
BeTracker: A System for Finding Behavioral Patterns from Contextual
Sensor and Social Data

Hsun-Ping Hsieh, Cheng-Te Li, Shou-De Lin
Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan

sandoh714@gmail.com, reliefli@gmail.com,sdlin@csie.ntu.edu.tw

Abstract—In this work, we integrate the contextual
information provided from sensor data and the social
relationships collected from online social networks to construct
a system, termed BeTracker. We aim to find and track the
frequent and representative behaviors for any user-input
individual or social structural information. We claim
combining physical contacts from sensor data and virtual
online interactions can reveal real-life human behaviors. In our
BeTracker, we mine the temporal subgraph patterns as the
discovered behaviors from sensor-social data transactions. The
user-given information, which is the target to observe, can be
(a) an individual (to find her daily behaviors), (b) a relational
structure (e.g. linear, triangle, or star structure) (to find the
frequent and contextual interactions between them), and (c) a
relational structure with partially assigned individuals and
sequential time periods (to observe their interactions that
follow certain temporal order). In the experimental part, we
demonstrate promising results of different queries and present
the system efficiency of the proposed behavioural pattern
mining.

Keywords-temproal subgraph pattern; frequent pattern;
query; mobile sensor data; social network

I. INTRODUCTION
Nowadays, sensors are often built-in modern mobile

phones so that they have the potential to provide insights into
the human dynamics in the real-life environment. For real-
world individuals, in addition to equipping with mobile
sensors, most of them have online identities in current social
networking services, such as Facebook and Google+. It is the
fact that the mobile sensors and the social networking
interweave and provide the rich dynamic contexts of human
interactions. Such two kinds of complement data are
beneficial for us to investigate human behaviors. For
example, if Bob and Mary are acquainted with each other in
Facebook, we can infer that they stay together in the
encounter records from mobile sensors. On the contrary, if
they are strangers, it is less possible for them to have the
encounter records of sensors.

In this work, we integrate the contextual information
provided from sensor data and the social relationships
collected from online social networks to construct a system,
termed BeTracker. The objective of BeTracker system aims
to find and track the frequent and representative behaviors
for user-interested individual information. We intend to
summarize the interaction behaviors between individuals
from both the sensor encounter data and the online social
connections. Given the observation target as the query, our
system will find and return a kind of temporal subgraph
patterns as the discovered behaviors from the sensor-social
data transactions. The observation target can be (a) an

individual (to find her regular behaviors), (b) a relational
structure (e.g. linear, triangle, or star structure) with partially
assigned individuals (to find the frequent and contextual
interactions between them), and (c) a relational structure
with partially assigned individuals and sequential time
periods (to observe their interactions that follow such order
in the period). We will show some promising results of
different queries in experiments section.

Consider an encounter scenario as an example, in which
Bob works with John during 8am and 5pm every day. After
working, Bob eats dinner with his wife, Mary, during 6pm
and 8pm. On the other hand, Tom and Ted usually go to bar
together during 9pm and 11pm. In Figure 1(a), we can find
that such interactions and represent their encounter records
as a structure form in which their interaction durations are
captured on the edges. Based on such elemental case, from
the overall encounter data, we can model the human
behaviors by transforming all encounters with the interaction
durations into the temporal behavioral networks. In each
behavioral network, each node represents an individual and
an edge stands for two persons encounter within a certain
time interval (or several time intervals) from sensor data.
We collect and construct a series of such kind of temporal
behavioral networks day by day. On the other hand, to have
the real acquaintance information between individuals to
help reveal human interaction behaviors, we collect their
social relationships from the online virtual social networking
service (i.e., Facebook). For the example in Figure 1(a), its
corresponding illustrated social network is shown in Figure
1(b). Furthermore, we also elaborate an example of
discovered behavior for a user-specified query. Figure 1(c)
illustrates a resulting behavior for the query individual, Bob.
Such behavioral structure shows that Bob have a non-friend
meet with John for ten hours, and then he stay together with
Mary about two hours. We call such kind of graphs as a
temporal subgraph pattern which tells who are the ones that
regularly interact with Bob (in nodes) and when does their
interactions happen (on edge labels).

Mining such behavioral patterns has some benefits. For
example, the opportunistic routing of messages in delay
tolerant networks (DTN) is still a challenge problem due to
the intermittent connectivity and the lack of continuous end-
to-end paths between the nodes. If a system can efficiently
track an individual’s frequent and representative behaviors, it
is possible to enable sensors to have better forwarding
decisions and improve the routing efficiency. From the
perspective of social networks, mining such patterns can help
us define relationships more precisely than simply using the
information from online social network since the patterns can
be implicitly used to measure the closeness of friendships in
the social network. In [1], their work detected temporal

2011 11th IEEE International Conference on Data Mining Workshops

978-0-7695-4409-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDMW.2011.38

1227

events from sensor data. However, the method cannot
perform on dynamic sensor environments, even on mobile
sensor data. Existing works, such as [2][3][4], focus on
exploiting the social network to improve the routing
efficiency on sensor systems. Comparing to their works, our
mined behavioral patterns from sensor data not only captures
the real-life interactions between individuals, but also
enables discovering the underlying human behaviors.

Figure 1. An encounter scenario, identified relationships in social network

and an example temporal subgraph pattern

II. SYSTEM OVERVIEW
Our BeTracker is constructed on a mobile sensor network,

which comprising devices can detect other same devices
carried by different people within a radius of 10 meters, and
the corresponding social network. Figure 2 shows the
framework of our system. We assume the encounter records
collected from sensors for each day are uploaded through the
base stations to a central database. On the other hand, we
exploit the individuals’ social network to identify the
relationships between individuals. Combining such sensor
and social contexts, we devise a the temporal subgraph
pattern mining method to find the underlying temporal
frequent behaviors, called temporal subgraph patterns and
store them in our database. Given a query individual or
structure with certain thresholds, sequential time periods, and
the function view (which will be elaborated in Section 4),
our system will find and return the behavioral patterns
related to the query.

Figure 2. System Overview

III. METHODOLOGY
In this work, we regard the behaviors in a day as a

temporal snapshot. By collecting temporal graphs in a series
of days, we construct a transaction database of behavioral
networks, in which each network stands for a graph
recording behaviors from sensor data in a day. To easily
perform our temporal-based method, we sort the edges by
the associated timestamps and transform the graph into an
edge sequence. For example in Figure 2, there is a behavior
sequence, {(A, meet, B, 9, 10) (B, meet, C, 14, 16) (B, meet,
E, 15, 15)} on March 15. The edges are sorted by their start
times and then by their end times (Unit: hour). In each
transaction (network), we then exploit the corresponding
social network to provide more information about
relationships identification between individuals. A
relationship can be identified as “friend meet” (FM) or
“non-friend meet” (NFM) by the friend-list retrieved from
online social network. If two people perform friend meet,
we can infer that stay together and have some interactions
from the encounter records. If another two persons have
non-friend meet, it may indicates that they do not acquaint
with each other and just stay in the same place occasionally.
After constructing networks for each day, we perform the
temporal subgraph pattern mining algorithm on these
networks. The temporal subgraph pattern, is defined as {(u1,
l1, v1, ts1, te1)...(uh, lh, vh, tsh, teh)}, where ts1=0, and all the
edges in the pattern are sorted in increasing order. To
measure the importance of a pattern, the strength of a
pattern is calculated by counting its support, which is
defined as the number of graphs containing P in the network
database. A pattern P is frequent if its support is not less
than minsup, where minsup is a user-specified minimum
support threshold. The proposed algorithm has two stages.
First, we mine all frequent patterns of length one (denotes 1-
patterns) in the database. Then, for each 1-pattern, we build
the projected database to help discover more patterns. For
example, if we have a pattern P=(A, FM, B, 0, 1), the
corresponding projected database of P in a certain day is
{(B, FM, D, 1, 2) (A, NFM, D, 2, 3) (A, FM, B, 4, 6) (A, FM,
C, 7, 9)}, which is the P’s postfix. By scanning different
projected databases from all transactions contain P, we can
find a local pattern e, say, {(B, FM, D, 1, 1)}. We
concatenate P and e to form a new pattern {(A, FM, B, 0, 2)
(B, FM, D, 1, 1)}. The concatenations are recursively
performed in a depth-first search manner until no more
frequent patterns can be found.

Moreover, we adopt the closed pattern mining concept
introduced by Pasquier et al. [5]. A close frequent pattern
means there does not exist any super-pattern with the same
frequency in database. A suitable closed pattern mining
strategy can decrease number of frequent patterns during
mining process so that it can improve efficiency and
memory usage of the proposed method.

During the mining process, we use the closure checking
and pruning strategies to reduce unnecessary candidates.
The first strategy is Same projected database removal. If P1

1228

is a super-pattern of P2 and both share the same projected
database, P2 is not needed to be grown because the patterns
generate from P2 will be not closed patterns. The second
strategy is Forward checking scheme. A pattern P is not
closed if there exists a frequent pattern e in P’s projected
database, whose support is equal to P’s support. The third
strategy is Backward checking scheme. A pattern P is not
needed to be grown if there exists a frequent pattern e before
P, whose support is equal to P’s support. Thus, every
pattern generated from P is contained by the pattern
generated from concatenating P and e and both patterns
have the same support. By applying these strategies, the
closed frequent temporal subgraph patterns can efficiently
mine.

The default threshold for minsup is 5%. Therefore, the
patterns whose support is not less than 5% are stored in the
database. Once a user inputs a structural query, we will
return patterns by the following process: a query {(qu1, ql1,
qv1)...(qum, qlm, qvm)} is contained by a pattern {(pu1, pl1,
pv1, pts1, pte1)...(pun, pln, pvn, ptsn, pten)} if there exists a
sequence of integers j1<j2<…<jn so that qui=puji, qli=plji,
qvi=pvji, i=1,2,...,n. We can use this property to check query
existence no matter users assign structure or sequential time
periods.

The time complexity of the mining temporal subgraph
algorithm is O(n×l×p) and the space complexity o is O(n
× l × r),where n is the number of transactions in the
database, l the average number of edges in all transactions
in the database, p the number of frequent patterns, and r the
length of the longest pattern. Here, due to the page limit, we
skip the proof here.

IV. FUNCTION VIEWS
Our BeTracker provides the following functional views.

A. Local View
The local view retrieves the behavioral patterns for a

query individual. For example, if we query an individual,
Bob, the corresponding pattern is shown in Figure 1(c).

B. Pair View
Given a certain pair of individuals, BeTracker will return

the behavioral patterns that they stay together. Such pair-
based behavioral patterns allow observing the duration (i.e.,
how long) and the meeting type (one-on-one or group
meeting) of their encounter.

C. Structure View
BeTracker allows users to input the structural query with

sequential time periods. The canonical query structures
could be the star, circular, and linear topologies. And users
can specify any kinds of simply structures. Moreover, we
allow assigning the sequential time periods on edges, which
can help understand the order and time duration of
behaviors between people. In short, such structural query
with sequential time periods enables users to investigate

delicate human interactions. The example behavioral pattern
for the query in Figure 3(a) is shown in Figure 3(b).

D. Source-Target View
Another characteristic query of our BeTracker is the

source and target individuals. We report the shortest path
between the given source and target, which is expected to be
quite different from one day to another. The behavioral path
can help the packet forwarding decision for the dynamic
routing in sensor networks. Take transaction database in
Figure 2 as example, the shortest path between A and B on
March 15 is A-B-E. The shortest path between A and B on
March 16 is A-C-F-E.

E. Global View
Finally, BeTracker can present the whole network

constructed from the sensor data with the social contexts.
Through such overview of the behavioral network, users can
easily locate themselves or other target individuals and
understand any regular, interesting, or abnormal interactions
in the designated single or consecutive days. For example,
the network on March 15 in Figure 2 is shown as in Figure 4.

Figure 3. (a) Query (b) Pattern Figure 4. A global view

V. EXPERIMENTS
In this section, we show the experiments on our system

efficiency. Our BeTracker utilizes the CRAWDAD data [6],
which is a wireless network data consisting of sensor mote
encounter records and the corresponding social network data
of a group of participants at University of St Andrews. This
data contains 27 invent devices amongst 22 undergraduate
students, 3 postgraduate students and 2 members of staff.
Participants were asked to carry the devices whenever
possible over a period of 79 days. We use the participants'
Facebook friend lists to as the social contexts.

Figure 5. Runtime versus Minsup for real dataset

Measuring pattern algorithm’s efficiency is very
important since we are performing real-time track and
analysis for user-given query. In the experiment, therefore,
we conduct the experiments to show the execution time of
the behavioral mining in our BeTracker. Figure 5 presents

3(a) 3(b)

?

?

1229

the runtime by varying the minsup from 5% to 15%. We can
find that as the minsup gets smaller, the runtime of our
methods increases slowly. Even with low minsup, our pattern
mining algorithm is still efficient. Such great efficiency
makes our BeTracker be more useful and applicable for real-
time behavior analysis.

VI. SYSTEM INTERFACE AND PLAN
We show the interface of our BeTracker system in

Figure 6. Our will demo how the temporal subgraph patterns
are returned by specifying various user preferences, such as
thresholds, relational structure, and the relational structure
with partially assigned individuals and sequential time order.
Those behavioral patterns with higher support scores will be
first returned. We will visualize each pattern that conforms
to the given query. In addition, we also perform five
functional views with different time periods to show how
easily to track and summarize the frequent and
representative behaviors for any user-given information.

Fig. 6 The interface of BeTracker.

VII. DEMONSTRATION CASES
In this section, we demonstrate some behavioral patterns

discovered by Our BeTracker system. First, given a query
with individual 4 and tree structure in Figure 7(a), we find
the pattern shown in Figure 7(b): {(4, FM, 9, 0, 1) (5, FM,
14, 2, 2) (14, FM, 15, 7, 7) (4, FM, 9, 8, 8) (4, FM, 14, 9, 9)
(5, FM, 14, 11, 11) (4, FM, 8, 13, 13)}. We realize that they
form a closed community and follow a temporal order to
encounter each other.

Figure 7. Query tree structure and the result pattern

Given a query with individual 9 and linear structure with
sequential time periods shown in Figure 8(a), we find the
pattern shown in Figure 8(b): {(9, NFM, 15, 0, 4) (5, FM, 9,
6, 8) (5, FM, 8, 10, 10)}. The object 9 and object 15 are
often in the same place for at least four hours but they are
not friends in social network. It is because they are co-

workers or in the same laboratory, but they are not familiar
with each other. After working, object 9 goes to stay with
his friend, object 5, for two hours.

Figure 8. Query linear structure and sequential time periods and

corresponding pattern
Moreover, we give a query to in Figure 9(a) to wonder

who often likes to stay with object 4 and 5 in the same time.
The corresponding pattern, {(4, FM, 5, 0, 0) (4, FM, 15, 0, 0)
(5, FM, 15, 0, 0)} shown in Figure 9(b) means they really
form a friend group and stay together very often.

Figure 9. Triangle and simultaneously time periods and corresponding

pattern

VIII. CONCLUSION
Our BeTracker system provides a query-based behavior

tracker platform for users to discover human behaviors
according to both sensor data and social relationships. The
resulting behavioral patterns can not only help understand
the complicated human interactions, but also enable effective
routing strategy and have better managements of social
circles for online social networking services.

ACKNOWLEDGEMENTS
This work was supported by National Science Council,

National Taiwan University and Intel Corporation under
Grants NSC99-2911-I-002-001, 99R70600, and 10R70500.

REFERENCES
[1] S. Albert Ali, P. Eric, T. Romain, G. Theo. T-Patterns Revisited:

Mining for Temporal Patterns in Sensor Data. Sensors 10, no. 8:
7496-7513, 2010.

[2] G. Bigwood, D. Rehunathan., M. Bateman, T. Henderson, S. Bhatti.
Exploiting Self-Reported Social Networks for Routing in Ubiquitous
Computing Environments. IEEE WIMOB 2008, 484-489.

[3] E.Bulut, B.K. Szymanski, Friendship Based Routing in Delay
Tolerant Mobile Social Networks. IEEE GlobalCom 2010, 1-5.

[4] P. Hui, J. Crowcroft, E. Yoneki. Bubble Rap: Social-based
Forwarding in Delay Tolerant Networks. ACM MobiHoc 2008, 241-
250.

[5] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent
closed itemsets for association rules, Proceedings of the 7th
International Conference on Database Theory, Jerusalem, Israel, 1999,
pp. 398-416.

[6] CRAWDAD dataset, http://www.crawdad.org/index.php

4

?

5

[1]

9(a)

[1]

[1]

9(b)

?

?

9

[2]

[1]

8(a) 8(b)

7(b)

?

4

? ?

7(a)

1230

