
Context-based People Search in Labeled Social Networks
Cheng-Te Li1, Man-Kwan Shan2, Shou-De Lin1

Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan 1
Department of Computer Science, National Chengchi University, Taipei, Taiwan 2

d98944005@csie.ntu.edu.tw, mkshan@cs.nccu.edu.tw, sdlin@csie.ntu.edu.tw

ABSTRACT
In online social networking services, there are a range of scenarios
in which users want to search a particular person given the
targeted person one’s name. The challenge of such people search
is namesake, which means that there are many people possess the
same names in the social network. In this paper, we propose to
leverage the query contexts to tackle such problems. For example,
given the information of one's graduation year and city, the last
names of some individuals, one may wish to find classmates from
his/her high school. We formulate such problem as the context-
based people search. Given a social network in which each node
is associated with a set of labels and given a query set of labels
consisting of a targeted name label and other context labels, our
goal is to return a ranking list of persons who possess the targeted
name label and connects to other context labels with minimum
communication costs through an effective subgraph in the social
network. We consider the interactions among query labels to
propose a grouping-based method to solve the context-based
people search. Our method consists of three major parts. First, we
model those nodes with query labels into a group graph which is
able to reduce the search space to enhance the time efficiency.
Second, we identify three different kinds of connectors which
connecting different groups, and exploit connectors to find the
corresponding detailed graph topology from the group graph.
Third, we propose a Connector-Steiner Tree algorithm to retrieve
a resulting ranked list of individuals who possess the targeted
label. Experimental results on the DBLP bibliography data show
that our grouping-based method can reach the good quality of
returned persons as a greedy search algorithm at a considerable
outperformance on the time efficiency.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
mining. H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – Information Filtering.

General Terms
Algorithms, Performance, Design.

Keywords
People Search, Social Network, Context-based Search.

1. INTRODUCTION
In online social networking services such as Facebook, Twitter,
and LinkedIn, it is essential to provide people search which
searches for an individual by name. However, if the query name is
a namesake, especially if there exist millions of individuals share
the query name, it would be difficult to find the target person over
social networking services.

One approach is the context-based people search which search for
an individual not only by name of the target, by also by the social
contexts of the target. The user specified social contexts may be
the first names of target’s friends, the last names of target’s
classmates, the hobbies of the target’s colleagues, hometowns of
target’s relatives, and so on. These social contexts are labels
associated with each individual in social networking services.
The idea of the proposed context-based social search is illustrated
by Figure 1. Each person is associated with labels, where some
have many labels and others provide few labels or only their user
names (e.g., Angel). It can be observed that there are three people
named Sam and two named Mary. The weights on the edges
indicate the communication cost between two people. Higher
weights indicate that the people tend to have a casual
acquaintance, whereas lower values imply that they are more
familiar with one another. If someone seeks to find a friend named
“Mary” who has a friend named George and a colleague familiar
with Java, the expected result by our context-based people search
individual search is “Mary-1,” rather than “Mary-2.” Another
example is to find an individual named “Sam” who had learned
the “C++” programming language with his old friend “Robert” in
his hometown “Boston”, the expected target would be “Sam-1,”
who is connected with “James”, “Jane” and “Robert.” Not only
they meet the query labels but also interact with each other in an
effective manner (with minimal costs).
Given a social network, how to find the individual who is the most
relevant to some user-interested social contexts? Specifically,
given an arbitrary set of labels as queries in a social network (e.g.,
an acquaintance network in Facebook), in which each individual
is characterized by some set of labels, how can we efficiently find
the individual who has strong direct or indirect relationships to all
of the query labels?

Figure 1. A social network with labels on each person. Labels
include name, interest, skill, and hometown. Note that we
append “-number” to individuals to distinguish between
people with the same name (e.g. Mary-1, Mary-2).
To perform such search tasks in current social networking services
containing considerable numbers of people, we have to address
two critical and universal issues: commonality and incompleteness.
Commonality indicates that there are a large number of
individuals sharing common labels in the network. An obvious

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10…$10.00.

1607

illustration is the presence of popular given names, such as Mary,
James, and John. Moreover, there are even more people
possessing the same labels, such as interests, hometowns, schools,
and graduation years. Incompleteness means that users in social
networking sites usually do not (necessarily) provide complete
information about themselves. Some enthusiastic members of
online social networks fill in all their details, whereas others may
only be willing to display their names or a few labels. To address
the issues of commonality and incompleteness in real-life social
networks, we propose to leverage the user-given social contexts
with the social interactions to achieve a context-based social
search: (1) for commonality, individuals with the same names can
be distinguished by context attributes in the network; (2) for
incompleteness, we can also make conjectures about individuals
who provide limited information to their social circles.
In the literature, search tasks in the social contexts of Web 2.0,
called social search, refer to many different aspects. Among these
diverse perspectives on the term social search, the viewpoint of
Kleinberg [5], who defines it as searching over a social graph to
find the set of individuals closest to a given user, is the most
relevant to our context-based people search. In addition, some
commercial solutions to people search, such as Wink [13] and
Intelius [14], have also been developed to provide search over
online social networking sites. These people search services aim
at exploiting social information such as tagging, voting, and
profiles to find people related to any given individual. However,
existing search services over social networks do not tackle the
commonality issue, that is, that there are usually many people
with the same names. In addition, they assume that the social
information, including personal attributes and user tagging, is
complete. Nevertheless, in real-life social networking, it is
infeasible to collect complete personal profiles from all users.
In this paper, we propose, formally define, and efficiently and
effectively solve the context-based people search problem for a
labeled social network. Given a social network in which each
node is associated with a set of labels and a user query consisting
of a set of required labels, our goal is to find the individual that
satisfies the query requirements while minimizing the
communication costs. We define the communication cost as the
sum of the weights on the edges in a minimum spanning tree
connecting both the required labels and the found individual in a
direct or indirect manner.
The central idea of the solution to solve the problem of context-
based people search is to leverage the effective interactions of
query labels. We propose a grouping-based method consists of
three major parts. First, we group those nodes with the same query
labels and transform the original social network into a group
graph which can be regarded as high-level view for the
interactions between groups. The group graph is able to reduce to
graph space and provides an effective guidance for search tasks.
Second, we identify three kinds of connectors which connecting
different groups in the social network. The connectors can be
regarded as key points controlling the bottleneck of cost in the
final subgraph and allowing a more effective graph search. Finally,
we propose a Connector-Steiner algorithm to compose the ranked
list of effective connection subgraphs as the resulting context-
based communities.

2. CONTEXT-BASED PEOPLE SEARCH
[Definition 1] (Labeled Social Network) Let A={a1,...,am} be a
universe of m labels. A labeled social network is defined as an
undirected and weighted graph G=(V, E). Each node i in V={1,...,n}
is an individual that possesses a set of labels Xi  A. Each edge (i,
j) in E captures the interaction between two individuals. The

weight on each edge (i, j) represents the communication cost
between individuals i and j. Note that edges with low (high)
weights represent high (low) communication costs between two
nodes. For example, in a social network, if two people share more
interests, the weight of their edge is correspondingly lower.
[Definition 2] (Communication Cost) Given a labeled social
network G=(V, E) and V’V, the communication cost of V’ is
defined as the sum of the weights of edges of the minimum
spanning tree on the induced subgraph G[V’], denoted by CC(V’).
[Definition 3] (Context-based Query) A query for the context-
based people search consists of a set of labels, which consists of a
targeted label t (i.e., the first name of the targeted person) and
more than one context labels (e.g., the names or labels of the
targeted one’s friends) provided by the users.
Given a labeled social network G=(V, E) and a search task T
consisting of a particular first name label to indicate the targeted
person and a set of context labels {a1,..., ar} A, the context-based
people search problem is to return a ranking list of persons in
which each retuned person connects to the query labels with
minimum communication cost. Specifically, we aim to find a set
of individuals V’V that is connected by a subgraph G[V’] such
that (1) T {Xi, iV’} and (2) the communication cost CC(V’) is
minimized. And for the ranking result, a ranked list is returned
based on the communication cost.

3. THE APPROXIMATED METHOD: ApxSteiner
For the context-based people search in a labeled network, a simple
approach is to exploit the Steiner tree algorithm. The minimum
Steiner tree problem is to find a connected subgraph that connects
some required nodes with minimum sum of edge weights. We can
add the query labels as nodes in the labeled social network, and
designate these nodes of query labels as the required ones in the
Steiner tree problem. Using existing solutions to the minimum
Steiner tree problem, a subgraph with minimum cost can be
derived, and the individual with the targeted label in the resulting
subgraph is reported as an answer person. Repeating such process
up to N times and sort the returned answer persons based on their
costs, a ranked list of N answer persons can be derived.
We first review the Steiner tree problem. Given an undirected
graph with non-negative costs on edges, the nodes in this graph
are separated to the terminal/required vertex set T and the Steiner
vertex set S. The Steiner tree problem is to find the minimum-cost
spanning tree in the given graph; the found tree must contain all
nodes in the terminal set T and any subset of the Steiner nodes.
Since the Steiner tree problem is a NP-hard problem, several
approximation algorithms had been proposed. Here we modify the
greedy algorithm in [6] to find the minimum Steiner tree. This
algorithm starts by randomly selecting a node as a seed in the
required (terminal) set T. Then at each step, a single terminal node
v* from T is incrementally added to the current solution V’. Each
v* is determined by the minimum distance to V’, which contains
nodes that have already been added to the solution set.

4. THE PROPOSED METHOD: GrpSteiner
We propose to perform the context-based people search by
grouping nodes based on query context labels to provide effective
and efficient search. Our method consists of seven steps. The first
step is a label-based node grouping that collects individuals into
groups according to each query label. The second step is to
identify three kinds of connectors between groups. The connectors
play key roles to construct an effective group graph. By exploiting
the connectors, the third step is to construct the group graph, in
which linkages capture the critical interactions between groups.
To realize the group graph, the fourth step is to embed the
topological information only relates to the query labels into the

1608

relevance graph. The fifth step aims to construct the label
relevance graph which integrates the social interactions with the
query context labels to guide the search. To allow more effective
and efficient search result, in the sixth step, we propose to find the
crucial label as the seed node for the following Steiner tree
algorithm. In the seventh step, by using the derived seed label and
the identified connectors, we propose and apply the Connector-
Steiner tree algorithm to find an effective subgraph of individual
for the query labels. According to the targeted label and the
communication cost on the effective subgraph, we perform a
weight enhancement mechanism to return a ranked list of
individuals who satisfy the targeted label.

4.2 Label-based Node Grouping
The first step is to group the individuals in the labeled social
network according to the query labels. A group, with respect to
one of the query labels, for example, ai, is a connected subgraph
in which each individual node contains at least ai. We denote the
group of a certain query label as grp. Note that for a query label ai,
it can have more than one group since there could exist multiple
disconnected subgraphs belonging to ai.
Figure 2 shows an example of grouping for the query labels a1, a2,
and a3, in which a1 is the targeted label. Each group is surrounded
by a dotted region. We can observe two groups correspond to
label a1. These two groups are separated components since they
have no interactions. In addition, node i belongs to two groups
because i contains both a1 and a2. Nodes m and q do not belong to
any of groups because they contain none of the three query labels.

Figure 2. The label-based node grouping for the labeled social
network, where there are three query labels a1, a2, and a3 and
a1 is the targeted label specified by users.

4.3 Connector Identification
Based on the result of label-based node grouping, we can further
distinguish different roles of individuals in a social network,
especially for the connectors that take charge of connecting
groups. According to the interaction behaviors between groups,
there are three kinds of connectors: the overlap connector, the
direct connector, and the indirect connector.
[Definition 3] (Overlap Connector) Given the label-based groups,
if a node v belongs to more than one groups, it is called an overlap
connector. The set of overlap connectors is denoted by OC.
In Figure 2, node i is the overlap connector since it contains
multiple query labels, a1 and a2, and belong to multiple groups.
[Definition 4] (Direct Connector) Given the label-based groups,
for each edge e=(u, v) in the social network G= (V, E), if
ugrpai, vgrpaj, and ai ≠ aj, then u and v are the direct connectors
of grpai and grpaj respectively. The set of direct connectors in a
network is denoted by DC.
Director connectors are those end nodes of a bridge edge which
connects two different groups. If a node belongs to one group and
directly link to another, it is direct connectors of that group. For
example, in Figure 2, for the group of label a3, its direct connector

is node j. It directly links to groups of label a1 and a2 respectively.
Note that although node i is an overlap connector, it is also a
direct connector because it directly link to group of a3.
[Definition 5] (Inter-Mediator) Given the label-based groups, if a
node v belongs to no groups (contain no query labels), it is called
an inter-mediator. The set of inter-mediators is denoted by IM.
For example, in Figure 2, node q is an inter-mediator because it
does not contain any of query labels a1, a2, and a3.
[Definition 6] (Indirect Connector) Given the label-based groups,
for a path p=(v1,...,vn-1,vn) (n>2) in the social network G=(V,E), if
v1grpai, vngrpaj, ai≠aj and j2,...,n-1}, vjIM, then v1 and vn
are the indirect connectors for grpai and grpaj respectively. The set
of indirect connectors in a network is denoted by IC.
Indirect connectors are those end nodes of a path (|path|>1) where
nodes other than the end points do not contain any query labels.
For example, in Figure 2, p and h are the indirect connectors for
the groups of label a3 and a2 respectively.

4.4 Group Graph Construction
We have aggregated individuals into groups based on query labels.
But the underlying interactions among groups have not yet been
modeled. The group interactions are essential for finding effective
communications of groups with respect to the query labels. If we
can construct the group graph with lower costs to connect groups,
it will guide the following search algorithm to have resulting
subgraph with lower cost and cardinality. In this subsection, we
exploit the benefits of the priority principle of connectors for
constructing the group graph in an effective manner.
[Definition 7] (Group Graph) A group graph H=(VH, EH) is a
weighted graph constructed using query labels from the labeled
social network G=(V, E), where VH is a finite set of group nodes,
and EH  VH×VH is a finite set of group links.
[Definition 8] (Group Node) Group nodes are defined according
to query labels. For a query label aiT, the group node grpaiVH
contains a set of nodes V’(grpai) V in G and must satisfy (1)
uV’(grpai), aiXu, (2) the nodes in V’(grpai) form an induced
connected subgraph G[V’(grpai)].

[Definition 9] (Group Link) A group link eHEH is defined on
two group nodes grpai and grpaj in GH, such that the corresponding
induced subgraphs of these two group nodes, G[V’(grpai)] and
G[V’(grpaj)], are reachable from one another. Note that a group
link between two induced subgraphs in G can be overlapped,
direct, or indirect connection.
To have an effective group graph, we follow the priority of
connectors, i.e., “overlap first, direct second, and indirect finally”,
to construct the group graph. The algorithm for group graph
construction is shown in Algorithm 1. This algorithm starts by
isolating all group nodes, and then constructs the group graph
based on the priority of connectors in turn until the group graph is
connected. For the example in Figure 2, the group graph is shown
in Figure 3(a), where the circles represent the group nodes.

(a) (b)
Figure 3. (a) The group graph constructed from Figure 2. (b)
The relevance graph of Figure 3(a).

1609

Algorithm 1. Group Graph Construction
Input: The labeled social network G=(V,E); the set of all group nodes
GRP; the set of groups that vi involves Rvi; the sets of overlap, direct, and
indirect connectors OC, DC, and IC.
Output: A connected group graph H = (VH, EH).
1: VH ←VH ∪ {vH = grpaiGRP}.
2: for each viOC do
3: {eH} ← (grpx, grpy), where grpxRvi, grpyRvi, and x≠y.
4: EH ←EH ∪ {eH}.
5: if H is connected do: return H.
6: for each e=(vi,vj)E and viDC and vjDC do
7: {eH} ← (grpx, grpy), where grpxRvi, grpyRvj, and x≠y.
8: EH ←EH ∪ {eH}.
9: if H is connected do: return H.
10: h ← 1.
11: while (true) do
12: for each h-hop path (vi,...,vj) viIC and vjIC do
13: {eH} ← (grpx,grpy), where grpxRvi, grpyRvi, x≠y.
14: EH ←EH ∪ {eH}.
15: if H is connected do: return H.
16: h ← h + 1.

4.5 Relevance Graph Realization
We restore the corresponding graph topology in the original social
network. We call this restored graph topology as the relevance
graph GR (i.e., relevant to query labels). In other words, we aim to
obtain the induced graph of nodes contained in the group nodes.
The restoration process from the group graph to the relevance
graph consists of two steps. The first is to restore the group nodes.
For each group node, we find the induced subgraph in the original
social network corresponding to all nodes contained in it. The
second is for the group links. For group links derived from
overlap connectors, it is unnecessary to be processed since they
have belonged to at least one group. For group links derived from
direct connectors, there exists more than one bridge edge. For
example, in Figure 2, there are three bridge edges between group
nodes a1 and a3. We find the bridge edges with the lowest costs
and add them into the relevance graph. For group links derived
from indirect connectors, the h-hop paths found in Algorithm 1
are added into the relevance graph. For the example in Figure 3(a),
the corresponding relevance graph is shown in Figure 3(b).

Figure 4. The label relevance graph for the previous example.

4.6 Label Relevance Graph Construction
To facilitate the people search considering query labels, we then
embed these query labels into the relevance graph. By regarding
each query label as a node, we add the query labels into the
relevance graph and add edges to connect each query label node to
nodes of connectors that possess that label. For these newly added
edges between label nodes and connectors, we associate a positive
weight higher than the sum of all weights in the social network.
Eventually, a label relevance graph GLR = (VLR, ELR) will be
constructed. For example, the label relevance graph for Figure 3 is
shown in Figure 4, where the squares represent the label nodes
and the dotted lines represent the edges between label nodes and
the corresponding connectors. In addition, we assign the new

added edges a large weight. Note that the nodes corresponding to
the query labels will serve as seeds to perform the search
algorithm in the following subsection.

4.7 Seed Label Selection for Steiner Algorithm
To find the individuals with lower communication cost, our
approach then finds the Steiner tree in the label relevance graph as
the resulting context-based subgraph for people search. Given the
label relevance graph GLR = (VLR, ELR), the query labels as the
terminal node set T, and the Steiner nodes are the nodes VLR \ T,
our goal is to find an effective subgraph GLR[U] with minimum
communication cost CC(U), where U  VLR. The node with the
targeted label in GLR[U] will be reported as a returned person.
We start the graph search by selecting a label node randomly from
the label relevance graph. However, some experimental studies
show that the seed node plays an important role for minimizing
communication cost of the derived subgraph. If a good seed node
is selected, the communication cost can be lowered. We propose
the connective degree to measure the effectiveness of label nodes
in the label relevance graph. The label node with the highest
connective degree will be selected as the seed node to perform the
greedy Steiner tree algorithm. We first define the -neighborhood
of a label node.

[Definition 10] (-Neighborhood) The -neighborhood of a node
vVLR is the set of nodes N(v)={ui | 1PathLength(v, u), uV}.
[Definition 11] (Connective Degree) Given the label nodes in the
label relevance graph and the three sets of connectors OC, DC,
and IC, the connective degree of a label node v is defined as
CDegree(v)=|N(v)∩OC|×OC+|N(v)∩DC|×DC+|N(v)∩IC|×IC,
where the parameters OC, DC, and IC are used to control the
effectiveness of different kinds of connectors. In the work,  is set
as 2, OC is set as 0.7, DC is set as 0.2, and IC is set as 0.1.
Algorithm 2. Connector-Steiner Tree Algorithm with Ranking.
Input: The graph GLR = (VLR, ELR); a search task consists of a targeted
label t and a set of context labels T = {a1,...,ar}; the number of people
search results to be returned n.
Output: A ranked list of nodes P=<(p1,CC1)...,(pn,CCn)>.
1: for k = 1 to n do
2: Uk ← s, where sT and s is picked by connective degree.
3: while (T \ Uk) ≠  do
4: v* ← argmin uT\Uk Dist(u, Uk) in GLR.
5: if Path (v*, Uk) ≠  then
6: Uk ← Uk {∪ Path(v*, Uk)}.
7: Uk ← Uk \ {a1, ..., ar}.
8: p ← {vt| vtUk and tXt and vt≠pj, j=1,...,k-1}.
9: weight(et=(vt, t)) ←weight(et=(vt, t))×LARGEVALUE(=1000).
10: LIST ← (p, CC(Uk)).
11: Sort LIST according to CC(Uk) and return as the ranked list of

nodes P=<(p1,CC1),...,(pn,CCn)>, where CC1<CC2<, ..., <CCn.

4.8 Connector-Steiner Algorithm with Ranking
Given the label relevance graph GLR, and the set of query label
nodes {a1,...,ar} of the search task T, we propose the Connector-
Steiner Tree algorithm to find a list of effective connection
subgraph with respect to the query labels. We propose a weight
enhancement mechanism, which increases the edge weights
between each answer node and the targeted label nodes.
Specifically, when each time an effective subgraph is constructed,
we identify the node with the targeted label and regard it as one
answer person. Then we replace the edge weight between the
returned person and the targeted label node with a larger value.
Such weight enhancement is capable of guiding the following
Steiner tree searches to choose other persons with the targeted
label as other answers. Each time when an answer person is
returned, we also record the cost of the current effective subgraph

1610

as the effectiveness of such answer. Eventually, we obtain a list of
answer persons with their costs. By sorting such list based on the
costs, a ranked list of effective subgraphs can be derived as the
results. The detailed is shown in Algorithm 2.
Figure 5 shows the round-1 and round-2 effective subgraphs for
the query search task T={a1,a2,a3} and the targeted label is a1,
using the label relevance graph of Figure 4. For the round-1 result,
the highlighted nodes {i, j, k, l} and red edges {(i, k), (k, l), (l, j)}
compose the effective subgraph with the minimum cost
0.15+0.1+0.2=0.45. Node l that satisfies the targeted label a1 is
reported as the answer person with cost=0.45. Before the end of
1st round, the algorithm enhances the edge weight between the
node l and the label node a1 to be 1000×1000. For the round-2
result, the highlighted nodes {i, j} with the green edge (i, j)
compose the effective subgraph with cost=0.5. Node i satisfies the
targeted label is reported as the answer person with cost=0.5. If
we designate to have n=2 results, eventually, the ranking list will
be <(l, 0.45), (i, 0.5)> (i.e., l is the rank-1, i is the rank-2).

Figure 5. The round-1 and round-2 effective subgraphs
derived by the proposed Connector-Steiner Tree algorithm is
highlighted as the red and green ones respectively. Recall the
targeted label is a1. The round-1 answer person is node l with
cost=0.45 while the round-2 answer is node i with cost=0.5.

5. EVALUATIONS
We conduct experiments to test the effectiveness and efficiency of
the proposed method for tackling the context-based people search
in a social network. By comparing our grouping-based method
(GrpSteiner) to the original greedy Steiner tree algorithm
(ApxSteiner), the experimental results demonstrate that our
GrpSteiner performs as well as ApxSteiner in terms of ranking
performance, and takes significantly less search time.

5.1 The DBLP Bibliography Data
We conduct the experiments on the DBLP bibliography database.
The snapshot on December 31, 2010 of information retrieval and
data mining related conferences (including KDD, ICDM, SDM,
PAKDD, PKDD, ICML, CIKM, WWW, SIGIR, ACL, SIGMOD,
VLDB, PODS, ICDE, EDBT, and ICDT) is used. We construct
the labeled social network using co-authorship between authors.
The set of labeled nodes consists of authors who have co-authored
at least three papers. The label set Xi of each author i consists of
his/her first names and keywords of textual terms (removed the
stop words) occurring in the paper titles of at least three papers
titles that he or she co-authored. Two authors are connected in the
network if they co-authored at least three papers. There are a total
of 10,443 authors and 25,354 edges. We compute the edge
weights (i.e., communication costs) using the Jaccard coefficient.
The formula of computing edge weights is given as: w(i,j) = 1 –
(|Pi∩Pj|/|Pi∪Pj|), where Pi is the set of papers of i.

5.2 Experiment Design
Evaluation Measures. The goals of the experiments are to
evaluate the effectiveness and efficiency between the proposed
grouping-based Steiner algorithm (GrpSteiner) and the original
greedy Steiner tree algorithm (ApxSteiner). The effectiveness is

measured by calculating the ranked position of the ground-truth
targeted person in the returned ranking list. Specifically, for a
query consisting of a set of context labels and the first name of the
target person ti, when a search method returns a ranking list of
persons, we find the ranked position of the ground-truth targeted
person, denoted by rank(ti). Given a set of N search queries, we
compute the average value of ranked positions of targeted persons,
AvgRank=(Σi=1...N rank(ti))/N. On the other hand, the efficiency is
measured by averaging the execution time (seconds) of search
queries. Note that the ranked list of original Steiner algorithm
(ApxSteiner) is generated by performing the algorithm n times
and sorts the results by the communication costs, in which we
apply the abovementioned weight enhancement mechanism when
each resulting person is returned.
Generating Targeted Person with Context Labels. We simulate
how users perform people search in a social network to generate a
set of N the ground-truth targeted persons with the query sets of
context labels. For each targeted person, we produce a set of k
context labels for the search process. The generation procedure is
given as the following. First, we sort the frequency of first names
in the compiled DBLP co-authorship network, and derive a set of
highly-frequent first names Sf by setting a first-name threshold f.
The same process is applied to derive a set of highly-frequent
keywords Sw. using a keyword threshold w. To impose the
namesake effect which is what we mainly concern, we set (F, K)
= (30, 250) in the experiments. Second, we randomly pick a first
name from Sf, and then randomly pick a person i with this first
name. We regard such individual i as a ground-truth targeted
person and his/her first name as one of the query context labels.
Third, using the social network, we perform Breath-first search up
to r steps starting from ti, and obtain a set of neighboring persons
Sr. And then we randomly select k-1 persons from Sr. For each
selected person j, it has an equal probability to choose either
his/her first name or one of his/her possessed keywords as a query
context label. The neighboring step r is set to be 2 because in real-
life cases it is less possible for users to employ far information
about the targeted person for people search. Repeating the above
second and third parts up to N times, we can attain N ground-truth
targeted persons with the corresponding N k-sized sets of context
labels as the search queries. Here we set N to be 200.
Evaluation Plan. The experiments are divided into two parts to
demonstrate the effectiveness and efficiency from diverse points
of views. First, to investigate how the number of provided context
information affects the performance, we vary the number of the
query context labels k = 3, 4, ..., 10. Note that among k context
labels, one is the first name of the ground-truth targeted person ti
and the other k–1 ones are either the first names or the keywords
in ti’s neighbors. Second, to examine how the ratio between the
first-name and keyword context labels affects the performance, we
fix k=6 and vary the ratio of “#NameLabel versus #KeywordLabel”
as 1:5, 2:4, ..., 5:1.

5.3 Experimental Results
Number of Context Labels. The results of varying the number of
query context labels are shown in Figure 6(a) and 6(b) for the
average rank and time efficiency respectively. For the average
rank in Figure 6(a), we can find our GrpSteiner and the original
ApxSteiner algorithms have very similar performance under
different numbers of context labels. In details, which the number
of query contexts are lower, both methods become slightly worse
(i.e., average ranks are up to 2.5). As the numbers of query
context labels increase, the average ranks generally decrease
toward 2.0. This indicates both methods can averagely return the
ground-truth targeted person within top-2 returned persons. On the

1611

other hand, for the time efficiency of execution time (in seconds)
in Figure 6(b), our GrpSteiner significantly outperforms the
ApxSteiner method, especially when the number of query context
labels gradually becomes higher. We believe such good efficiency
is due to that the grouping mechanism successfully reduces the
graph search space so that the execution of our Connector-Steiner
Tree algorithm is more efficient to find the results.

(a) (b)

Figure 6. (a) Varying the number of query context labels (b)
Varying the number of query context labels to show the
average ranks of both our GrpSteiner and ApxSteiner.
#Keyword-#FirstName Ratio. We present the average rank and
time efficiency by varying the ratio between #KeywordLabel and
#FirstNameLabel. In Figure 7(a), we find the effectiveness of both
GrpSteiner and ApxSteiner is well-performed and similar.
Averagely both can find the ground-truth targeted person within
around top-three returned persons. In more details, as the number
of query keyword labels increases, the average ranks of both
methods gradually raise from about 2.0 to 2.75, which indicates
both needs more returns to catch the answers. We think such
effect results from that the query with more keyword labels will
produce higher potentials to allow those with the same keyword
labels usually connect to one another in the relevance graph.
Therefore the graph search, which aims to minimize the
communication cost, will be guided toward different directions
that are away from the targeted person. In contrast with confusing
the search based on keyword labels, when the number of first
name labels increases, the effectiveness becomes better. It is due
to that those people with the same first names are usually hard
connected to each other in the relevance graph, and thus are able
to provide accurate guidance of graph search toward the targeted
person. On the other hand, for the time efficiency in Figure 7(b),
no matter what the ratio become, our GrpSteiner generally
outperform the ApxSteiner. And, likewise, as the number of query
keyword labels increases, more connections among those with the
same keywords will make the search take more time.

(a) (b)

Figure 7. Varying the #KeywordLabel: #FirstNameLabel ratio
to show (a) the average ranks. (b) the time efficiency.

6. RELATED WORKS
Existing work on social search originates from the IR field, and
they focus on optimizing Web search using social content such as

voting, tagging and bookmarking [2][12]. Since social annotations
provided by the public are usually good summaries for web pages,
some ranking methods, such as SocialPageRank [2] and HubRank
[3], have been proposed to enhance the search quality. In addition,
some works [1][4][9][10][11] categorize the annotations into
diverse types of entities and exploit the relationships among these
heterogeneous sources to perform multifaceted entity search.
However, they neglect the underlying social network among the
users. On the other hand, few works [5][7][8] describe social
search methods to find individuals by considering the social
relationships among people. Vieira et al. [8] modify the shortest
path among individuals as a ranking function to recommend
relevant friends for a single user. Their method cannot be used to
perform people search based on querying users or other labels.
Though Schendel et al. [7] retrieve relevant items satisfying a
given set of user-given query tags in a social tagging network, the
communication cost among these individuals is ignored, so their
method cannot be applied to our context-based people search.

7. CONCLUSION
In this paper, we propose and formally define the problem of
context-based people search in a labeled social network. Given a
labeled social network and a set of query labels consists of a
targeted label and other context labels, we aim to return a ranking
list of persons who possess the targeted label and connects to
other context labels with minimum communication costs through
certain effective subgraph. Considering the namesake challenge,
we propose to leverage context information with the potential
interactions between the targeted person and such context labels to
tackle the people search in a social network. Experiments on the
DBLP bibliography data demonstrate the excellent quality of our
found ranked results and take significantly less execution time
comparing to a greedy approximation algorithm.

REFERENCES
[1] E. Amitay, D. Carmel, N. Har’El, S. Ofek-Koifman, A. Soffer, S.

Yogev, and N. Golbandi. Social Search and Discovery Using a
Unified Approach. ACM HT 2009, 199–208, 2009.

[2] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing Web
Search Using Social Annotations. WWW 2007, 501–510.

[3] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking Objects Based
on Relationships. SIGMOD 2006, 371–382.

[4] J. Davitz, J. Yu, S. Basu, D. Gutelius, and A. Harris. iLink: Search
and Routing in Social Networks. KDD 2007, 931–940.

[5] J. Kleinberg. Social Networks, Incentives, and Search. SIGIR 2006,
210–211.

[6] T. Lappas, K. Liu, and E. Terzi. Finding a Team of Experts in Social
Networks. KDD 2009, 467–475.

[7] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X.
Parreira, and G. Weikum. Efficient Top-k Querying over Social-
Tagging Networks. SIGIR 2008, 523–530.

[8] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. D. C.
Reis, and B. Ribeiro-Neto. Efficient Search Ranking in Social
Networks. CIKM 2007, 563–572.

[9] X. Wang, J. T. Sun, and Z. Chen. SHINE: Search Heterogeneous
Interrelated Entities. CIKM 2007, 583–292.

[10] X. Wang, J. T. Sun, Z. Chen, and C. Zhai. Latent Semantic Analysis
for Multiple-type Interrelated Data Objects. SIGIR 2006, 236–243.

[11] W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and D. Zhuang.
SimFusion: Measuring Similarity Using Unified Relationship Matrix.
SIGIR 2005, 130–137.

[12] Y. Yanbe, A. Jatowt, S. Nakamura, and K. Tanaka. Can Social
Bookmarking Enhance Search in the Web? JCDL 2007, 107–116.

[13] Wink People Search. http://wink.com/
[14] Intelius People Search. http://search.intelius.com/

1612

