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Abstract—Many algorithms have been developed to identify
important nodes in a complex network, including various
centrality metrics and PageRank, but most fail to consider
the dynamic nature of the network. They therefore suffer
from recency bias and fail to recognize important new nodes
that have not had as much time to accumulate links as
their older counterparts. This paper describes the Effective
Contagion Matrix (ECM), a solution to address recency bias
in the analysis of dynamic complex networks. The idea of
ECM is to explicitly consider the temporal order of links
and chains of links connecting to a node with some temporal
decay factors. We tested ECM with three large real world
citation networks on the task of predicting papers’ future
importance. We compared ECM’s performance with two static
metrics, degree-centrality and PageRank, and two time-aware
metrics, age-based PageRank and CiteRank. We show that
ECM is more appropriate for predicting future citations and
PageRank scores with regard to new citations. We also describe
a procedure to estimate ECM’s parameters from the data.
Combining all five scores into a ν-SVR regression model of
future citations improves the predictive performance further.

Keywords-data mining; network analysis; dynamic networks;
citation networks;

I. INTRODUCTION

The structure of many complex networks is not static,
but evolves over time as underlying microscopic processes
create or destroy nodes and edges. While many algorithms
have been proposed to analyze network structure to identify
important nodes or hidden groups, they often fail to take the
dynamic nature of the network into account. The PageRank
algorithm [1], for example, ranks Web pages by analyzing
the structure of hyperlinks between them. Although PageR-
ank has been enormously successful both technically and
commercially, it has limitations. While PageRank treats the
Web as a static network, in reality its structure changes over
time as new pages and hyperlinks are created or destroyed.
As a result, PageRank will generally judge newer pages,
which have not had as much time to accumulate hyperlinks,
to be less important than older pages [2], even though Web
users are often interested in the recency of information [3].
Another example of a dynamic network is the citation
network, which grows every year as new scientific articles
are published which cite existing articles. Like the Web, the
structure of the citation network can be analyzed to rank

scientists [4] and find important scientific papers [5]–[7].
Here too, static metrics like PageRank [8], [9] and citations
count are known to be biased against recent papers, although
just like Web users, researchers seeking important scientific
articles are more interested in recent documents.

While several time-aware metrics have been proposed to
address the recency bias of PageRank [2], they fail to take
the dynamic nature of the network into account. Typically,
these approaches extend PageRank simply by initiating the
random walk from a node that is chosen with probability
that depends on its age [5]. The random walk, however, is
carried out on the static graph. We claim that by ignoring
the temporal order of links, these approaches lose important
information about the structure of dynamic networks. Re-
cently, Lerman et al. [10] proposed a new centrality metric
for dynamic networks. This metric generalizes α-Centrality
metric [11], [12], which measures centrality of a node by
the number of paths, of any length, that connect it to other
nodes. The dynamic centrality metric exploits an intuition
that in order for a message sent by one node in a network
to reach another after some period of time, there must exist a
path that connects the source and destination nodes through
intermediaries at different times. However, like PageRank,
this metric too is biased in favor of older nodes which had
more time to accumulate links.

In this paper we propose a time-aware version of dynamic
centrality which properly discounts older papers while still
taking the dynamic nature of the network into account. We
evaluate our approach on large real-world scientific papers
citation networks by seeing how well it predicts papers’
future importance. We show that time-aware dynamic cen-
trality metrics are more appropriate for identifying important
papers that will attract more citations in the future.

II. TIME-AWARE RANKING

Given a dynamic network G(V (t), E(t)), for example,
a citation network where V (t) are papers and E(t) are
directed links indicating the direction of citation, consider t
to be the smallest time interval in which there is no change
in the topology of the dynamic network. In the citation
network, we take t to be one year. Figure 1 shows an
example citation network as a reel to emphasize the temporal



Figure 1. An example citation network.

nature of citations. Each frame within the reel corresponds
to a year and the nodes within the frame represent the
papers published that year. Let the citation network under
consideration comprise of papers published over the period
of time t1 < · · · < tk < · · · < tN . At the end of year tN ,
there will be M papers. Therefore, a paper pj , published
at time t1, that is cited by paper pi, published at time t2,
then necessarily t1 < t2. Let t(pi) be the year paper pi
is published. The adjacency matrix corresponding to this
citation network comprising of all papers published up to
year tn is an M ×M matrix An is:

An[i, j] = 1 if paper pi cites pj and t(pi) ≤ tn
= 0 otherwise (1)

e
A researcher can find papers by following citations links

back in time from a particular paper. Let the probability
of following a citation link be α. Then αAN [i, j] gives the
probability of reaching the paper pj following the citations
of paper pi (t(pi) ≤ tN ). The term α2ANAN−1[i, j] gives
the expectation of reaching paper pj from paper pi through
a one-hop paths. Each one-hop path can be described as
a chain in which paper pi cites some paper pk, which in
turn cites paper pj . Continuing with this process the n-
hop paths from paper pi to paper pj would be given by
αnΠn

k=1AN+1−k. Therefore, the expectation of following
citation links from paper pi and reaching pj is given by
CN,α[i, j] , where CN,α is the contagion matrix described
by:

CN,α = αN−1AN · · ·A3A2

+ αN−2ANAN−1 · · ·A3

+ · · ·+ α2ANAN−1 + αAN (2)

The term CN,α[i, j] gives the number of paths from paper
pi to pj attenuated by their length.

The more paths there are from paper pi to pj , the higher
the likelihood that a researcher will find pj by following
citation chains from pi. The expression above is similar to
the α-Centrality [13] and the Katz score [14] metrics used
in social network analysis. These metrics rank nodes by

the total number of paths connecting them to other nodes,
exponentially attenuated by their length, so that shorter paths
contribute more to ranking than longer paths.

In a citation network, we assume that no paper cites itself
and there are no citations of papers in the same year. Since,
AN is a lower triangular matrix (with diagonal elements 0),
CN,α reduces to

CN,α =

N−1∑
i=1

αiAiN (3)

A. Retained Adjacency Matrix (RAM)

The contagion matrix weighs all edges equally, whether
they link to newer papers or older papers. Therefore, there
will be more paths to older papers, giving them greater
importance. However, people often prefer more recent infor-
mation [3]. We capture this effect by defining a time-aware
adjacency matrix, called retained adjacency matrix (RAM),
that takes the recency of cited papers into account. We use
parameter γ < 1 to give a greater weight to a more recent
paper, and the weight attached to a paper decreases as the
paper ages. If v is the value associated with a citation link for
a paper published in year tn, a scaled down value γniv is the
value associated with a citation link paper published in year
tn−ni . Thus, a greater weight is given to a paper published in
year tn than to earlier papers. Given a time interval [t1, tN ],
the retained adjacency matrix of the network1 up to time tn
is:

Rn,γ(i, j) = γN−ni if pi cites pj and t(pi) = tni ≤ tn
= 0 otherwise. (4)

where parameter γ is the retention probability.

B. Effective Contagion Matrix (ECM)

Using retained adjacency matrix (Eq. 4), we can rewrite
the contagion matrix (Eq. 2 and 3) as:

ECN,α,γ =

N−1∑
i=1

αiRiN (5)

This effective contagion matrix (ECM) measures the number
of citation chains between papers, with the chains attenuated
not only by their length (with parameter α), but also by the
age of the citing papers (with parameter γ). Thus, older
papers are de-emphasized in the ECM matrix.

We use ECM to score papers at the end of a time period
[ti, tN ] and rank them according to their scores. The score
of a paper pj is given by ECN (j) =

∑
iECN (i, j). The

greater the number of papers citation chains incident on pj ,
the greater its influence.

1The time of reference or the time when calculations are being performed
is tN .



C. Efficiently Computing ECM

By storing the matrix as an adjacency list and through
efficient bookkeeping, the time and space complexity of the
algorithm can be reduced considerably. We have devised the
Block Expansion Algorithm, to compute the ECM rankings,
with a runtime complexity of O(|E||V |N). The algorithm is
an incremental version that assumes that data becomes avail-
able year-by-year. Alternatively, assuming we have complete
citation information up to year N , we can simply apply the
definitions above to compute rankings up to year N .

III. RELATED TIME-AWARE METRICS

In this section, we review related metrics that we will
compare with in our experimental evaluation of ECM.

A. Degree Centrality

Centrality determines node’s importance in a network.
This measure is dependent on the network structure. The
simplest centrality metric, degree centrality, measures the
number of edges that connect a node to other nodes in a
network.

B. Time-aware PageRank Metrics

PageRank [1] is well known for its use in ranking Web
search results. In PageRank, the importance of a Web page i
is measured as the probability of a random visit to the page:

PRi =
α

T
+ (1− α)

k∑
i=1,j 6=i

PRj
Lj

where T is the total number of Web pages, α is the
probability of leaving a page (usually set as 0.15), each j
is a Web page that contains a hyperlink to i, and Lj is the
number of outgoing hyperlinks in j.

Age-based PageRank [2] is a variant of PageRank that
applies an exponential degradation function f(age) = (1 +
a · exp−b·age) of a node’s age in the computation of its
PageRank score:

PRi =
α

T
+ (1− α)f(agei)

k∑
i=1,j 6=i

PRj
Lj

,

where agei is the age of page i.
CiteRank [5] was designed specifically for ranking papers

in a citation network. CiteRank performs a random walk on
an aggregated citation graph, but initiates the walk from a
recent paper chosen with probability that depends on its age.
Authors estimated parameters of the random walk by fitting
papers’ CiteRank score to the number of citations accrued
by papers over some time period. Let W be a transfer matrix
with elements Wij = 1/Lj if paper j cites i and 0 otherwise.
The probability that a researcher follows the citation links
to encounter a paper is defined as

~T = I · ~ρ+ (1− α)W · ~ρ+ (1− α)2W 2 · ~ρ+ . . .

where ρi = exp−age
i
/τdir is the probability of initially

selecting paper i, agei is the age of the paper and τdir
characteristic decay time.

C. Regression Models

It is also possible to combine different ranking metrics by
constructing a regress model from the citation network. In
this paper, we consider ν-SVR, a support vector regression
model [15]. The idea is to fit a function that maps a given
paper to the number of citations to the paper in the future.
The input feature vector representing a paper consists of its
scores by different importance metrics.

IV. EXPERIMENTAL RESULTS

A. Data Sets and Metrics

We considered a citation data set that consists of arti-
cles uploaded to the theoretical high energy physics (Hep-
Th) section of the arXiv preprints server from 1992 to
April, 2003 (http://snap.stanford.edu/data/cit-HepTh.html).
Each article is identified by a unique number, with first two
digits representing the year of submission. Data was cleaned
by removing citations to articles that appeared in the future,
as well as citations of the article to itself. There are 1,044
citations in the Hep-Th data set in this category.

We partitioned the data by year to construct snapshots
of the dynamic network in consecutive years. The citations
made by papers uploaded to arXiv during some year form
the edges of the snapshot for that year. A year may not be an
optimal partition of the data, since a small number of articles
published in one year cite others published in the same
year, but it is a convenient time scale to measure scientific
production and interaction between researchers. We also
considered the phenomenology section (Hep-Ph) from the
same source (http://snap.stanford.edu/data/cit-HepPh.html)
and processed the data similarly.

The American Physical Society (APS) data set is one
of the largest citation networks available (https://publish.
aps.org/datasets). This data set consists of 450,000 articles
published in Physical Review Letters, Physical Review, and
Reviews of Modern Physics and dates back to 1893. We
removed 408 articles without publication dates and 615
forward citations. “APS Part” is a subset of the Physical
Review citation network that contains only papers published
in the recent 20 years (1989-2009). During that period,
more than 64% of all 116 years of papers were published,
an exponential boom of publications. Table I shows the
statistics of these citation network data sets.

We compared 11 metrics in our experimental evaluation as
shown in Table II. To reduce the cost of matrix multiplication
in the computation of ECM, an additional parameter t was
introduced as a threshold to reset values in the matrix that
were below t. We also considered three support vector
regression models, one of them combines the above metrics
except both RAM and ECM, one except RAM, and one



Table I
BASIC STATISTICS OF THE DATA SETS.

Type Hep-Th Hep-Ph APS Part APS

Node 27770 34546 290286 449678

Link 352807 421578 2605644 4707689

Year 11 11 20 116

Table II
METRICS COMPARED.

Metric Remark
D degree = ID + OD
ID in-degree
OD out-degree
PR PageRank [1]
ABPR Age-based PageRank [2]
CR CiteRank [5]
ECM Effective Contagion Matrix (Sec. II-B)
RAM Recency Adjacency Matrix (Sec. II-A)
SVR ν-SVR [15] w/ D,ID,OD,PR,ABPR
SVRECM ν-SVR [15] w/ D,ID,OD,PR,ABPR,ECM
SVRRAM ν-SVR [15] w/ D,ID,OD,PR,ABPR,RAM

except ECM. For all models, we chose linear kernel and
100 as its cost, tuned by minimizing the mean square error
on the training sets.

B. Correlation of Rankings

Each metric ranks the oldest 90% of the papers in a data
set, based on the citations between them. Then we used
the citations from the remaining 10% to the old papers to
measure how well the metrics rank the importance of the
old papers by the following criteria:
• Cite: compute the Spearman correlation coefficient

between the ranked list by the scores produced by each
metric and the ranked list by future citation counts.
This is similar to the evaluation criterion given in the
CiteRank paper [5].

• FutNew: compute the PageRank scores of the network
containing all papers but only new citations, then
evaluate the Spearman correlation coefficient between
the ranked list by the scores from each metric and the
ranked list of the PageRank scores. This is the criterion
used in the FutureRank paper [7].

• FutAll: Similar to FutNew, but evaluate the PageR-
ank scores for the entire network that contains all
papers and all citations.

These criteria were chosen to measure if a metric can
rank a paper by its potential of attracting new citations. In
contrast, some of the previous works defined an importance
node as the status of a node in the current network.

We now report the experimental results using the above
three evaluation criteria for each citation network data set.

Hep-Th Table III shows the evaluation results using the
three criteria the ten importance metrics. Initially, we used
the parameters suggested by the authors of the corresponding
metrics. These parameters led to good performance for
certain criteria but not all. For example, usually we set
α = 0.15 for PageRank. These parameter settings were
derived for various purposes that are not necessarily the
same as the criteria given here. We thus tuned another set
of parameters for each metric to maximize the average of
all criteria and gave the performance results in multiple
rows for comparison. We performed a similar tuning for
ECM and RAM but we selected one that maximizes the
average of Cite and FutNew only because to obtain the
best performance in terms of FutAll, γ needs to be set to
close to one, which will reduce RAM to be equivalent to ID
(in-degree) and its performance for the other two criteria will
be as poor as ID. Then we integrated the scores produced
by the metrics with the balanced performing settings of the
parameters to train three SVR models.

The results show that SVRECM performed the best
for matching the frequency of future citations (Cite)
and matching the PageRank scores in the new network
(FutNew). Combining existing metrics, SVR performed
reasonably well but still worse than those SVR models with
either ECM and RAM. Other than the three supervised
ensemble models, ECM performed the best followed by
RAM and then CiteRank, suggesting that degrading weights
of aging citations to remove recency bias is effective as both
ECM and RAM performed well. That ECM outperformed
RAM suggests that considering chains of citations is useful
for ranking the potential of papers. Age-based PageRank
and PageRank performed much better than all other metrics
when the PageRank scores were measured based on the
entire network. This suggests that in fact the PageRank order
of the papers does not change much as more papers were
added to the network, where old papers will enjoy biased
preference. Yet though Age-based PageRank represents an
attempt to address this issue, its performance in terms of
Cite and FutNew is low, worse than the degree centrality
metrics.

Interestingly, in-degree also performed well in terms of
FutAll while out-degree, when combined with in-degree,
performed better than in-degree along in terms of Cite
and FutNew. Therefore, out-degree may correlate with the
potential of a paper being cited in the future. The correlation
might due to out-degree’s role in forming citation chains
modeled explicitly by ECM.

Figure 2 shows the results obtained by partitioning papers
in different proportions. Recall that the results shown in
Table III were obtained by using the oldest 90% of the
papers for ranking and the remaining 10% for evaluation. In
terms of Cite, ECM, CiteRank and Degree improved their
performance and hit peaks when the partition is 70% to 30%
because for these metrics to work, we need a sufficiently



Table III
COMPARISON ON CORRELATION RESULTS FOR HEP-TH DATA SET.

Metric Parameter Cite FutNew FutAll

D N/A 0.5500 0.4802 0.4786
ID N/A 0.4643 0.4169 0.8617
OD N/A 0.4037 0.3372 0.0007

PR α = 0.15 0.2760 0.2620 0.9737
PR α = 0.48 0.2889 0.2763 0.9709

ABPR α = 0.15 0.2775 0.2635 0.9741
a = 0.3, b = 0.005

ABPR α = 0.48 0.2932 0.2778 0.9754
a = 3.0, b = 0.0001

CR α = 0.48, τdir = 1 0.6003 0.5812 0.4629
CR α = 0.31, τdir = 1.6 0.5946 0.5739 0.5364

ECM α = 0.1, γ = 0.3 0.6460 0.6008 0.4805
t = 0.01

RAM γ = 0.3 0.6187 0.5719 0.6137

SVR c = 100 0.6486 0.6061 0.5540

SVRECM c = 100 0.6685 0.6222 0.4654

SVRRAM c = 100 0.6679 0.6211 0.4924

large citation network for ranking and sufficiently many
papers in the future to provide abundant opportunities of
new citations. For PageRank and Age-based PageRank,
their performance degrades gradually. The trend is simi-
lar for FutNew. Contrastingly, PageRank and Age-based
PageRank improve in terms of FutAll while other metrics
degrade. We plotted similar charts for the results obtained
by partitioning papers by years and obtained similar curves.

Hep-Ph Table IV shows the results for the Hep-Ph data
set. For the sake of conciseness, only results using balanced
parameters are given. The winners and losers are similar
to those for Hep-Th, except that though ECM still outper-
formed RAM, SVRRAM performed better than SVRECM.
We also plotted charts similar to those given in Figure 2 and
observed similar curves.

American Physical Society data set We then compared
the metrics with the Physical Review citation network, which
spans more than a hundred years and is larger than the other
two data sets by an order of magnitude. Due to its large size,
it is difficult to search for optimal parameters by exhaus-
tively enumerating combinations. Instead, we developed an
approach to estimate optimal parameters by fitting a power
law distribution curve.

To estimate α, we find the distribution of citation chains
that span consecutive years. In other words, we set γ = 0,
so that no older citations are retained. Nj gives the total
number of chains of length j that start in year tn−j+1 and
end in year tn. Assuming that the probability of picking
a chain is proportional to the probability of transmitting a
message along the chain, Nj decays geometrically with α.
Therefore, the probability of choosing a citations chain of
length j is given by αj . The expected number of citation

Table IV
COMPARISON OF CORRELATION RESULTS FOR HEP-PH DATA SET.

Metric Parameter Cite FutNew FutAll

D N/A 0.5521 0.4966 0.5515
ID N/A 0.4857 0.4464 0.9007
OD N/A 0.3267 0.2830 -0.0400

PR α = 0.48 0.3381 0.3204 0.9754

ABPR α = 0.48 0.3468 0.3286 0.9763
a = 3.0, b = 0.0001

CR α = 0.31, τdir = 1.6 0.5819 0.5703 0.5785

ECM α = 0.1, γ = 0.3 0.6482 0.6106 0.5475
t = 0.01

RAM γ = 0.3 0.6275 0.5890 0.6789

SVR c = 100 0.6358 0.6032 0.6441

SVRECM c = 100 0.6776 0.6420 0.5784

SVRRAM c = 100 0.6808 0.6447 0.5704

chains is E(Nj) = αE(Nj−1).
To estimate γ, we assume that citation retention prob-

ability decays geometrically with time [8]. Let Cjk be the
number of papers at time j − k cited by papers at time j.
Since the number of citations increases in time, we calculate
W j
k = Cjk/

∑
k C

j
k, the fraction of papers appearing at

time j − k that are cited by papers at time j. Taking
the average of W j

k for all j, gives the expected fraction
of citations in a given paper to papers published k years
before it, E(Wk). Therefore according to our hypothesis,
E(Wk) = γE(Wk−1).

To obtain a manageable set for initial testing, we extracted
a subset of papers published in the most recent 20 years,
which is about half the size of the total network. We call
this data set “APS Part.” We estimated the parameters for
ECM by applying the approach described above. For other
metrics, we selected the parameters that yielded the best
balanced performance for them.

Table V shows the results for this subset. The estimated
parameters are given in the second row for ECM and
RAM. The results show that estimated parameters actually
improved the performance for ECM for this data set, but
the estimated γ is not optimal for RAM. With authors-tuned
parameters for this data set, CiteRank performed better than
ECM and RAM here. The overall best performer in terms
of Cite and FutNew is still SVRECM.

We then estimated the parameters and repeated the em-
pirical comparison for the entire network. Table VI shows
the results. With more data, the performance is improved for
most of cases but the winners and losers are similar to the
results for its subset.

C. Predicting Top Highly Cited Articles

Correlation between ranked lists reveals the quality of
ranking for an entire set of papers but usually we are
interested more in how well a metric can identify top papers



(a) Cite (b) FutNew (c) FutAll

Figure 2. Comparison of importance metrics on Hep-Th data set with different partition of data.

Table V
COMPARISON OF CORRELATION RESULTS FOR “APS PART” DATA SET.

Metric Parameter Cite FutNew FutAll

D N/A 0.4543 0.4038 0.4838
ID N/A 0.3171 0.2883 0.8783
OD N/A 0.3136 0.2695 -0.1186

PR α = 0.48 0.2017 0.1933 0.9615

ABPR α = 0.48 0.1902 0.1801 0.9404
a = 3.0, b = 0.0001

CR α = 0.55, τdir = 8 0.5912 0.5799 0.3933

ECM α = 0.1, γ = 0.3 0.5270 0.4987 0.4116
t = 0.01

ECM α = 0.00058, γ = 0.9 0.5365 0.5061 0.5263
t = 0.0004

RAM γ = 0.5 0.5154 0.4847 0.5992
RAM γ = 0.9 0.4200 0.3885 0.8125

SVR c = 100 0.6152 0.5925 0.4314

SVRECM c = 100, t = 0.0004 0.6273 0.5992 0.4154
α = 0.00058, γ = 0.9

SVRRAM c = 100, γ = 0.5 0.6272 0.5972 0.4195

that will be cited frequently in the future. More specifically,
we want to evaluate whether a metric can predict the top
10% highly cited papers by ranking them as high as possible
but ignore how the other papers are ordered.

This task is similar to evaluating the efficacy of an
information retrieval system. Usually, the area under the
receiver operating characteristic curve (AUC) score is the
most popular criterion for the task. However, it was shown
that AUC may fail to faithfully reflect the actual quality
when the AUC scores are pooled together to evaluate a
retrieval system for multiple independent retrieval tasks [16].
AUC is not robust against outlier results. When two disjoint
sets of queries are considered, its value for the union of
the two sets does not always lie between its value for the
two sets of queries. Finally, AUC does not always decrease

Table VI
COMPARISON OF CORRELATION RESULTS FOR “APS” DATA SET.

Metric Parameter Cite FutNew FutAll

D N/A 0.3980 0.3674 0.5840
ID N/A 0.2757 0.2582 0.8988
OD N/A 0.2822 0.2534 0.0221

PR α = 0.48 0.1822 0.1770 0.9618

ABPR α = 0.48 0.2658 0.2594 0.9571
a = 3.0, b = 0.0001

CR α = 0.55, τdir = 8 0.6423 0.6366 0.2094

ECM α = 0.1, γ = 0.3 0.5883 0.5705 0.3596
t = 0.01

ECM α = 0.007, γ = 0.71 0.6034 0.5851 0.4540
t = 0.001

RAM γ = 0.6 0.5472 0.5290 0.5515
RAM γ = 0.71 0.5444 0.5256 0.5755

SVR c = 100 0.6548 0.6461 0.2842

SVRECM c = 100, t = 0.001 0.6734 0.6610 0.3118
α = 0.007, γ = 0.71

SVRRAM c = 100, γ = 0.71 0.6730 0.6606 0.2969

as the threshold relaxed to include the entire retrieval list.
To address these issues, a new evaluation method called the
threshold average precision (TAP-k) was proposed [16]. We
will adopt this new method to evaluate the metrics on their
performance for predicting top 10% of highly cited articles.

TAP-k was designed as a score to evaluate a metric’s
ranking results for multiple independent lists. To compute
TAP-k, first we need to determine x, the largest cutoff
threshold that produces a median of k false positives over
all the output ranked lists. For each list, let P be the total
number of positives, in our case, this is the number of top
10% highly cited papers. Let Px be the precision of the
list with cutoff x. That is, the ratio of the number of papers
obtained a score ≥ x by the metric and the number of papers
that are in the set of the top 10% highly cited papers. Define



Table VII
TAP-K RESULTS FOR ALL DATA SETS USING TOP 5 PERCENT CITED

PAPER AS POSITIVES.

PPPPPPMetric
k 5 10 20 100

D 0.0620 0.0771 0.0933 0.1403

ID 0.0517 0.0579 0.0691 0.1090

OD 0.0033 0.0052 0.0073 0.0161

PR 0.0093 0.0106 0.0151 0.0295

ABPR 0.0040 0.0068 0.0086 0.0228

CR 0.0055 0.0070 0.0092 0.0301

ECM 0.1195 0.1339 0.1511 0.2054

RAM 0.1066 0.1330 0.1511 0.2012

APCx as the sum of the precisions at each rank above the
cutoff. For each ranked list, we can compute the weighted
average of APCx and Px by

APCPx =
P · APCx + Px

P + 1

TAP-k is the average of APCPx over all ranked lists by
the metric. A large TAP-k score indicates a better overall
performance. TAP-k will penalize ranked lists that are cut
short prematurely in an attempt to boost its precision and
ranked lists with scores that only reflect the rank but not the
quality or importance of the retrieved items (in our case, the
papers). See [16] for details.

Again, we applied each metric to rank the oldest 90%
of the papers. Among these papers, the top N% of the
papers that were cited the most frequently by the remain-
ing 10% new papers were considered as the true records
to be retrieved. The best performing parameters given in
Section IV-B for each data set were applied for each
metric. Table VII–IX shows the results for retrieving top
N = 5%, 10%, 20% highly cited papers, respectively, in
terms of TAP-k for k = 5, 10, 20 and 100. ECM performs
the best by a large margin in most of the cases, with a few
exceptions where RAM is the best performer. The results
show that ECM and RAM not only ranked highly cited
papers higher, but also provided scores that reflected the
potential of the papers better.

V. RELATED WORK

Ranking scientific publications is an important application
for dynamic network analysis. A long line of bibliometrics
research attempted to define objective metrics for identifying
important scientific papers, researchers, publication venues,
and institutions. The now-accepted measures for evaluating
the impact of papers and individual researchers include
citations count and h-index [17]. Article citations provide
important evidence for ranking scientific papers. Previous
works treated citation networks as static networks that aggre-
gate all citations links created over some time period. Chen
et al. [6] implemented PageRank algorithm on an aggregated

Table VIII
TAP-K RESULTS FOR ALL DATA SETS USING TOP 10 PERCENT CITED

PAPER AS POSITIVES.

PPPPPPMetric
k 5 10 20 100

D 0.0496 0.0691 0.1006 0.1426

ID 0.0353 0.0495 0.0738 0.1045

OD 0.0019 0.0033 0.0048 0.0140

PR 0.0054 0.0072 0.0110 0.0269

ABPR 0.0024 0.0042 0.0055 0.0207

CR 0.0031 0.0041 0.0060 0.0256

ECM 0.0969 0.1196 0.1311 0.1875

RAM 0.0933 0.1149 0.1341 0.1853

Table IX
TAP-K RESULTS FOR ALL DATA SETS USING TOP 20 PERCENT CITED

PAPER AS POSITIVES.

PPPPPPMetric
k 5 10 20 100

D 0.0609 0.0792 0.0937 0.1373

ID 0.0478 0.0531 0.0601 0.0935

OD 0.0017 0.0023 0.0039 0.0147

PR 0.0057 0.0079 0.0103 0.0240

ABPR 0.0030 0.0036 0.0056 0.0180

CR 0.0029 0.0033 0.0063 0.0289

ECM 0.0729 0.1090 0.1250 0.1833

RAM 0.0745 0.1049 0.1200 0.1633

network to find influential papers. Radicchi et al. [4] divided
the entire data period into homogeneous intervals containing
equal numbers of citations and applied a PageRank-like
algorithm to rank papers and authors within each time slice,
thereby, enabling them to study how an author’s influence
changes in time. In order to address ranking algorithms’
bias for older papers, Walker et al. [5] introduced CiteRank,
a modified version of PageRank, that explicitly takes paper’s
age into account. Sayyadi and Getoor [7] described Futur-
eRank, an algorithm that predicts paper’s PageRank scores
some time in the future. FutureRank implicitly takes time
into account by partitioning data in time, and using data in
one period to predict paper’s ranking in the next. Similar to
the approach in [4], FutureRank combines influence rankings
computed on the papers and authors networks into a single
score. This score is shown to correlate well with the paper’s
PageRank score computed on citations links that will appear
in the future. In addition to these metrics, EventRank [18]
is also a modification of PageRank that takes into account
a temporal sequence of events, e.g., spread of an email
message, in order to calculate importance of nodes in a
network. This approach takes into account the effect of the
dynamic process on ranking.

These approaches are somewhat related: our metrics can
be said to estimate the expected value of all temporal
sequences taking place on the network, the effect of the



dynamic network topology, while no previous work took the
temporal order of citation edges into account.

VI. CONCLUSION

In this paper, we present two new time-aware metrics,
ECM and RAM, to rank the publications in a citation
network. RAM considers direction citations and degrade
its weight as years pass by with a parameter γ. ECM
compounds this factor by also considering chains of ci-
tations and introducing the other parameter α to penalize
the length of the chains. We used four criteria to evaluate
their effectiveness as an indicator of a paper’s potential
of attracting future citations. We performed experimental
comparison using these criteria and reported the results here.
We summarize our findings as follows.
• If the goal is to rank papers by their probability of

being cited in the future, regression models trained by
integrating various unsupervised metrics as the features
perform the best for all data sets.

• If the goal is to identify future highly cited papers,
the ECM score provides the most reliable performance,
followed by RAM.

• PageRank and Age-based PageRank are not suitable
as indicators of a paper’s potential of attracting future
citations. They reflect the importance of a paper in a
static network.

• Considering citation chains usually help as ECM out-
performs RAM and other metrics in most cases.

• For a huge data set, fitting a power law curve can
effectively produce well-performing parameters.

Computing ECM involves multiplications of large matri-
ces that could be time-consuming for a large network. Our
future work includes to develop a more efficient algorithm to
compute ECM and a more efficient and effective algorithm
to estimate optimal parameters.
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