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Abstract—In this work, we integrate the contextual 
information provided from sensor data and the social 
relationships collected from online social networks to construct 
a system, termed BeTracker. We aim to find and track the 
frequent and representative behaviors for any user-input 
individual or social structural information. We claim 
combining physical contacts from sensor data and virtual 
online interactions can reveal real-life human behaviors. In our 
BeTracker, we mine the temporal subgraph patterns as the 
discovered behaviors from sensor-social data transactions. The 
user-given information, which is the target to observe, can be 
(a) an individual (to find her daily behaviors), (b) a relational 
structure (e.g. linear, triangle, or star structure) (to find the 
frequent and contextual interactions between them), and (c) a 
relational structure with partially assigned individuals and 
sequential time periods (to observe their interactions that 
follow certain temporal order). In the experimental part, we 
demonstrate promising results of different queries and present 
the system efficiency of the proposed behavioural pattern 
mining. 
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I.  INTRODUCTION  
Nowadays, sensors are often built-in modern mobile 

phones so that they have the potential to provide insights into 
the human dynamics in the real-life environment. For real-
world individuals, in addition to equipping with mobile 
sensors, most of them have online identities in current social 
networking services, such as Facebook and Google+. It is the 
fact that the mobile sensors and the social networking 
interweave and provide the rich dynamic contexts of human 
interactions. Such two kinds of complement data are 
beneficial for us to investigate human behaviors. For 
example, if Bob and Mary are acquainted with each other in 
Facebook, we can infer that they stay together in the 
encounter records from mobile sensors. On the contrary, if 
they are strangers, it is less possible for them to have the 
encounter records of sensors.  

In this work, we integrate the contextual information 
provided from sensor data and the social relationships 
collected from online social networks to construct a system, 
termed BeTracker. The objective of BeTracker system aims 
to find and track the frequent and representative behaviors 
for user-interested individual information. We intend to 
summarize the interaction behaviors between individuals 
from both the sensor encounter data and the online social 
connections. Given the observation target as the query, our 
system will find and return a kind of temporal subgraph 
patterns as the discovered behaviors from the sensor-social 
data transactions. The observation target can be (a) an 

individual (to find her regular behaviors), (b) a relational 
structure (e.g. linear, triangle, or star structure) with partially 
assigned individuals (to find the frequent and contextual 
interactions between them), and (c) a relational structure 
with partially assigned individuals and sequential time 
periods (to observe their interactions that follow such order 
in the period). We will show some promising results of 
different queries in experiments section.  

Consider an encounter scenario as an example, in which 
Bob works with John during 8am and 5pm every day. After 
working, Bob eats dinner with his wife, Mary, during 6pm 
and 8pm. On the other hand, Tom and Ted usually go to bar 
together during 9pm and 11pm. In Figure 1(a), we can find 
that such interactions and represent their encounter records 
as a structure form in which their interaction durations are 
captured on the edges. Based on such elemental case, from 
the overall encounter data, we can model the human 
behaviors by transforming all encounters with the interaction 
durations into the temporal behavioral networks. In each 
behavioral network, each node represents an individual and 
an edge stands for two persons encounter within a certain 
time interval (or several time intervals) from sensor data.  
We collect and construct a series of such kind of temporal 
behavioral networks day by day. On the other hand, to have 
the real acquaintance information between individuals to 
help reveal human interaction behaviors, we collect their 
social relationships from the online virtual social networking 
service (i.e., Facebook). For the example in Figure 1(a), its 
corresponding illustrated social network is shown in Figure 
1(b). Furthermore, we also elaborate an example of 
discovered behavior for a user-specified query. Figure 1(c) 
illustrates a resulting behavior for the query individual, Bob. 
Such behavioral structure shows that Bob have a non-friend 
meet with John for ten hours, and then he stay together with 
Mary about two hours. We call such kind of graphs as a 
temporal subgraph pattern which tells who are the ones that 
regularly interact with Bob (in nodes) and when does their 
interactions happen (on edge labels).  

Mining such behavioral patterns has some benefits. For 
example, the opportunistic routing of messages in delay 
tolerant networks (DTN) is still a challenge problem due to 
the intermittent connectivity and the lack of continuous end-
to-end paths between the nodes. If a system can efficiently 
track an individual’s frequent and representative behaviors, it 
is possible to enable sensors to have better forwarding 
decisions and improve the routing efficiency. From the 
perspective of social networks, mining such patterns can help 
us define relationships more precisely than simply using the 
information from online social network since the patterns can 
be implicitly used to measure the closeness of friendships in 
the social network. In [1], their work detected temporal 
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events from sensor data. However, the method cannot 
perform on dynamic sensor environments, even on mobile 
sensor data. Existing works, such as [2][3][4], focus on 
exploiting the social network to improve the routing 
efficiency on sensor systems. Comparing to their works, our 
mined behavioral patterns from sensor data not only captures 
the real-life interactions between individuals, but also 
enables discovering the underlying human behaviors. 

 
Figure 1. An encounter scenario, identified relationships in social network 

and an example temporal subgraph pattern 
 

II. SYSTEM OVERVIEW 
Our BeTracker is constructed on a mobile sensor network, 

which comprising devices can detect other same devices 
carried by different people within a radius of 10 meters, and 
the corresponding social network. Figure 2 shows the 
framework of our system. We assume the encounter records 
collected from sensors for each day are uploaded through the 
base stations to a central database. On the other hand, we 
exploit the individuals’ social network to identify the 
relationships between individuals. Combining such sensor 
and social contexts, we devise a the temporal subgraph 
pattern mining method to find the underlying temporal 
frequent behaviors, called temporal subgraph patterns and 
store them in our database. Given a query individual or 
structure with certain thresholds, sequential time periods, and 
the function view (which will be elaborated in Section 4), 
our system will find and return the behavioral patterns 
related to the query. 

 

Figure 2. System Overview 

III. METHODOLOGY 
In this work, we regard the behaviors in a day as a 

temporal snapshot. By collecting temporal graphs in a series 
of days, we construct a transaction database of behavioral 
networks, in which each network stands for a graph 
recording behaviors from sensor data in a day. To easily 
perform our temporal-based method, we sort the edges by 
the associated timestamps and transform the graph into an 
edge sequence. For example in Figure 2, there is a behavior 
sequence, {(A, meet, B, 9, 10) (B, meet, C, 14, 16) (B, meet, 
E, 15, 15)} on March 15. The edges are sorted by their start 
times and then by their end times (Unit: hour). In each 
transaction (network), we then exploit the corresponding 
social network to provide more information about 
relationships identification between individuals. A 
relationship can be identified as “friend meet” (FM) or 
“non-friend meet” (NFM) by the friend-list retrieved from 
online social network. If two people perform friend meet, 
we can infer that stay together and have some interactions 
from the encounter records. If another two persons have 
non-friend meet, it may indicates that they do not acquaint 
with each other and just stay in the same place occasionally. 
After constructing networks for each day, we perform the 
temporal subgraph pattern mining algorithm on these 
networks. The temporal subgraph pattern, is defined as {(u1, 
l1, v1, ts1, te1)...(uh, lh, vh, tsh, teh)}, where ts1=0, and all the 
edges in the pattern are sorted in increasing order. To 
measure the importance of a pattern, the strength of a 
pattern is calculated by counting its support, which is 
defined as the number of graphs containing P in the network 
database. A pattern P is frequent if its support is not less 
than minsup, where minsup is a user-specified minimum 
support threshold. The proposed algorithm has two stages. 
First, we mine all frequent patterns of length one (denotes 1-
patterns) in the database. Then, for each 1-pattern, we build 
the projected database to help discover more patterns. For 
example, if we have a pattern P=(A, FM, B, 0, 1), the 
corresponding projected database of P in a certain day is 
{(B, FM, D, 1, 2) (A, NFM, D, 2, 3) (A, FM, B, 4, 6) (A, FM, 
C, 7, 9)}, which is the P’s postfix. By scanning different 
projected databases from all transactions contain P, we can 
find a local pattern e, say, {(B, FM, D, 1, 1)}. We 
concatenate P and e to form a new pattern {(A, FM, B, 0, 2) 
(B, FM, D, 1, 1)}. The concatenations are recursively 
performed in a depth-first search manner until no more 
frequent patterns can be found.  

Moreover, we adopt the closed pattern mining concept 
introduced by Pasquier et al. [5]. A close frequent pattern 
means there does not exist any super-pattern with the same 
frequency in database. A suitable closed pattern mining 
strategy can decrease number of frequent patterns during 
mining process so that it can improve efficiency and 
memory usage of the proposed method.  

During the mining process, we use the closure checking 
and pruning strategies to reduce unnecessary candidates. 
The first strategy is Same projected database removal. If P1 
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is a super-pattern of P2 and both share the same projected 
database, P2 is not needed to be grown because the patterns 
generate from P2 will be not closed patterns. The second 
strategy is Forward checking scheme. A pattern P is not 
closed if there exists a frequent pattern e in P’s projected 
database, whose support is equal to P’s support. The third 
strategy is Backward checking scheme. A pattern P is not 
needed to be grown if there exists a frequent pattern e before 
P, whose support is equal to P’s support. Thus, every 
pattern generated from P is contained by the pattern 
generated from concatenating P and e and both patterns 
have the same support. By applying these strategies, the 
closed frequent temporal subgraph patterns can efficiently 
mine. 

The default threshold for minsup is 5%. Therefore, the 
patterns whose support is not less than 5% are stored in the 
database. Once a user inputs a structural query, we will 
return patterns by the following process: a query {(qu1, ql1, 
qv1)...(qum, qlm, qvm)} is contained by a pattern {(pu1, pl1, 
pv1, pts1, pte1)...(pun, pln, pvn, ptsn, pten)} if there exists a 
sequence of integers j1<j2<…<jn so that qui=puji, qli=plji, 
qvi=pvji, i=1,2,...,n. We can use this property to check query 
existence no matter users assign structure or sequential time 
periods.   

The time complexity of the mining temporal subgraph 
algorithm is O(n×l×p) and the space complexity o is O(n
× l × r),where n is the number of transactions in the 
database, l the average number of edges  in all transactions 
in the database, p the number of frequent patterns, and r the 
length of the longest pattern. Here, due to the page limit, we 
skip the proof here. 

IV. FUNCTION VIEWS 
Our BeTracker provides the following functional views.  

A. Local View 
The local view retrieves the behavioral patterns for a 

query individual. For example, if we query an individual, 
Bob, the corresponding pattern is shown in Figure 1(c). 

B. Pair View 
Given a certain pair of individuals, BeTracker will return 

the behavioral patterns that they stay together. Such pair-
based behavioral patterns allow observing the duration (i.e., 
how long) and the meeting type (one-on-one or group 
meeting) of their encounter. 

C. Structure View 
BeTracker allows users to input the structural query with 

sequential time periods. The canonical query structures 
could be the star, circular, and linear topologies. And users 
can specify any kinds of simply structures. Moreover, we 
allow assigning the sequential time periods on edges, which 
can help understand the order and time duration of 
behaviors between people. In short, such structural query 
with sequential time periods enables users to investigate 

delicate human interactions. The example behavioral pattern 
for the query in Figure 3(a) is shown in Figure 3(b). 

D. Source-Target View 
Another characteristic query of our BeTracker is the 

source and target individuals. We report the shortest path 
between the given source and target, which is expected to be 
quite different from one day to another. The behavioral path 
can help the packet forwarding decision for the dynamic 
routing in sensor networks. Take transaction database in 
Figure 2 as example, the shortest path between A and B on 
March 15 is A-B-E. The shortest path between A and B on 
March 16 is A-C-F-E. 

E. Global View 
Finally, BeTracker can present the whole network 

constructed from the sensor data with the social contexts. 
Through such overview of the behavioral network, users can 
easily locate themselves or other target individuals and 
understand any regular, interesting, or abnormal interactions 
in the designated single or consecutive days. For example, 
the network on March 15 in Figure 2 is shown as in Figure 4.  

 
Figure 3. (a) Query (b) Pattern                       Figure 4. A global view 

V. EXPERIMENTS 
In this section, we show the experiments on our system 

efficiency. Our BeTracker utilizes the CRAWDAD data [6], 
which is a wireless network data consisting of sensor mote 
encounter records and the corresponding social network data 
of a group of participants at University of St Andrews. This 
data contains 27 invent devices amongst 22 undergraduate 
students, 3 postgraduate students and 2 members of staff. 
Participants were asked to carry the devices whenever 
possible over a period of 79 days. We use the participants' 
Facebook friend lists to as the social contexts. 

 
Figure 5. Runtime versus Minsup for real dataset 

Measuring pattern algorithm’s efficiency is very 
important since we are performing real-time track and 
analysis for user-given query. In the experiment, therefore, 
we conduct the experiments to show the execution time of 
the behavioral mining in our BeTracker. Figure 5 presents 
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the runtime by varying the minsup from 5% to 15%. We can 
find that as the minsup gets smaller, the runtime of our 
methods increases slowly. Even with low minsup, our pattern 
mining algorithm is still efficient. Such great efficiency 
makes our BeTracker be more useful and applicable for real-
time behavior analysis. 

VI. SYSTEM INTERFACE AND PLAN 
We show the interface of our BeTracker system in 

Figure 6. Our will demo how the temporal subgraph patterns 
are returned by specifying various user preferences, such as 
thresholds, relational structure, and the relational structure 
with partially assigned individuals and sequential time order. 
Those behavioral patterns with higher support scores will be 
first returned. We will visualize each pattern that conforms 
to the given query. In addition, we also perform five 
functional views with different time periods to show how 
easily to track and summarize the frequent and 
representative behaviors for any user-given information. 

 
Fig. 6 The interface of BeTracker. 

VII. DEMONSTRATION  CASES 
In this section, we demonstrate some behavioral patterns 

discovered by Our BeTracker system. First, given a query 
with individual 4 and tree structure in Figure 7(a), we find 
the pattern shown in Figure 7(b): {(4, FM, 9, 0, 1) (5, FM, 
14, 2, 2) (14, FM, 15, 7, 7) (4, FM, 9, 8, 8) (4, FM, 14, 9, 9) 
(5, FM, 14, 11, 11) (4, FM, 8, 13, 13)}. We realize that they 
form a closed community and follow a temporal order to 
encounter each other.  

 
Figure 7. Query tree structure and the result pattern 

Given a query with individual 9 and linear structure with 
sequential time periods shown in Figure 8(a), we find the 
pattern shown in Figure 8(b): {(9, NFM, 15, 0, 4) (5, FM, 9, 
6, 8) (5, FM, 8, 10, 10)}. The object 9 and object 15 are 
often in the same place for at least four hours but they are 
not friends in social network. It is because they are co-

workers or in the same laboratory, but they are not familiar 
with each other. After working, object 9 goes to stay with 
his friend, object 5, for two hours. 

 
Figure 8. Query linear structure and sequential time periods and 

corresponding pattern 
Moreover, we give a query to in Figure 9(a) to wonder 

who often likes to stay with object 4 and 5 in the same time.  
The corresponding pattern, {(4, FM, 5, 0, 0) (4, FM, 15, 0, 0) 
(5, FM, 15, 0, 0)} shown in Figure 9(b) means they really 
form a friend group and stay together very often. 

 
Figure 9. Triangle and simultaneously time periods and corresponding 

pattern 

VIII. CONCLUSION 
Our BeTracker system provides a query-based behavior 

tracker platform for users to discover human behaviors 
according to both sensor data and social relationships. The 
resulting behavioral patterns can not only help understand 
the complicated human interactions, but also enable effective 
routing strategy and have better managements of social 
circles for online social networking services. 
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