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ABSTRACT 
This work combines the central ideas from two different areas, 
crowd simulation and social network analysis, to tackle some 
existing problems in both areas from a new angle. We present a 
novel spatio-temporal social crowd simulation framework, Social 
Flocks, to revisit three essential research problems, (a) generation 
of social networks, (b) community detection in social networks, (c) 
modeling collective social behaviors in crowd simulation. Our 
framework produces social networks that satisfy the properties of 
high clustering coefficient, low average path length, and power-
law degree distribution. It can also be exploited as a novel 
dynamic model for community detection. Finally our framework 
can be used to produce real-life collective social behaviors over 
crowds, including community-guided flocking, leader following, 
and spatio-social information propagation. Social Flocks can serve 
as visualization of simulated crowds for domain experts to explore 
the dynamic effects of the spatial, temporal, and social factors on 
social networks. In addition, it provides an experimental platform 
of collective social behaviors for social gaming and movie 
animations. Social Flocks is at http://mslab.csie.ntu.edu.tw/socialflocks/ . 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications–Data 
mining.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Social Networks, Crowd Simulation, Flocking, Network 
Generation, Community Detection, Collective Social Behaviors. 

1. INTRODUCTION 
It is generally believed that human beings who live and interact in 
certain geographical area tend to form a social group. In this paper, 
we present a novel spatio-social simulation framework, Social 
Flocks, to model and exploit such anthropological natures by 
exploiting the technique of crowd simulation, which is to reveal 
collective behaviors by simulating the movement process of a 
number of agents. The central idea of Social Flocks is to assume 
each node as an agent that moves in the space guided by several 
different kinds of forces. This paper shows that Social Flocks can 
be exploited to solve three major problems in social network 
analysis and crowd simulation. First, it can be exploited to create 
networks that satisfy real-world property such as the small-world 
phenomenon and scale-free properties. Second, given a social 
network, Social Flocks can be utilized to identify network 
communities. Third, it can be treated as a simulation system that 

produces three kinds of social-based collective behaviors. The 
demonstration page of Social Flocks is available at 
http://mslab.csie.ntu.edu.tw/socialflocks/.  

Social Network Generation. Social network generation models 
aim at producing artificial social networks satisfying some well-
known properties that have been discovered in real-world social 
networks [13]. Three of the most essential properties are (a) high 
clustering coefficient CC (nodes are densely-connected to their 
neighborhood), (b) low average path length APL (all pairs of 
nodes are connected via short paths on average), and (c) power-
law degree distribution. Watts and Strogatz [18] propose the 
random rewiring model to generate the small-world networks 
with high clustering coefficient. Barabasi and Albert [3] propose 
the preferential attachment mechanism to generate the scale-free 
networks that satisfy both (b) and (c). More advanced generative 
methods [1][4] have been proposed to model a series of 
sophisticated network properties as well. However, most of 
existing generation models ignores the fact that human societies 
are not formed by random rewiring or preferential attachment.  In 
reality, ancient people migrated to the same geographical regions 
and gradually interact with each other to form societies. Therefore, 
in this work, rather than resorting to graph theory or topological 
composition methods, we exploit the technique of crowd 
simulation to develop a CrowdNetGen component for the 
generation of realistic social networks. CrowdNetGen integrates 
both spatial and temporal factors when forming a society. In 
CrowdNetGen, we propose two agent-based flocking mechanisms, 
the touch model and the neighborhood-density model, to generate 
social networks by gradually linking nodes that are in contact 
together. We also demonstrate that our approach is able to 
generate networks with high CC, low APL, and power-law degree 
distribution. The generated property values are similar to many 
empirical studies on real-world complex networks [13]. Though 
some studies [2][6][7] use the agent-based approach as spatial 
clues to generate networks, they do not investigate whether the 
structural properties satisfy those of the real-world. 

Finding Communities. Community detection is a well-studied 
problem in social network mining. Generally it is tackled by first 
devising an objective function that captures the concept of the 
community structure (i.e., nodes within a cluster are tightly 
connected while nodes between communities are loosely 
connected). Though many methods have been proposed and 
compared (see Leskovec’s review [11]) for community detection, 
most of them are topology-based approaches that overlook an 
important fact. Realistically, people form groups not due to the 
desires to optimize certain objective function, rather they form 
communities because they interact or contact with each other 
more frequently [12]. Based on the above insight, we present a 
new crowd simulation approach, termed Crowdstering, to identify 
communities in a social network.  
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Simulating Collective Behaviors. Different from CrowdNetGen 
and Crowdstering that bring the idea of crowd simulation into a 
social network mining problem, here we exploit the opposite by 
bringing the social factors into a crowd simulation framework. 
Several models have been proposed to simulate crowds to produce 
collective behaviors, including social force [8], cellular automata 
[5], and rule-based model [16]. Others use physiological (e.g. 
locomotion, energy level) and psychological (e.g. impatience, 
personality attributes) traits of agents to trigger heterogeneous 
behaviors [15]. However, existing approaches do not consider the 
social interactions among the agents, thus they are unable to 
produce social-dependent scenarios. In the third part of this work, 
we propose to leverage the underlying social network, which 
captures social relationships among the agents, for crowd 
simulation. We propose a social network-based crowd simulation, 
SocioCrowd. SocioCrowd can simulate three social-based 
collective crowd behaviors, including community-guided flocking, 
leader following, and spatio-social information propagation. 
These real-world social behaviors cannot be correctly modeled 
using existing methods. The three social-based behaviors can be 
utilized to create intelligent characters in online gaming and visual 
effects for the movie industry. 

2. SOCIAL FLOCKS FRAMEWORK 
We first present the Social Flocks framework as shown in Figure 
1. Social Flocks takes advantage of Reynolds’ flocking simulation 
model [16] as the backbone, in which we associate each node in a 
social network with a moving agent to perform the following three 
tasks. The first part is CrowdNetGen. We propose two network 
generation methods, touch and neighborhood-density models, to 
produce networks with properties of high CC, low APL, and 
power-law degree distribution. Second, given a social network, we 
propose a new spatio-temporal simulation approach for 
community detection, Crowdstering, by introducing the 
acquaintance force derived from the network into the system. The 
third part is SocioCrowd. By considering the network structure as 
the social contexts among the agents, we simulate three social-
based collective crowd behaviors, including community-guided 
flocking, leader following, and spatio-social information 
propagation. 

  
Figure 1: The Social Flocks Framework. 

Here we briefly introduce Reynolds’ flocking model [16]. It is 
proposed to capture the flocking behavior among artificial agents 
in a dynamic virtual environment. It consists of three steering 
rules, (a) separation force (fs) steers each agent to avoid crowding 
local flockmates, (b) alignment force (fa) steers each agent 
towards the average heading of local flockmates, and (c) cohesion 
force (fc) steers each agent to move toward the average position of 
local flockmates. Besides, each agent is an independent actor and 
has his own local perception to navigate.  

3. SOCIAL NETWORK GENERATION 
We exploit a completely different strategy in generating real-
world social networks using crowd simulation. The proposed 
generative model considers each node as an agent. Then as the 
flocking simulation proceeds, we gradually add edges between 
nodes based on one of the following models1. 

Touch Model. This model aims to produce a network that reflects 
the way people in the pre-telecommunication era form groups by 
physically meeting each other in space. In the touch model, an 
edge is added to connect agent/node u and v only when u and v 
have a physical touch during the simulating process. Figure 2 
shows that as #round increases from 0 to 1550, the network 
quickly gathers edges and both CC and APL drastically increase. 
When the #round reaches 600 to 1000, as highlighted by the 
orange rectangle, the generated networks possess the small-world 
properties of high CC≈0.45 and small-world APL≈6. 
Unfortunately, the touch model does not quite produce the scale-
free property. The power-law exponent is about 1.5, which is 
smaller than that of many real social networks (2) 

 
Figure 2: CC and APL under the Touch Model. 

  
Figure 3: CC and APL under the neighborhood-density model. 

Neighborhood-Density Model. To satisfy the three real-world 
properties in the generated networks, we devise the neighborhood-
density model. The basic intuition is that an agent has higher 
likelihood to develop connections with others when there are more 
agents around, and furthermore it is more likely to develop 
relationship with the leader of a group. For an agent/node v, we 
define its neighborhood-density kv as the number of neighboring 
agents within its local perception range  (set to be 20 pixels here). 
During the flocking simulation, for each agent/node v, if kv is 
larger than a predefined density threshold (set to be 5 in this work), 
the system adds an edge to connect v to a node u with the highest 
ku value in v’s local perception (i.e., such node is considered as the 
leader it perceives. Figure 3 presents the values of CC and APL 
during the simulation. We can see that as the rounds of simulation 
increases from 0 to 150, the network quickly gathers edges and 
both CC and APL increase drastically. The small-world properties 
emerge with high CC≈0.75 and low APL≈6 between round 150 
and 200, as highlighted by the orange rectangle. As #round further 
increases, more edges are introduced to connect nodes from 
different flocks, and the APL gradually decreases. CC remains 
stable because edges are added for all nodes in a neighborhood at 
the same time (i.e., forming triangles in the network). Note that 

                                                                 
1 In this work, (fs, fa, fc) = (0.5, 0.8, 0.5) for the touch model, and (fs, fa, fc) = (0.7, 0.8, 

0.5) for the neighborhood-density model. 
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comparing with the touch model, the neighborhood-density model 
takes fewer rounds to produce high CC and low APL. It is because 
the touch situations are relatively less likely to happen. In addition, 
the generated networks under the neighborhood-density model 
follow the power-law degree distribution. And the power-law 
exponent  at #round=170 is 1.92. In brief, the neighborhood-
density model can produce networks that satisfy the three 
properties of real-world networks, i.e., high CC, low APL, and 
power-law degree distribution (2 in average). 

4. FINDING NETWORK COMMUNITIES 
In anthropology and evolutionary sciences, the geographic 
homophily plays a significant role on the formation of different 
kinds of human societies [12]. People who acquainted with each 
other usually live and flock in a particular spatial area and have 
higher potential to interact with one another. We consider such 
spatio-temporal homophily factor to develop a novel approach, 
Crowdstering, for finding communities in a network. Specifically, 
given a social network, our goal is to generate flocking groups in a 
natural way, with each flocking group corresponds to a detected 
community in the network. The natural way means that except for 
the steering forces that contributes to the spatio-temporal flocking 
behavior, our Crowdstering is parameter-free with respect to the 
prior knowledge about the communities, such as the number of 
communities. 

 
Figure 4: Expected effects of integrating the acquaintance force. (a) 
Gathering local flocks whose members tend to be acquainted with 
each other. (b) Attracting and merging local flocks gradually during 
the simulation. (c) For those far from acquaintances, the repulsions 
drive them away from one another. 

To emerge flocking groups as communities in the simulating 
space, we introduce the fourth factor, the acquaintance force (fq), 
into the flocking simulation. While the original three forces are 
used to produce the flocking behavior by gathering agents that are 
close enough in the simulating space, the integration of the 
acquaintance force is expected to emerge the effects:  (a) 
determining the members of each flocking group, (b) steering 
agents whose corresponding nodes are close enough in the 
network to flock together, and (c) steering agents whose nodes are 
far apart in the network to avoid flocking together. An illustration 
of the idea of acquaintance force is shown in Figure 4. For an 
agent/node u, the acquaintance force fq(u) is computed by 
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where Ru is the set of agents under the local perception of agent u, 
Length(u,v) is the length of shortest path between the node u and v 
in the network, and  is a constant value that determines the shift 
border between the attraction and repulsion forces. That says, if 
Length(u,v) < , the agent v will exert an attraction force to u. If 
Length(u,v) > , v will exert an repulsion force to u. And if 
Length(u,v) = , v has no effect on u. In this work,  is set to be 3. 

Here we use an example to show the effectiveness of 
Crowdstering. Given a network with two different sets of detected 
communities, the simulated outcomes are shown in Figure 5. For 
Figure 5(a), there are two detected communities, colored yellow 
and white, and the simulated outcome of our Crowdstering is 

nearly perfect as it emerges two flocking groups. For Figure 5(b), 
there are three detected communities, colored green, yellow, and 
white. We find that the previous white community is split into the 
current white and green communities, while the yellow 
community remains the same. Though the white and green 
communities flock together, the acquaintance force is still able to 
steer agents of each community to be closer in the network and 
towards two small cohesive flocking subgroups. In addition, we 
can find some agents who do not form a flock. They could be 
outliers that are loosely connected to any communities. 

 
Figure 5: Crowdstering for a network with (a) two communities, and 
(b) three communities. 

5. COLLECTIVE SOCIAL BEHAVIORS 
Existing crowd simulation studies usually regard each simulation 
agent as independent (i.e., no social connection between each 
other). Although general crowd simulation methods can produce 
the realistic fine-grained human actions, they do not consider any 
real-life social interactions among the agents. This shortcoming 
prevents the creation of social-dependent crowd behaviors. Here 
we aim to leverage the underlying social network, which captures 
social relationships among agents, to produce collective social 
behaviors over crowds. The SocioCrowd component is developed 
to simulate three collective behaviors, including community-
guided flocking, leader following, and spatio-social information 
propagation. We collect co-authorships from DBLP to construct 
the underlying network. An example social subgraph is shown in 
Figure 6(a). 

5.1 Community-Guided Flocking 
In the real life, it is assumed that people who are in the same 
community tend to interact with each other more frequently. We 
believe it is important that a simulation framework can reproduce 
such behavior. Therefore, we aim to simulate such common social 
scenario given a social network with detected communities. Note 
that in the demo we use the Fast Newman algorithm [14] to find 
communities community detection. For agents in diverse 
communities, we use different colors on both network view and 
2D view. To integrate communities within the simulation, we 
design two probabilities, pc and qc, to control the possibility of an 
agent being attracted by others of the same and different 
community respectively. The simulating results are shown in 
Figure 6(c), where pc=1 and qc=0. It can be observed that agents 
belonging to the same communities tend to flock. For Figure 6(b), 
where pc=0.5 and qc=1, agents belonging to different communities 
have higher chance to flock.  

 
Figure 6: Left to right: (a) Network view with seven detected 
communities. (b) Simulating behaviors without community effect. (c) 
Collective behaviors of community-guided flocking. 
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5.2 Leader Following 
A society usually has few leaders who are followed by other 
ordinary citizens. SocioCrowd simulates such social scenario by 
identifying some central individuals as the leaders in a social 
network. Three centrality measures (i.e., degree, closeness, and 
eigenvector) [17] are provided to find central individuals from 
different viewpoints. During simulation, we design a following 
probability pl which allows an individual to follow a leader given 
the leader appears in the individual’s local perception. A higher 
probability implies the leader attracts more followers. Figure 7 
shows the result of leader following behavior, where pl = 0.7. 

 
Figure 7: The emerging collective crowd behaviors of leading person 
following. Each red circled group is a flock and the orange circled 
ones are the leaders in flocking groups. 

 
Figure 8: Certain information (purple), is propagated from few to 
most of the agents shown from left to right. The top is the simulating 
view while the bottom is the network view. 

5.3 Spatio-Social Information Propagation 
We simulate how information is propagated among agents. In 
conventional crowd simulation, agents spread messages only to 
others who are close to them in space. In real world, however, 
people do not necessarily communicate with spatially adjacent 
individuals but rather with socially adjacent ones. With underlying 
social network, individuals are capable of interacting with their 
social friends. SocioCrowd combines spatial and social clues to 
perform such information spreading. We adopt the linear 
threshold model [9] as the spreading strategy, with which an agent 
is influenced if the summation of the influence levels of its spatial 
and social neighbors is above a given threshold. A snapshot of 
influenced agents drawn in red cylinders is shown in Figure 8. 

6. CONCLUSIONS 
Generally, researchers regard crowd simulation as a sub-area in 
computer animation, which is not very relevant to the study of 
social network analysis. This paper, however, discovers a 
connection between crowd simulation and social network analysis 
and utilizes such connection to enhance performance on both sides. 
We first exploit crowd simulation framework to solve two 
important social network problems, namely generation of a social 
network that fits the real-world property, and community 
detection. Comparing with exiting models on network generation 
and community detection, our solution is able to reflect how 
ancient people form societies and visualize the dynamics of the 
generation process. Therefore users can further observe how the 

social links or communities are generated and utilize dynamic 
information to pursue further analysis. On the contrary, we also 
show social networks can benefit the area of crowd simulation. 
Previous models treat agents as individuals and do not consider 
the implicit social networks behind them. We have shown that by 
considering the forces derived from the social connection, it is 
possible to produce several collective social behaviors, including 
community-guided flocking, leader following, and spatio-social 
information propagation. Ongoing work will concentrate on 
modeling the evolving network properties, such as densification 
power law and shrinking diameter [10], and producing advanced 
collective social behaviors, such as riot and evacuation. 
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