrinking?” and “Is the speed of change
fast or slow?” based on only static information about social
networks.

To capture dynamic information, it has been proposed that
each vertex and edge should be time-stamped the first time it
appears in a social network. As mentioned earlier, networks
that provide such temporal information are called dynamic
social networks. In this work, a dynamic social network is
defined as a directed graph G(V, E), where V is a set of
vertices and E is a set of edges. The time-stamp of a link from
vertex i to vertex j is denoted as τij . We use τi to denote the
time-stamp of a vertex i, i.e. the time it joined the network.

A pair of vertices i and j are said to be bi-directionally
linked and denoted as i ↔ j if and only if there exist
two opposite-directional edges between i and j. We use Cij

to denote the channel-establishment time for a pair of bi-
directionally linked vertices i and j. That is, Cij represents
the time the bidirectional edge was established:

Cij = max
i↔j

{τij , τji}

We use BN (i) to denote the bidirectional-linked neighbor-
hood of vertex i. BN is defined as follows:

BN (i) = {j ∈ V (G)|i ↔ j}

III. A FAST ALGORITHM FOR ESTIMATING
VERTEX-BETWEENNESS

A. Previous Work on Vertex-Betweenness

Vertex-betweenness is a kind of centrality index that ranks
the vertices in a network according to their connectivity. It is
usually regarded as a measurement to quantify the importance
of a vertex in terms of it connections to other vertices in the
network. Following the formal definition proposed by Freeman
[1], let pij denote the number of shortest paths from vertex i
to vertex j, and let pijk denote the number of shortest paths
from vertex i to vertex j that pass through the intermediary
vertex k. The betweenness centrality score is normalized by
dividing the number of pairs of vertices that do not include k
as follows:

bt(k) =
1

(n− 1)(n− 2)

∑

i

∑

j

pijk

pij
,

where n is the number of vertices in the network.

B. Limitations

Since calculating the vertex-betweenness values of all ver-
tices in a graph involves finding all-pairs of shortest paths,
the operation generally takes Θ(|V |3) time with the Floyd-
Warshall algorithm. On a sparse graph, it is more efficient to
use Johnson’s algorithm, which takes O(|V |2 log |V |+|V ||E|)
time. For a unweighted graph, Brandes [2] proposed an
algorithm that requires O(|V ||E|). However, it is still com-
putationally intractable for real-world social networks, which
usually consist of millions of nodes and edges.

C. Using local dynamic features to estimate vertex-
betweenness

We proposed a fast algorithm for estimating vertex-
betweenness. Intuitively, the evolution of a vertex can affect
its connectivity in a dynamic social network. We believe it
is reasonable to consider the dynamics between a vertex and
its neighbors as clues to infer the vertex’s global vertex-
betweenness value. Therefore, we design a regression model
based on the proposed local descriptors to predict such values.

Basically, the local descriptor of a vertex tires to collect
local dynamic information about the vertex. Our intuition is
that vertices that can attract new comers in every time pe-
riod have greater potential to achieve high-betweeness scores.
Moreover, a vertex that plays the role of local mediator is
more likely to possess high betweenness values. Therefore,
we propose two local descriptors: attraction and dynamic
transitivity. Attraction captures a vertex’s ability to attract new
vertices to join the network; and dynamic transitivity indicates
the willingness of a node to introduce their acquaintances to
each other. Formally, local descriptors are defined as follows:

Definition 1 (Attraction). Attraction shows how capable a
vertex is in terms of attracting fresh members, and the fresh
member is defined as the vertex joining the networks for no
more than i days. The indicator of v is the number of bi-
directionally linked neighbors who are fresh. We denote the
attraction to i-fresh vertices of v as Ni(v), and calculate it
by

Ni(v) = |{u ∈ BN (v)|Cuv ≤ τu + i}|.
If i is set to infinite, the attraction value would be equivalent

to the degree value. Although the degree value captures the
connectivity of a vertex, it does not indicate how well a vertex
can attract new comers.

Definition 2 (Dynamic Transitivity). Given three vertices v, u,
and w, linked bi-directionally in a pairwise manner, if Cvu and
Cvw both appear earlier than Cuw, then pair (u, w) is regarded
as being introduced by vertex v. The dynamic transitivity of
v, T (v), is defined as the number of pairs introduced by it
normalized by its clustering coefficient [6] denoted as cc

T (v) =
|{(x ∈ BN (v), y ∈ BN (v))|Cxy ≥ max{Cvx, Cvy}}|

cc(v)
,

where cc(v) = 2|{euw|euv, ewv, euw∈ E(G)}|
deg(v)· (deg(v)−1) . The term deg(v)

equals to the cardinality of {x|x → v ∨ x ← v}.

Note the major difference between the numerator and de-
nominator is that the former considers the order of appearance
or edges, but the latter does not, as shown by the example in
Figure 1. The channel-establishment time between u and w,
Cuw = 6, which occurs later than Cvu = 3 and Cvw = 1.
Moreover, Cmw = 5 occurs after Cvm = 3 and Cvw = 1;
and the clustering coefficient of v is 2/3. Thus, the dynamic
transitivity of v, T (v) is equivalent to 3, since the two existing
pairs, (u,w) and (m,w), are regarded as being introduced by
v.

Note that the usage of cc as the normalization factor
does have its empirical justification. From an experiment
we conducted, we find a negative correlation between the
vertex-betweenness scores and the clustering coefficients of
the vertices, given similar out-degrees. Figures 2 shows that
the correlation declines from −0.01 to −0.84 as the vertices
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Fig. 1. Cuw = 6 is later than both Cvu = 3 and Cvw = 1. That is,
the (u, w) pair is inferentially introduced by v. In addition, Cmw is later
than Cvm and Cvw . The clustering coefficient of v is 2

3
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transitivity of v, T (v) is equivalent to 3

Fig. 2. Correlation between the clustering coefficients and the vertex-
betweenness values for given out-degrees. The size of each point represents
the number of vertices with a given out-degree

out-degrees increase. In other words, the vertices with the high
vertex-betweenness usually have low clustering coefficients,
especially to high degree vertices. While the transitivity score
of a vertex describes the density in its neighborhood, which
are promoted by the vertex. The dynamic transitivity score
indicate the ratio of successfully introduced triangles over all
triangles around the neighborhood.

D. Regression Model for estimating Vertex-betweenness
scores

To estimate vertex-betweenness scores, we build a multiple
linear regression model based on the proposed local descrip-
tors. We only exploit two features in the model: attraction and
normalized dynamic transitivity.

bt(v) = w1 · Ni(v) + w2 · T (v).

The primary time-consuming operation of our scheme is
to calculate the dynamic descriptors: attraction and dynamic
transitivity. To compute the attraction of all vertices, it requires
O(|V |) time. As for dynamic transitivity, although the ap-
proximating algorithm proposed by Schank et al. [7] produce
the clustering coefficient in O(|V |) time, finding the pairs
of introduced neighbors for a given vertex still takes O(|b2|)
time. Therefore, it takes O(b2|V |) time to compute dynamic
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Fig. 3. A snapshot of the Tell-channel log. The log provides the time-stamp of
the interaction, the speaker’s ID, the listener’s ID, and the message’s content.

transitivity. As a result, our model requires O(b2|V |) time to
predict vertex-betweenness values.

IV. EXPERIMENT RESULTS

In this section, we describe an experiment conducted to eval-
uate our approach using a dynamic social network constructed
from Fairyland Online game data. The evaluation matrices
exploited are the coefficient of determination, Spearman’s
coefficient, and Kendall’s coefficient.

A. Dataset Description
Fairyland Online, which was developed by Lager Network

Technologies, operates in Taiwan, Hong Kong, Mainland
China, Thailand, and South Korea. The game was launched
in Taiwan in February 2003, and attracted more than 200,000
subscribers in less than two months. We collected the chat logs
for all realms of Fairyland Online starting from February 2003
to April 2004. The game is comprised of eight independent
realms called Alice, Anderson, Candy, Doll, Green, Mermaid,
Red, and Wolf.

1) Chat Activity Network: As shown in Figure 3, a private
message in Fairyland Online is comprised of three tuples in
one record: the time stamp of the interaction, the speaker’s ID,
and the listener’s ID. We construct a dynamic social network
based on the tuples. A vertex represents an individual and a
directed edge denotes a chat message initiated by the source
node to the target. The time stamp of the first message from
individual i to individual j is preserved as the time stamp of
the directed edges (i, j). We call this network a chat activity
network. However, since the jointime of a vertex i is not given
in the data, we deduce the jointime, τi, according to the earliest
presence of its links. In the other words,

τi = min
j 6=i,(i,j)∨(j,i)∈E(G)

{τij , τji}.

B. Baseline Scheme
For comparison, we propose a baseline model using four

common features: out-degrees, in-degrees, bi-degrees, and
clustering coefficients to estimate the betweeness centrality.
An out-degree captures the activeness of an entity; an in-
degree indicates the entity’s popularity to some extent; a
bi-degree represents how often a two-way communication
channel exists; and the clustering coefficient describe the
difficulty to be a communication bridge.



We exploit a linear regression model to incorporate these
four variables into our prediction model for betweeness cen-
trality:

bt(v) = w1 · od(v) + w2 · id(v) + w3 · bd(v) + w4 · cc(v)

C. Evaluation
To roughly see the goodness-of-fit, we compare the true

betweenness values with the values predicted by the baseline
model and the proposed model respectively in Figure 4. Note
that Figure 4 is a log-log plot due to the skewness of vertex-
betweeness distribution. The results show that for the high
vertex-betweenness vertices, our model generally provides a
better predicted values than the baseline model does.

Next, we compare the goodness-of-fit of the baseline model
and the proposed model. In addition, we believe the ranks
of the centrality values are important for applications in
online game domains. Hence, we also evaluate the persistence
of the ranks in the vertex-betweenness values via Kendall’s
coefficient and Spearman’s coefficient.

1) Goodness-of-fit: First, we evaluate the goodness-of-fit
of our two models. The coefficient of determination, R2 is the
prediction of future outcomes on the basis of given informa-
tion. R2 provides a measure of how well the outcomes are
likely to be predicted by the model. We assess R2 shrinkage
using 10-fold cross validation and plot the results in Figure 6.

On all eight chat activity networks, the proposed model
performs significantly better in terms of the goodness-of-fit
than the baseline model. Our model achieves R2 scores as
high as 0.93, and the average is 0.85.

Goodness of fit

10−fold cross−validation R−square
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Fig. 6. Comparison of the baseline linear model and the proposed linear
model

2) Rank Persistence: To evaluate the number of the highest
vertex-betweenness being correctly estimated, we inspect the
overlap ratio between the top predicted betweenness vertices
and top true betweenness vertices. The estimation exactly cap-
tures top n% high vertex-betweenness vertices if the overlap
ratio of top n% set equals to 1. Table I shows that our proposed
model performs better than the baseline model in terms of the
capability to capture the highest vertex-betweenness vertices.
Normally our approximation reaches the range from 70% to
90% in overlap.

The overlap ratio can expose the number of captured the
highest vertex-betweenness vertices, but does not show us how
well the rank persist. We therefore use Spearman’s coefficient
ρ and Kendall’s coefficient τ to evaluate the rank persistence.
Spearman’s coefficient is often thought of as being the Pearson
correlation coefficient between ranked variables. The n raw
scores are first converted to ranks xi, yi, and the differences
di = xi − yi between the ranks of each observation on the
two variables are calculated. Then, coefficient ρ is given by

ρ = 1− 6
∑

d2
i

n(n2 − 1)
.

Kendall’s coefficient is a non-parametric statistic used to
measure the association or statistical dependence between two
measured quantities. More specifically, it is a measure of rank
correlation. The coefficient is defined as follows:

τ =
nc − nd

1
2n(n− 1)

,

where nc is the number of concordant pairs in the data set
and nd is the number of discordant pairs. The denominator
can be interpreted as the total number of pairs. A high τ -
value means that most pairs are concordant, indicating that
the two rankings are consistent.

Generally, users care more about vertices with higher vertex-
betweenness values. Therefore, we investigate whether the
order of vertices with the top 0.1%, 1%, 5%, 10%, 20%,
and 30% vertex-betweenness values are consistent with their
estimated order in Figure 5. In our model, the Spearman’s
coefficients and Kendall’s coefficient between the original
order and the estimated order are generally acceptable, and
much better than the baseline model.

V. ONLINE-GAME SOCIAL NETWORK ANALYSIS

In recent years, researchers have shown increasing interest
in online social networks such as MySpace, Flickr, Twitter
and other large-scale online communities. In this paper, we
focus on networks extracted from massively multiplayer online
games. Worldwide, the number of active subscribers to such
games increased dramatically from fewer than 10, 000 in 1998
to more than 16 million in 2008.

A. Social Interactions in MMORPGs
Massively multi-player online role-playing games

(MMORPGs) are a genre of computer role-playing games in
which a large number of players interact with one another
in a virtual game world. In this virtual game world, each
player assumes the role of a character and controls many of
its actions.

According to [8], the social interactions of players are the
phenomena that make virtual worlds “sticky” and it is believed
that feature enables game worlds to retain long-term players.
Most MMORPGs exploit players’ social skills and provide
various mechanisms to support players’ interactions. Social
interactions in MMORPGs are typically integrated with the
mechanisms of the games. Through the interactions, players
may form relationships, varying from simply being a member
of a cohesive team, to friendship, or even romance.

Among the numerous interactive mechanisms, text con-
versation is the most widely used. By sending instant text-
messages, players can exchange ideas and share information
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Fig. 4. A sampled view of predicted values vs. true vertex-betweenness values for the baseline model and the proposed model respectively. Note that the
x-axis and y-axis are both in log-scale

TABLE I
THE OVERLAP RATIO BETWEEN TOP PREDICTED BETWEENNESS VERTICES AND TOP TRUE BETWEENNESS VERTICES

Alice Anderson Candy Doll
baseline proposed baseline proposed baseline proposed baseline proposed

Top 0.1% 0.7187500 0.9062500 0.6930693 0.7425743 0.6271186 0.6440678 0.5909091 0.5909091
Top 1% 0.7576687 0.8312883 0.7200791 0.7932740 0.7226891 0.7915966 0.7589286 0.8125000
Top 5% 0.7882497 0.8451652 0.7490607 0.8133281 0.7758737 0.8366935 0.7321747 0.8065954
Top 10% 0.7451820 0.7809728 0.7354424 0.7884330 0.7488661 0.8074920 0.7077300 0.7763422
Top 20% 0.7260630 0.7412053 0.7241720 0.7677706 0.7148497 0.7573492 0.6903542 0.7441524
Top 30% 0.7514021 0.7637402 0.7455264 0.7801285 0.7444569 0.7644457 0.7243633 0.7554021

Green Mermaid Red Wolf
baseline proposed baseline proposed baseline proposed baseline proposed

Top 0.1% 0.6250000 0.6477273 0.5681818 0.7272727 0.5166667 0.6666667 0.5370370 0.5925926
Top 1% 0.7197740 0.7966102 0.7466368 0.8004484 0.6738411 0.7847682 0.6333333 0.6592593
Top 5% 0.7356062 0.8202755 0.7956989 0.8360215 0.7470199 0.8049669 0.6771566 0.7219548
Top 10% 0.7392482 0.7943334 0.7592385 0.7796193 0.7612978 0.8104618 0.6822136 0.7456968
Top 20% 0.7222191 0.7666347 0.7310492 0.7294816 0.7444343 0.7755524 0.6914963 0.7468308
Top 30% 0.7471312 0.7834381 0.7676172 0.7539564 0.7582345 0.7756690 0.7242613 0.7636173

easily and quickly. Moreover, most MMORPG players make
acquaintances and even maintain friendships by exchanging
text messages.

B. In-game demographics
To understand the characteristics of in-game populations,

we analyze the demographics of Fairyland Online players.
In the game, the gender, race, and appearance of characters
are customizable, so players can create their own unique
characters. The game offers three playable races: Humans,
Elves, and Dwarvens. Figure 7 shows the in-game population
by gender and race in the eight realms of Fairyland Online.

First, we observe that there is an imbalance between male
and female players. The male to female ratios in the eight
realms are: 0.73 in Alice, 0.48 in Anderson, 0.86 in Candy,
0.49 in Doll, 0.48 in Green, 0.82 in Mermaid, 0.70 in Red and

0.44 in Wolf. The male population is almost double the female
population in the three realms with largest total population:
Anderson, Green, and Wolf.

Second, the Human race is significantly more popular
than the other two races. The proportions of the three races
(Humans, Elves, and Dwarvens) in the realms are nearly the
same: 100 : 54 : 32 in Alice, 100 : 54 : 39 in Anderson,
100 : 58 : 28 in Candy, 100 : 54 : 38 in Doll, 100 : 50 : 38 in
Green, 100 : 58 : 31 in Mermaid, 100 : 59 : 34 in Red, and
100 : 51 : 33 in Wolf.

The level of a character is a kind of social capital in
MMORPGs. Compared to low-level characters, high-level
characters can conquer difficult dungeons more easily, They
are also capable of producing more valuable virtual artifacts,
and completing quests more quickly. For the most part, low-
level characters prefer to seek help from high-level characters.
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Fig. 5. To evaluate the rank persistence of the models, we use ◦ and • to identify Spearman’s coefficient for the baseline model and the proposed model
respectively; and + and × to identify Kendall’s coefficient for the baseline model and the proposed model respectively
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Fig. 7. A snapshot of in-game demographics in terms of gender and race

As a result, high-level characters can build a network of
relationships more easily than low level characters.

Figure 8 shows that the level distributions in all 8 realms
follow a power-law distribution with an exponential coefficient
range of 1.50 to 1.54. This finding corresponds with the Pareto
principle (also known as the 80-20 rule), which holds in the
virtual game world as well as in the real world.

C. Topology of a Chat Activity Network
Table II summarizes the topological characteristics of the

chat activity networks in the eight realms of Fairyland Online.
The size of the networks ranges from 32, 690 to 101, 150.
The distributions of the in-degrees, out-degrees, and bi-degrees
follow a power-law distribution with α equal to 1.37, 1.40,
and 1.40 respectively. The mean clustering coefficients of the
networks are small. The size of the giant strongly connected
components (gscc) ranges from 66.41% to 79.24%, and the
diameter ranges from 11 to 14.

1) Degree distribution: We begin with the degree distri-
bution in MMORPG social networks. Because chatting is a
directional edge from one entity to another, the degree of
vertices can be classified into two categories: in-degree and
out-degree. For a vertex v, we denote the vertices linked to v
as in-degree neighbors and the vertices from v as out-degree
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Fig. 8. The distributions of levels in eight realms of Fairyland Online

neighbors. These two kinds of degrees represent different types
of activity; the out-degree of a vertex represent how often
an individual’s contacts other players, while the in-degree
represents how frequently the individual is contacted by other
players.

Figure 9(a) shows that the out-degree distributions of the
four largest chat activity networks follow a power law distri-
bution; and Figure 9(b) shows that the in-degree distributions
are also power law distributions. The in-degree and out-degree
distributions look similar, which implies that active individuals
coincide with popularity distribution in such instant text-
conversation.

2) Clustering coefficient: A remarkable property of most
real-world scale-free networks is the high clustering coefficient
of their vertices. The clustering coefficient of a vertex in a
graph quantifies how close its neighbors are to being a clique
(a complete graph). The measurement was introduced by Watts
and Strogatz [6]. The clustering coefficient for undirected
graphs is defined as follows:

Ci =
2|{ejk}|

ki(ki − 1)
, where eij , eik, ejk ∈ E(G).

In this work, we convert chat activity networks into undi-
rected graphs to calculate the clustering coefficients. For
the four largest realms: Anderson, Green, Red, and Wolf,
the mean clustering coefficients are 0.10567919, 0.10201802,



TABLE II
SUMMARY OF CHAT ACTIVITY NETWORKS IN FAIRYLAND ONLINE

Realm no. of no. of avg. degree avg. ratio of avg. degree diameter avg. path len.
vertices edges cc gscc in gscc in gscc in gscc

Alice 32,690 445,528 27.25 0.0847 66.41% 39.05 12 3.70
Anderson 101,150 2,363,864 46.74 0.1057 79.24% 58.06 11 3.74
Candy 59,534 1,209,526 40.63 0.0938 74.01% 53.65 12 3.70
Doll 44,891 876,911 39.07 0.1069 73.83% 51.69 12 3.73
Green 88,599 2,073,034 46.80 0.1020 78.70% 58.50 13 3.73
Mermaid 44,656 684,145 30.64 0.0805 67.96% 43.34 14 3.69
Red 60,418 1,239,473 41.03 0.0976 76.88% 52.32 13 3.74
Wolf 54,039 1,233,609 45.66 0.1039 75.86% 59.04 12 3.72
cc: clustering coefficient, gscc: giant strongly connected component
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Fig. 9. Degree distribution of chat-activity network in four realms: Anderson, Green, Red, and Wolf

0.09769602, and 0.10387252. In Figure 10, we plot the
clustering coefficients distributions of the four realms. More
than 80% of the vertices have clustering coefficients less than
0.2. The distributions are skewed. To provide some extra
information, we also plot the average clustering coefficients
of vertices grouped based on their out-degrees in Figure 11.
There is an obvious correlation between the degree and the
clustering coefficient. The clustering coefficients of vertices
with out-degrees less than 50 in a chat activity network decline
exponentially as their degree increases. For degree 50 and
above, the relation between the degree and the clustering co-
efficients becomes weaker. However, we observe that there are
some high degree vertices still remain relative high clustering
coefficients.

VI. RELATED WORK

Social network analysis dates back to the late 1970s. Free-
man [1] proposed the concept of “betweenness centrality” as
a structural property of social networks. The definition of
betweenness centrality was relaxed by Newman [9] in 2005
to count how often a node is traversed during a random walk
between two other nodes. However, the measurement proposed
by Freeman is widely used in the analysis of social networks
[10]–[12].

Determining exact vertex-betweenness centrality is
computationally-expensive. The currently fastest-known
algorithm proposed by Brande [2] requires O(|V ||E|)
time. Based on this algorithm, Brande [13] provides
several efficient algorithms for computing the shortest-path
betweenness variants including edge-betweenness centrality,
stress centrality, load centrality, and etc..

Trying to reduce the cost of vertex-betweenness compu-
tation, Bader et al. [14] present an approximating algorithm
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Fig. 10. Clustering coefficient distribution in the four largest realms:
Anderson, Green, Red, and Wolf

based on an adaptive sampling technique, which reduces the
number of single-source shortest path computations for ver-
tices with high centrality values. Nevertheless, the time com-
plexity of the approximation is still bounded by O(|V ||E|).

The social networks in online games have attracted a great
deal of attention in recent years. Jakobsson [15] discussed
the formation of social communities in a classic online game
called Ever Quest. For the numerous kinds of interactions in an
online game, such as healing and purchasing, Ducheneaut et al.
[16] outlined different patterns of interactivity and discussed
how they are affected by the structure of the game. They
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Fig. 11. Clustering coefficient dependence of degree in the four largest
realms: Anderson, Green, Red, and Wolf

also made a series of recommendations for the design of
social activities in MMORPGs. Chen et al. [17] found that
participants who have a higher degree of social interaction tend
to play much longer, and players who are closer in network
topology tend to team up for longer periods. Moreover, to
investigate the evolution of social communities in online
games, Ducheneaut et al. [18] used longitudinal data collected
directly from the popular online game World of Warcraft to
identify the grouping patterns of players.

To identify influential players, Kirman [19] analyzed the
online game called “Familiar” to identify Hardcore players.
Among the various classifications in [20], the players can
be classified into two classes: Hardcore players and Casual
players. Kirman classified the players according to the number
of in-game activities. However, the data set only involved 157
active users and recorded 1546 distinct interactions between
players. To our knowledge, this paper is the first paper that
reports studies on the influential player analysis for large
online game social networks. We were able to identify high
betweenness nodes in networks of this large scale thanks to
the estimation method we have designed.

VII. CONCLUSION

In this paper, we discuss how that dynamic information
about degree and transitivity can help us understand the
evolution of social networks. Moreover, based on the local
dynamic information, we have proposed a fast and accurate
method for estimating vertex-betweenness values in a real-
world application; the method identifies influential individuals
in MMORPGs. To shed more light on the social interactions
between MMORPG players, we examined the demograph-
ics of Fairyland Online players and identified the structural
characteristics of chat activity networks based on private text-
conversations.

Compared to the the Brandes algorithm, our estimation
requires O(b2|V |) time, where b is the average degree in
the network. In Fairyland Online, the average value of b is
approximately 50 while the average value of |E| is 1, 265, 761.
In other words, the proposed model is 506 times faster in
terms of time complexity. We evaluate the goodness-of-fit by

shrinkage R2 using 10-fold cross validation, and the rank
persistence by Spearman’s coefficient and Kendall’s coefficient
with promising results.
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