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ABSTRACT 
In online social networking services, there are a range of scenarios 
in which users want to search a particular person given the 
targeted person one’s name. The challenge of such people search 
is namesake, which means that there are many people possess the 
same names in the social network. In this paper, we propose to 
leverage the query contexts to tackle such problems. For example, 
given the information of one's graduation year and city, the last 
names of some individuals, one may wish to find classmates from 
his/her high school.  We formulate such problem as the context-
based people search. Given a social network in which each node 
is associated with a set of labels and given a query set of labels 
consisting of a targeted name label and other context labels, our 
goal is to return a ranking list of persons who possess the targeted 
name label and connects to other context labels with minimum 
communication costs through an effective subgraph in the social 
network. We consider the interactions among query labels to 
propose a grouping-based method to solve the context-based 
people search. Our method consists of three major parts. First, we 
model those nodes with query labels into a group graph which is 
able to reduce the search space to enhance the time efficiency. 
Second, we identify three different kinds of connectors which 
connecting different groups, and exploit connectors to find the 
corresponding detailed graph topology from the group graph. 
Third, we propose a Connector-Steiner Tree algorithm to retrieve 
a resulting ranked list of individuals who possess the targeted 
label. Experimental results on the DBLP bibliography data show 
that our grouping-based method can reach the good quality of 
returned persons as a greedy search algorithm at a considerable 
outperformance on the time efficiency. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining. H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval – Information Filtering. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
People Search, Social Network, Context-based Search. 

1. INTRODUCTION 
In online social networking services such as Facebook, Twitter, 
and LinkedIn, it is essential to provide people search which 
searches for an individual by name. However, if the query name is 
a namesake, especially if there exist millions of individuals share 
the query name, it would be difficult to find the target person over 
social networking services.  

One approach is the context-based people search which search for 
an individual not only by name of the target, by also by the social 
contexts of the target. The user specified social contexts may be 
the first names of target’s friends, the last names of target’s 
classmates, the hobbies of the target’s colleagues, hometowns of 
target’s relatives, and so on. These social contexts are labels 
associated with each individual in social networking services. 
The idea of the proposed context-based social search is illustrated 
by Figure 1. Each person is associated with labels, where some 
have many labels and others provide few labels or only their user 
names (e.g., Angel). It can be observed that there are three people 
named Sam and two named Mary. The weights on the edges 
indicate the communication cost between two people. Higher 
weights indicate that the people tend to have a casual 
acquaintance, whereas lower values imply that they are more 
familiar with one another. If someone seeks to find a friend named 
“Mary” who has a friend named George and a colleague familiar 
with Java, the expected result by our context-based people search 
individual search is “Mary-1,” rather than “Mary-2.” Another 
example is to find an individual named “Sam” who had learned 
the “C++” programming language with his old friend “Robert” in 
his hometown “Boston”, the expected target would be “Sam-1,” 
who is connected with “James”, “Jane” and “Robert.” Not only 
they meet the query labels but also interact with each other in an 
effective manner (with minimal costs).  
Given a social network, how to find the individual who is the most 
relevant to some user-interested social contexts? Specifically, 
given an arbitrary set of labels as queries in a social network (e.g., 
an acquaintance network in Facebook), in which each individual 
is characterized by some set of labels, how can we efficiently find 
the individual who has strong direct or indirect relationships to all 
of the query labels?  

 
Figure 1. A social network with labels on each person. Labels 
include name, interest, skill, and hometown. Note that we 
append “-number” to individuals to distinguish between 
people with the same name (e.g. Mary-1, Mary-2). 
To perform such search tasks in current social networking services 
containing considerable numbers of people, we have to address 
two critical and universal issues: commonality and incompleteness. 
Commonality indicates that there are a large number of 
individuals sharing common labels in the network. An obvious 
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illustration is the presence of popular given names, such as Mary, 
James, and John. Moreover, there are even more people 
possessing the same labels, such as interests, hometowns, schools, 
and graduation years. Incompleteness means that users in social 
networking sites usually do not (necessarily) provide complete 
information about themselves. Some enthusiastic members of 
online social networks fill in all their details, whereas others may 
only be willing to display their names or a few labels. To address 
the issues of commonality and incompleteness in real-life social 
networks, we propose to leverage the user-given social contexts 
with the social interactions to achieve a context-based social 
search: (1) for commonality, individuals with the same names can 
be distinguished by context attributes in the network; (2) for 
incompleteness, we can also make conjectures about individuals 
who provide limited information to their social circles. 
In the literature, search tasks in the social contexts of Web 2.0, 
called social search, refer to many different aspects. Among these 
diverse perspectives on the term social search, the viewpoint of 
Kleinberg [5], who defines it as searching over a social graph to 
find the set of individuals closest to a given user, is the most 
relevant to our context-based people search. In addition, some 
commercial solutions to people search, such as Wink [13] and 
Intelius [14], have also been developed to provide search over 
online social networking sites. These people search services aim 
at exploiting social information such as tagging, voting, and 
profiles to find people related to any given individual. However, 
existing search services over social networks do not tackle the 
commonality issue, that is, that there are usually many people 
with the same names. In addition, they assume that the social 
information, including personal attributes and user tagging, is 
complete. Nevertheless, in real-life social networking, it is 
infeasible to collect complete personal profiles from all users. 
In this paper, we propose, formally define, and efficiently and 
effectively solve the context-based people search problem for a 
labeled social network. Given a social network in which each 
node is associated with a set of labels and a user query consisting 
of a set of required labels, our goal is to find the individual that 
satisfies the query requirements while minimizing the 
communication costs. We define the communication cost as the 
sum of the weights on the edges in a minimum spanning tree 
connecting both the required labels and the found individual in a 
direct or indirect manner. 
The central idea of the solution to solve the problem of context-
based people search is to leverage the effective interactions of 
query labels. We propose a grouping-based method consists of 
three major parts. First, we group those nodes with the same query 
labels and transform the original social network into a group 
graph which can be regarded as high-level view for the 
interactions between groups. The group graph is able to reduce to 
graph space and provides an effective guidance for search tasks. 
Second, we identify three kinds of connectors which connecting 
different groups in the social network. The connectors can be 
regarded as key points controlling the bottleneck of cost in the 
final subgraph and allowing a more effective graph search. Finally, 
we propose a Connector-Steiner algorithm to compose the ranked 
list of effective connection subgraphs as the resulting context-
based communities. 

2. CONTEXT-BASED PEOPLE SEARCH 
[Definition 1] (Labeled Social Network) Let A={a1,...,am} be a 
universe of m labels. A labeled social network is defined as an 
undirected and weighted graph G=(V, E). Each node i in V={1,...,n} 
is an individual that possesses a set of labels Xi  A. Each edge (i, 
j) in E captures the interaction between two individuals. The 

weight on each edge (i, j) represents the communication cost 
between individuals i and j. Note that edges with low (high) 
weights represent high (low) communication costs between two 
nodes. For example, in a social network, if two people share more 
interests, the weight of their edge is correspondingly lower. 
[Definition 2] (Communication Cost) Given a labeled social 
network G=(V, E) and V’V, the communication cost of V’ is 
defined as the sum of the weights of edges of the minimum 
spanning tree on the induced subgraph G[V’], denoted by CC(V’). 
[Definition 3] (Context-based Query) A query for the context-
based people search consists of a set of labels, which consists of a 
targeted label t (i.e., the first name of the targeted person) and 
more than one context labels (e.g., the names or labels of the 
targeted one’s friends) provided by the users.  
Given a labeled social network G=(V, E) and a search task T 
consisting of a particular first name label to indicate the targeted 
person and a set of context labels {a1,..., ar} A, the context-based 
people search problem is to return a ranking list of persons in 
which each retuned person connects to the query labels with 
minimum communication cost. Specifically, we aim to find a set 
of individuals V’V that is connected by a subgraph G[V’] such 
that (1) T {Xi, iV’} and (2) the communication cost CC(V’) is 
minimized. And for the ranking result, a ranked list is returned 
based on the communication cost. 

3. THE APPROXIMATED METHOD: ApxSteiner 
For the context-based people search in a labeled network, a simple 
approach is to exploit the Steiner tree algorithm. The minimum 
Steiner tree problem is to find a connected subgraph that connects 
some required nodes with minimum sum of edge weights. We can 
add the query labels as nodes in the labeled social network, and 
designate these nodes of query labels as the required ones in the 
Steiner tree problem. Using existing solutions to the minimum 
Steiner tree problem, a subgraph with minimum cost can be 
derived, and the individual with the targeted label in the resulting 
subgraph is reported as an answer person. Repeating such process 
up to N times and sort the returned answer persons based on their 
costs, a ranked list of N answer persons can be derived. 
We first review the Steiner tree problem. Given an undirected 
graph with non-negative costs on edges, the nodes in this graph 
are separated to the terminal/required vertex set T and the Steiner 
vertex set S. The Steiner tree problem is to find the minimum-cost 
spanning tree in the given graph; the found tree must contain all 
nodes in the terminal set T and any subset of the Steiner nodes. 
Since the Steiner tree problem is a NP-hard problem, several 
approximation algorithms had been proposed. Here we modify the 
greedy algorithm in [6] to find the minimum Steiner tree. This 
algorithm starts by randomly selecting a node as a seed in the 
required (terminal) set T. Then at each step, a single terminal node 
v* from T is incrementally added to the current solution V’. Each 
v* is determined by the minimum distance to V’, which contains 
nodes that have already been added to the solution set.  

4. THE PROPOSED METHOD: GrpSteiner 
We propose to perform the context-based people search by 
grouping nodes based on query context labels to provide effective 
and efficient search. Our method consists of seven steps. The first 
step is a label-based node grouping that collects individuals into 
groups according to each query label. The second step is to 
identify three kinds of connectors between groups. The connectors 
play key roles to construct an effective group graph. By exploiting 
the connectors, the third step is to construct the group graph, in 
which linkages capture the critical interactions between groups. 
To realize the group graph, the fourth step is to embed the 
topological information only relates to the query labels into the 
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relevance graph. The fifth step aims to construct the label 
relevance graph which integrates the social interactions with the 
query context labels to guide the search. To allow more effective 
and efficient search result, in the sixth step, we propose to find the 
crucial label as the seed node for the following Steiner tree 
algorithm. In the seventh step, by using the derived seed label and 
the identified connectors, we propose and apply the Connector-
Steiner tree algorithm to find an effective subgraph of individual 
for the query labels. According to the targeted label and the 
communication cost on the effective subgraph, we perform a 
weight enhancement mechanism to return a ranked list of 
individuals who satisfy the targeted label.  

4.2  Label-based Node Grouping 
The first step is to group the individuals in the labeled social 
network according to the query labels. A group, with respect to 
one of the query labels, for example, ai, is a connected subgraph 
in which each individual node contains at least ai. We denote the 
group of a certain query label as grp. Note that for a query label ai, 
it can have more than one group since there could exist multiple 
disconnected subgraphs belonging to ai. 
Figure 2 shows an example of grouping for the query labels a1, a2, 
and a3, in which a1 is the targeted label. Each group is surrounded 
by a dotted region. We can observe two groups correspond to 
label a1. These two groups are separated components since they 
have no interactions. In addition, node i belongs to two groups 
because i contains both a1 and a2. Nodes m and q do not belong to 
any of groups because they contain none of the three query labels. 

 
Figure 2. The label-based node grouping for the labeled social 
network, where there are three query labels a1, a2, and a3 and 
a1 is the targeted label specified by users. 

4.3  Connector Identification 
Based on the result of label-based node grouping, we can further 
distinguish different roles of individuals in a social network, 
especially for the connectors that take charge of connecting 
groups. According to the interaction behaviors between groups, 
there are three kinds of connectors: the overlap connector, the 
direct connector, and the indirect connector. 
[Definition 3] (Overlap Connector) Given the label-based groups, 
if a node v belongs to more than one groups, it is called an overlap 
connector. The set of overlap connectors is denoted by OC. 
In Figure 2, node i is the overlap connector since it contains 
multiple query labels, a1 and a2, and belong to multiple groups.  
[Definition 4] (Direct Connector) Given the label-based groups, 
for each edge e=(u, v) in the social network G= (V, E), if 
ugrpai, vgrpaj, and ai ≠ aj, then u and v are the direct connectors 
of  grpai and grpaj respectively. The set of direct connectors in a 
network is denoted by DC. 
Director connectors are those end nodes of a bridge edge which 
connects two different groups. If a node belongs to one group and 
directly link to another, it is direct connectors of that group. For 
example, in Figure 2, for the group of label a3, its direct connector 

is node j. It directly links to groups of label a1 and a2 respectively. 
Note that although node i is an overlap connector, it is also a 
direct connector because it directly link to group of a3.  
[Definition 5] (Inter-Mediator) Given the label-based groups, if a 
node v belongs to no groups (contain no query labels), it is called 
an inter-mediator. The set of inter-mediators is denoted by IM. 
For example, in Figure 2, node q is an inter-mediator because it 
does not contain any of query labels a1, a2, and a3. 
[Definition 6] (Indirect Connector) Given the label-based groups, 
for a path p=(v1,...,vn-1,vn) (n>2) in the social network G=(V,E), if 
v1grpai, vngrpaj, ai≠aj and j2,...,n-1}, vjIM, then v1 and vn 
are the indirect connectors for grpai and grpaj respectively. The set 
of indirect connectors in a network is denoted by IC. 
Indirect connectors are those end nodes of a path (|path|>1) where 
nodes other than the end points do not contain any query labels. 
For example, in Figure 2, p and h are the indirect connectors for 
the groups of label a3 and a2 respectively. 

4.4  Group Graph Construction 
We have aggregated individuals into groups based on query labels. 
But the underlying interactions among groups have not yet been 
modeled. The group interactions are essential for finding effective 
communications of groups with respect to the query labels. If we 
can construct the group graph with lower costs to connect groups, 
it will guide the following search algorithm to have resulting 
subgraph with lower cost and cardinality. In this subsection, we 
exploit the benefits of the priority principle of connectors for 
constructing the group graph in an effective manner.  
[Definition 7] (Group Graph) A group graph H=(VH, EH) is a 
weighted graph constructed using query labels from the labeled 
social network G=(V, E), where VH is a finite set of group nodes, 
and EH  VH×VH is a finite set of group links. 
[Definition 8] (Group Node) Group nodes are defined according 
to query labels. For a query label aiT, the group node grpaiVH 
contains a set of nodes V’(grpai) V in G and must satisfy (1) 
uV’(grpai), aiXu, (2) the nodes in V’(grpai) form an induced 
connected subgraph G[V’(grpai)]. 

[Definition 9] (Group Link) A group link eHEH is defined on 
two group nodes grpai and grpaj in GH, such that the corresponding 
induced subgraphs of these two group nodes, G[V’(grpai)] and 
G[V’(grpaj)], are reachable from one another. Note that a group 
link between two induced subgraphs in G can be overlapped, 
direct, or indirect connection. 
To have an effective group graph, we follow the priority of 
connectors, i.e., “overlap first, direct second, and indirect finally”, 
to construct the group graph. The algorithm for group graph 
construction is shown in Algorithm 1. This algorithm starts by 
isolating all group nodes, and then constructs the group graph 
based on the priority of connectors in turn until the group graph is 
connected. For the example in Figure 2, the group graph is shown 
in Figure 3(a), where the circles represent the group nodes. 

(a) (b) 
Figure 3. (a) The group graph constructed from Figure 2. (b) 
The relevance graph of Figure 3(a). 
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Algorithm 1. Group Graph Construction 
Input: The labeled social network G=(V,E); the set of all group nodes 
GRP; the set of groups that vi involves Rvi; the sets of overlap, direct, and 
indirect connectors OC, DC, and IC. 
Output: A connected group graph H = (VH, EH). 
1:  VH ←VH ∪ {vH = grpaiGRP}. 
2: for each viOC do 
3: {eH} ← (grpx, grpy), where grpxRvi, grpyRvi, and x≠y. 
4:     EH ←EH ∪ {eH}. 
5:     if H is connected do: return H. 
6: for each e=(vi,vj)E and viDC and vjDC do 
7:     {eH} ← (grpx, grpy), where grpxRvi, grpyRvj, and x≠y. 
8:     EH  ←EH ∪ {eH}. 
9:     if H is connected do: return H. 
10: h ← 1. 
11: while (true) do 
12: for each h-hop path (vi,...,vj) viIC and vjIC do 
13:         {eH} ← (grpx,grpy), where grpxRvi, grpyRvi, x≠y. 
14:     EH ←EH ∪ {eH}. 
15:         if H is connected do: return H. 
16:     h ← h + 1. 

4.5  Relevance Graph Realization 
We restore the corresponding graph topology in the original social 
network. We call this restored graph topology as the relevance 
graph GR (i.e., relevant to query labels). In other words, we aim to 
obtain the induced graph of nodes contained in the group nodes. 
The restoration process from the group graph to the relevance 
graph consists of two steps. The first is to restore the group nodes. 
For each group node, we find the induced subgraph in the original 
social network corresponding to all nodes contained in it. The 
second is for the group links. For group links derived from 
overlap connectors, it is unnecessary to be processed since they 
have belonged to at least one group. For group links derived from 
direct connectors, there exists more than one bridge edge. For 
example, in Figure 2, there are three bridge edges between group 
nodes a1 and a3. We find the bridge edges with the lowest costs 
and add them into the relevance graph. For group links derived 
from indirect connectors, the h-hop paths found in Algorithm 1 
are added into the relevance graph. For the example in Figure 3(a), 
the corresponding relevance graph is shown in Figure 3(b). 

 
Figure 4. The label relevance graph for the previous example. 

4.6  Label Relevance Graph Construction 
To facilitate the people search considering query labels, we then 
embed these query labels into the relevance graph. By regarding 
each query label as a node, we add the query labels into the 
relevance graph and add edges to connect each query label node to 
nodes of connectors that possess that label. For these newly added 
edges between label nodes and connectors, we associate a positive 
weight higher than the sum of all weights in the social network. 
Eventually, a label relevance graph GLR = (VLR, ELR) will be 
constructed. For example, the label relevance graph for Figure 3 is 
shown in Figure 4, where the squares represent the label nodes 
and the dotted lines represent the edges between label nodes and 
the corresponding connectors. In addition, we assign the new 

added edges a large weight. Note that the nodes corresponding to 
the query labels will serve as seeds to perform the search 
algorithm in the following subsection. 

4.7  Seed Label Selection for Steiner Algorithm 
To find the individuals with lower communication cost, our 
approach then finds the Steiner tree in the label relevance graph as 
the resulting context-based subgraph for people search. Given the 
label relevance graph GLR = (VLR, ELR), the query labels as the 
terminal node set T, and the Steiner nodes are the nodes VLR \ T, 
our goal is to find an effective subgraph GLR[U] with minimum 
communication cost CC(U), where U  VLR. The node with the 
targeted label in GLR[U] will be reported as a returned person.  
We start the graph search by selecting a label node randomly from 
the label relevance graph. However, some experimental studies 
show that the seed node plays an important role for minimizing 
communication cost of the derived subgraph. If a good seed node 
is selected, the communication cost can be lowered. We propose 
the connective degree to measure the effectiveness of label nodes 
in the label relevance graph. The label node with the highest 
connective degree will be selected as the seed node to perform the 
greedy Steiner tree algorithm. We first define the -neighborhood 
of a label node. 

[Definition 10] (-Neighborhood) The -neighborhood of a node 
vVLR is the set of nodes N(v)={ui | 1PathLength(v, u), uV}. 
[Definition 11] (Connective Degree) Given the label nodes in the 
label relevance graph and the three sets of connectors OC, DC, 
and IC, the connective degree of a label node v is defined as 
CDegree(v)=|N(v)∩OC|×OC+|N(v)∩DC|×DC+|N(v)∩IC|×IC, 
where the parameters OC, DC, and IC are used to control the 
effectiveness of different kinds of connectors. In the work,  is set 
as 2, OC is set as 0.7, DC is set as 0.2, and IC is set as 0.1. 
Algorithm 2. Connector-Steiner Tree Algorithm with Ranking. 
Input: The graph GLR = (VLR, ELR); a search task consists of a targeted 
label t and a set of context labels T = {a1,...,ar}; the number of people 
search results to be returned n. 
Output: A ranked list of nodes P=<(p1,CC1)...,(pn,CCn)>. 
1: for k = 1 to n do 
2: Uk ← s, where sT and s is picked by connective degree. 
3: while (T \ Uk) ≠  do 
4: v* ← argmin uT\Uk Dist(u, Uk) in GLR. 
5: if Path (v*, Uk) ≠  then 
6: Uk ← Uk  {∪ Path(v*, Uk)}. 
7: Uk ← Uk \ {a1, ..., ar}. 
8: p ← {vt| vtUk and tXt and vt≠pj, j=1,...,k-1}. 
9: weight(et=(vt, t)) ←weight(et=(vt, t))×LARGEVALUE(=1000). 
10:     LIST ← (p, CC(Uk)). 
11: Sort LIST according to CC(Uk) and return as the ranked list of 

nodes P=<(p1,CC1),...,(pn,CCn)>, where CC1<CC2<, ..., <CCn. 

4.8  Connector-Steiner Algorithm with Ranking 
Given the label relevance graph GLR, and the set of query label 
nodes {a1,...,ar} of the search task T, we propose the Connector-
Steiner Tree algorithm to find a list of effective connection 
subgraph with respect to the query labels. We propose a weight 
enhancement mechanism, which increases the edge weights 
between each answer node and the targeted label nodes. 
Specifically, when each time an effective subgraph is constructed, 
we identify the node with the targeted label and regard it as one 
answer person. Then we replace the edge weight between the 
returned person and the targeted label node with a larger value. 
Such weight enhancement is capable of guiding the following 
Steiner tree searches to choose other persons with the targeted 
label as other answers. Each time when an answer person is 
returned, we also record the cost of the current effective subgraph 
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as the effectiveness of such answer. Eventually, we obtain a list of 
answer persons with their costs. By sorting such list based on the 
costs, a ranked list of effective subgraphs can be derived as the 
results. The detailed is shown in Algorithm 2.  
Figure 5 shows the round-1 and round-2 effective subgraphs for 
the query search task T={a1,a2,a3} and the targeted label is a1, 
using the label relevance graph of Figure 4. For the round-1 result, 
the highlighted nodes {i, j, k, l} and red edges {(i, k), (k, l), (l, j)} 
compose the effective subgraph with the minimum cost 
0.15+0.1+0.2=0.45. Node l that satisfies the targeted label a1 is 
reported as the answer person with cost=0.45. Before the end of 
1st round, the algorithm enhances the edge weight between the 
node l and the label node a1 to be 1000×1000. For the round-2 
result, the highlighted nodes {i, j} with the green edge (i, j) 
compose the effective subgraph with cost=0.5. Node i satisfies the 
targeted label is reported as the answer person with cost=0.5. If 
we designate to have n=2 results, eventually, the ranking list will 
be <(l, 0.45), (i, 0.5)> (i.e., l is the rank-1, i is the rank-2). 

 
Figure 5. The round-1 and round-2 effective subgraphs 
derived by the proposed Connector-Steiner Tree algorithm is 
highlighted as the red and green ones respectively. Recall the 
targeted label is a1. The round-1 answer person is node l with 
cost=0.45 while the round-2 answer is node i with cost=0.5. 

5. EVALUATIONS 
We conduct experiments to test the effectiveness and efficiency of 
the proposed method for tackling the context-based people search 
in a social network. By comparing our grouping-based method 
(GrpSteiner) to the original greedy Steiner tree algorithm 
(ApxSteiner), the experimental results demonstrate that our 
GrpSteiner performs as well as ApxSteiner in terms of ranking 
performance, and takes significantly less search time. 

5.1  The DBLP Bibliography Data 
We conduct the experiments on the DBLP bibliography database. 
The snapshot on December 31, 2010 of information retrieval and 
data mining related conferences (including KDD, ICDM, SDM, 
PAKDD, PKDD, ICML, CIKM, WWW, SIGIR, ACL, SIGMOD, 
VLDB, PODS, ICDE, EDBT, and ICDT) is used. We construct 
the labeled social network using co-authorship between authors. 
The set of labeled nodes consists of authors who have co-authored 
at least three papers. The label set Xi of each author i consists of 
his/her first names and keywords of textual terms (removed the 
stop words) occurring in the paper titles of at least three papers 
titles that he or she co-authored. Two authors are connected in the 
network if they co-authored at least three papers. There are a total 
of 10,443 authors and 25,354 edges. We compute the edge 
weights (i.e., communication costs) using the Jaccard coefficient. 
The formula of computing edge weights is given as: w(i,j) = 1 – 
(|Pi∩Pj|/|Pi∪Pj|), where Pi is the set of papers of i.  

5.2  Experiment Design 
Evaluation Measures. The goals of the experiments are to 
evaluate the effectiveness and efficiency between the proposed 
grouping-based Steiner algorithm (GrpSteiner) and the original 
greedy Steiner tree algorithm (ApxSteiner). The effectiveness is 

measured by calculating the ranked position of the ground-truth 
targeted person in the returned ranking list. Specifically, for a 
query consisting of a set of context labels and the first name of the 
target person ti, when a search method returns a ranking list of 
persons, we find the ranked position of the ground-truth targeted 
person, denoted by rank(ti). Given a set of N search queries, we 
compute the average value of ranked positions of targeted persons, 
AvgRank=(Σi=1...N rank(ti))/N. On the other hand, the efficiency is 
measured by averaging the execution time (seconds) of search 
queries. Note that the ranked list of original Steiner algorithm 
(ApxSteiner) is generated by performing the algorithm n times 
and sorts the results by the communication costs, in which we 
apply the abovementioned weight enhancement mechanism when 
each resulting person is returned. 
Generating Targeted Person with Context Labels. We simulate 
how users perform people search in a social network to generate a 
set of N the ground-truth targeted persons with the query sets of 
context labels. For each targeted person, we produce a set of k 
context labels for the search process. The generation procedure is 
given as the following. First, we sort the frequency of first names 
in the compiled DBLP co-authorship network, and derive a set of 
highly-frequent first names Sf by setting a first-name threshold f. 
The same process is applied to derive a set of highly-frequent 
keywords Sw. using a keyword threshold w. To impose the 
namesake effect which is what we mainly concern, we set (F, K) 
= (30, 250) in the experiments. Second, we randomly pick a first 
name from Sf, and then randomly pick a person i with this first 
name. We regard such individual i as a ground-truth targeted 
person and his/her first name as one of the query context labels. 
Third, using the social network, we perform Breath-first search up 
to r steps starting from ti, and obtain a set of neighboring persons 
Sr. And then we randomly select k-1 persons from Sr. For each 
selected person j, it has an equal probability to choose either 
his/her first name or one of his/her possessed keywords as a query 
context label. The neighboring step r is set to be 2 because in real-
life cases it is less possible for users to employ far information 
about the targeted person for people search. Repeating the above 
second and third parts up to N times, we can attain N ground-truth 
targeted persons with the corresponding N k-sized sets of context 
labels as the search queries. Here we set N to be 200. 
Evaluation Plan. The experiments are divided into two parts to 
demonstrate the effectiveness and efficiency from diverse points 
of views. First, to investigate how the number of provided context 
information affects the performance, we vary the number of the 
query context labels k = 3, 4, ..., 10. Note that among k context 
labels, one is the first name of the ground-truth targeted person ti 
and the other k–1 ones are either the first names or the keywords 
in ti’s neighbors. Second, to examine how the ratio between the 
first-name and keyword context labels affects the performance, we 
fix k=6 and vary the ratio of “#NameLabel versus #KeywordLabel” 
as 1:5, 2:4, ..., 5:1.  

5.3  Experimental Results 
Number of Context Labels. The results of varying the number of 
query context labels are shown in Figure 6(a) and 6(b) for the 
average rank and time efficiency respectively. For the average 
rank in Figure 6(a), we can find our GrpSteiner and the original 
ApxSteiner algorithms have very similar performance under 
different numbers of context labels. In details, which the number 
of query contexts are lower, both methods become slightly worse 
(i.e., average ranks are up to 2.5). As the numbers of query 
context labels increase, the average ranks generally decrease 
toward 2.0. This indicates both methods can averagely return the 
ground-truth targeted person within top-2 returned persons. On the 
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other hand, for the time efficiency of execution time (in seconds) 
in Figure 6(b), our GrpSteiner significantly outperforms the 
ApxSteiner method, especially when the number of query context 
labels gradually becomes higher. We believe such good efficiency 
is due to that the grouping mechanism successfully reduces the 
graph search space so that the execution of our Connector-Steiner 
Tree algorithm is more efficient to find the results. 

 
(a)                                                            (b) 

Figure 6. (a) Varying the number of query context labels (b) 
Varying the number of query context labels to show the 
average ranks of both our GrpSteiner and ApxSteiner.  
#Keyword-#FirstName Ratio. We present the average rank and 
time efficiency by varying the ratio between #KeywordLabel and 
#FirstNameLabel. In Figure 7(a), we find the effectiveness of both 
GrpSteiner and ApxSteiner is well-performed and similar. 
Averagely both can find the ground-truth targeted person within 
around top-three returned persons. In more details, as the number 
of query keyword labels increases, the average ranks of both 
methods gradually raise from about 2.0 to 2.75, which indicates 
both needs more returns to catch the answers. We think such 
effect results from that the query with more keyword labels will 
produce higher potentials to allow those with the same keyword 
labels usually connect to one another in the relevance graph. 
Therefore the graph search, which aims to minimize the 
communication cost, will be guided toward different directions 
that are away from the targeted person. In contrast with confusing 
the search based on keyword labels, when the number of first 
name labels increases, the effectiveness becomes better. It is due 
to that those people with the same first names are usually hard 
connected to each other in the relevance graph, and thus are able 
to provide accurate guidance of graph search toward the targeted 
person. On the other hand, for the time efficiency in Figure 7(b), 
no matter what the ratio become, our GrpSteiner generally 
outperform the ApxSteiner. And, likewise, as the number of query 
keyword labels increases, more connections among those with the 
same keywords will make the search take more time. 

  
(a)                                                       (b) 

Figure 7. Varying the #KeywordLabel: #FirstNameLabel ratio 
to show (a) the average ranks. (b) the time efficiency. 

6. RELATED WORKS 
Existing work on social search originates from the IR field, and 
they focus on optimizing Web search using social content such as 

voting, tagging and bookmarking [2][12]. Since social annotations 
provided by the public are usually good summaries for web pages, 
some ranking methods, such as SocialPageRank [2] and HubRank 
[3], have been proposed to enhance the search quality. In addition, 
some works [1][4][9][10][11] categorize the annotations into 
diverse types of entities and exploit the relationships among these 
heterogeneous sources to perform multifaceted entity search. 
However, they neglect the underlying social network among the 
users. On the other hand, few works [5][7][8] describe social 
search methods to find individuals by considering the social 
relationships among people. Vieira et al. [8] modify the shortest 
path among individuals as a ranking function to recommend 
relevant friends for a single user. Their method cannot be used to 
perform people search based on querying users or other labels. 
Though Schendel et al. [7] retrieve relevant items satisfying a 
given set of user-given query tags in a social tagging network, the 
communication cost among these individuals is ignored, so their 
method cannot be applied to our context-based people search. 

7. CONCLUSION 
In this paper, we propose and formally define the problem of 
context-based people search in a labeled social network. Given a 
labeled social network and a set of query labels consists of a 
targeted label and other context labels, we aim to return a ranking 
list of persons who possess the targeted label and connects to 
other context labels with minimum communication costs through 
certain effective subgraph. Considering the namesake challenge, 
we propose to leverage context information with the potential 
interactions between the targeted person and such context labels to 
tackle the people search in a social network. Experiments on the 
DBLP bibliography data demonstrate the excellent quality of our 
found ranked results and take significantly less execution time 
comparing to a greedy approximation algorithm.  
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