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ABSTRACT 

The social network is a powerful data structure allowing the depiction of relationship information 
between entities. Recent researchers have proposed many successful methods on analyzing 
homogeneous social networks assuming only a single type of node and relation. Nevertheless, 
real-world complex networks are usually heterogeneous, which presumes a network can be 
composed of different types of nodes and relations. In this paper, we propose an unsupervised 
tensor-based mechanism considering higher-order relational information to model the complex 
semantics of a heterogeneous social network. Based on the model we present solutions to three 
critical issues in heterogeneous networks. The first concerns identifying central nodes in the 
heterogeneous network. Second, we propose a role-based clustering method to identify nodes 
which play similar roles in the network. Finally, we propose an egocentric abstraction 
mechanism to facilitate further explorations in a complex social network. The evaluations are 
conducted on a real-world movie dataset and an artificial crime dataset with promising results.  

 
Keywords: social network, heterogeneous information networks, centrality, clustering, egocentric, 
information abstraction. 
 

1. INTRODUCTION  

A social network is a graph in nature, where the nodes stand for actors (e.g., authors and websites) 
and the edges between two actors represent their relationships (e.g., co-authorship and referral). 
In social network analysis (SNA), people have proposed different measures for the graph 
structure to model some general phenomena or to capture some hidden properties, like the well-
known small-world phenomena [42]. Analyzing a social network can not only assist experts in 
understanding the social phenomenon but also help laymen manage their social circles. 

Identifying central nodes and performing entity clustering are two major research directions in 
social network analysis. There are already many centrality measures proposed for different types 
of networks. For example, the degree centrality is used to determine the importance of an author 
or a paper in the bibliography network [41]; the eigenvector centrality has been applied to 
estimate the importance of a website in the World-Wide-Web [16][28]; and the betweenness 
centrality has been utilized to identify crucial persons connecting multiple departments in an 
organization [14]. On the other hand, entity clustering aims at grouping nodes sharing some 
common characteristics into several clusters. In the context of social network mining, entity 
clustering can be divided into two categories. The first is to find communities or their structures 
[25]. A community is a subgraph containing tensely intra-connected edges within it and loosely 
inter-connected edges across communities. The second is to determine the network positions (or 
social roles) [41] of entities playing similar roles or having close semantics in the network. This 
paper focuses on the second type of clustering in social networks.  

Although there are already various successful proposals for centrality measures and social 
position analysis, most assume there is only single type of nodes and single type of relations in a 
network. This kind of social network is defined as homogeneous social networks [41]. For 



example, both the Web and the citation graph (i.e., nodes are authors and edges represent co-
authorships) can also be regarded as a homogeneous social network because there is only one 
type of node (i.e., webpage or paper) and relation (i.e., hyperlink or citation link). However, in 
the real-world different types of objects can be connected through different kinds of relationships, 
therefore it is natural to define different types of entities and relations in a social network. In this 
sense, a more universal data structure, termed heterogeneous social network [41], has been 
proposed to describe the complex relationships (i.e., typed edges) among entities. For example, a 
heterogeneous movie network shown in Figure 1 takes movies (M), directors (D), writers (W), 
and actors (A) as nodes, and their corresponding relationships as tuples such as <D1, direct, M1>, 
<M1, has actor, A1>, <M3, originate from, M4>, where the capital letter in the tuple stands for the 
type of source node, and the second element stands for the type of relations. 

 

 

Fig. 1. A heterogeneous social network for movie domain. The capital letter of each node stands for its type: 
M(movie), D(director), A(actor), and W(writer). Besides, there are five relation types, including “write 
script”, “has actor”, “spouse of”, “direct”, and “originate from” in this example. 

 

A heterogeneous social network in fact contains significantly more semantic information than 
a homogeneous one. Therefore, applying homogeneous analysis methods to it could lead to a loss 
of information in the process. For example, in degree centrality, a person with multiple distinct 
types of interactions with others is treated identically as the one with multiple identical type of 
interaction with others, as long as they have identical number of edges. Indeed people might 
believe the former is more central since it connects diversely to others. Therefore, we think it is 
necessary to consider the typed labels of links or nodes in heterogeneous social network analysis. 

Similar issue occurs for entity clustering in a heterogeneous social network. We believe it is 
better to take both the typed relations and the topological information into account for clustering. 
Let us consider an example illustrated in Figure 2 of a heterogeneous social network where 
different kinds of edges (i.e., line, dot and dash) indicate different types of relations. The three 
gray regions are the results of entity clustering exploiting a conventional community detection 
algorithm [26]. We can observe it simply uses structural information to find densely inter-
connected groups and ignores the heterogeneous information provided through the labels. In this 
paper we propose a role-based clustering method to identify nodes playing the similar semantic 
role in a heterogeneous social network. For the example in Figure 2, different labels on nodes 
indicate the diverse role-based clusters, such as the two nodes marked as Z are more like outliers 
involving in only a dotted relation; the three nodes marked as X are involved in three different 
relations. Nodes lie in different communities can still play similar roles.  



 

 
Fig. 2. An illustrated example for the community detection and the proposed role-based clustering. 

 
On the other hand, it is known that a heterogeneous social network usually contains thousands 

or even millions of nodes and links with corresponding semantic labels. For example in Figure 3, 
it shows the overwhelming and complex information usually hinder further human observing. 
Thus, for the purpose of facilitating further exploration, we propose the egocentric abstraction 
task for heterogeneous social networks trying to identify an abstracted network structure 
surrounding a given node (denoted as ego). Such abstraction can assist users in finding solutions 
for questions relevant to a specific node such as “what are the normal and special behaviors of 
the node x” and “where are the differences between the node x others.” 

 

Fig. 3. An illustrated visualization of heterogeneous social network using UCI KDD movie dataset [13]. This is the two-
step neighborhood graph from the famous movie actress “Meg Ryan”. 

 
We summarize the four major contributions in this paper:  

 
1. A general framework for modeling the semantics of nodes. We suggest integrating the high-

order relational information with the graph topology to model the semantics of nodes. We 
thus propose a tensor-based relational algebra to capture the neighborhood information of a 
node in an unsupervised manner. By doing this, we can then transform a heterogeneous social 
network into a propositional format and facilitate many mining tasks such as the following. 
Comparing with previous models as will be introduced in next section, our model is more 
general and does not require inputs from domain experts.  



2. Determining the centrality of nodes. To extend the concepts of centrality from the 
homogeneous realm, we propose three measures, namely contribution-based, diversity-based, 
and similarity-based centralities to identify central nodes in a heterogeneous social network. 
Each measure delivers a certain semantic meaning within the complex realm. To our 
knowledge, this is the first attempt to extend the idea of centrality to heterogeneous social 
networks. 

3. Clustering nodes based on their roles. Instead of grouping nodes according to the principles 
of community (i.e., nodes densely connected should be put together), we propose a method to 
cluster nodes in a heterogeneous social network based on their social positions in the network. 
Nodes playing similar semantic roles are grouped and the system can further provide 
explanation for validation. 

4. Egocentric information abstraction. For any user-specified ego node, we propose an 
unsupervised method to summarize its ego-based subgraph from different views, including 
common or unique behaviors compared to itself and to others. To our knowledge, both the 
problem and the solution are novel. We perform experiments on both artificial and natural 
dataset to demonstrate the benefit of our system. 

 

 
Fig. 4. The high-level framework for mining tasks in this paper. 

 
The overall framework is illustrated in Figure 4. Given a heterogeneous network, in which 

different colors represent distinct types of nodes and relations. The four dotted rectangular areas 
correspond to the above four objectives, including modeling, centrality, clustering, and 
abstraction. The solutions to the second and third parts are directly based on the signature profile 
produced through modeling, and their outputs are a ranked list, grouped sets. For the last part, we 
first perform some statistic sampling using the profiles, and then provide egocentric abstraction 
from diverse views. The outputs are abstracted graphs from different viewpoints. 

In details, our framework starts from a series of definitions about the relation sequence, 
relation sequence set, and relation sequence matrix as well as the operations on them. These 
establish the cornerstone of modeling the high-order relationship information of a heterogeneous 
social network. Then, we introduce the relational adjacency matrix which encodes the directly 
connected neighbors of each node. By applying the proposed operations, it is possible to further 
construct the k-step relational adjacency matrix to capture the indirectly-connected relational 
paths between any two entities. Eventually, a 3rd order relational adjacency tensor is proposed to 
model the topological and relational information, and based on it we can retrieve the signature 
profile for each node. These signature profiles essentially transform the nodes from the graph 
form to a matrix or vector-space representation, which enables us to exploit existing data mining 
techniques on it. Then we propose three heterogeneous centrality measures to identify central 



 
nodes, namely contribution-based, diversity-based, and similarity-based centrality. We also 
present a role-based entity clustering method based on the signature profiles. Finally, three 
abstraction views, namely local frequency, local rarity and relative frequency views are proposed 
to serve as the distilling criteria for egocentric information abstraction. 

In what follows, we will start by briefly reviewing some existing studies related to centrality 
measures, network clustering, and network abstraction in Section 2. We describe our model in 
Section 3. In Section 4, we define three heterogeneous centrality measures, and propose the role-
based entity clustering. The method to perform egocentric information abstraction is developed 
in Section 5. Section 6 elaborates the evaluations for all proposed solutions on a movie and a 
crime dataset. We conclude in Section 7. 

 

2. RELATED WORK 

The study of social network mining has proceeded for more than ten years. We would like to 
review some works related to issues we intend to handle. Here we categorize them into the 
following topics: node centrality, network clustering, and graph abstraction. 
 

2.1 Node Centrality 

In sociology and graph theory, many centrality measures have been defined to measure the 
importance of nodes in a network based on the structural connectivity. Here, we first review 
some common centrality measures for homogeneous social networks. 

 Degree Centrality. It defines the centrality of nodes as the degree of them. L.C. Freeman [9] If 
a node has more directly connected neighbors, it is regarded as an active individual.  

 Closeness Centrality. Nodes tending to have shorter geodesic distance to others will have 
higher closeness scores [9]. The measure is defined as CC(x)=1/ΣyV dist(x,y), where dist(x,y) 
is the length of the shortest path between node x and y. 

 Betweenness Centrality. It measures whether a node plays the bridging role in a social 
network. If removing a node leads to the destruction of many shortest paths between pairs of 
nodes, this node will be regarded as having a higher betweenness centrality score [10]. The 
betweenness centrality can be generated as CB(x)=Σs≠x≠t V, s≠t σst(x)/σst , where σst is the 
number of shortest paths from s to t, and σst(x) is the number of shortest paths from s to t that 
pass through node x.  

 Eigenvector Centrality. Suggested by P. Bonacich [2], eigenvector-based centrality assigns a 
higher score to nodes connecting to other highly centralized nodes. The definition is 
CE(xi)=Σj=1~n aij CE(xj), where aij is the (i,j) element in adjacency matrix. This directly implies 
the well-known concept of the eigenvector computation AX=λX and the eigenvector represents 
the converged centrality scores. A similar idea has been applied to estimate the importance of 
nodes as well. The two famous measurements for Web mining, PageRank [28] and HITS [16], 
are simply realizations of eigenvector centrality. 

 Information Centrality. This employs the efficiency of information propagation as the criteria 
to define the influence of nodes [17]. The network efficiency is given by EG = (Σi≠jG εij)(n(n-
1))-1 = (n(n-1))-1(Σi≠jG dij

-1), where n=|V|, the efficiency εij is the cost of communication 
between node i and j, and it is equal to the inverse of the geodesic distance dij. Then the 
information centrality for node x can be defined as when the edges connected to x are removed, 
what is the relative drop of the network efficiency: CI(x) = (EG–EG/x)/EG, where G/x is the 
network without the edges involved in x.  

The above measures significantly rely on the network topology. However, they cannot be 
applied effectively to the heterogeneous social networks due to the ignorance of the relational 
information. J. Shetty et al. [34] propose the event-based graph entropy to find important nodes 
in the Enron email action graph by utilizing the relationship information. However, their method 
assumes a labeled graph with a hierarchical structure, and focuses only on finding a kind of 



leader or bridging individual. Besides, their model relies on temporal information about the 
interactions among nodes, and thus cannot be employed in the static network directly. In contrast, 
our approach is more general and can be applied to any static heterogeneous networks. M. 
Barthelemy et al. [3] propose some statistic measures to estimate the extent of semantics for 
nodes and types of nodes in a multi-relational graph. However, they only consider the one-step 
linkages and their method needs prior knowledge about the semantic graph (i.e., the type 
information). D. Zhou et al. [47] perform co-ranking important entities of two types through 
randomly walking on their respective single-relational networks and coupling them using the 
mutually reinforcing relationship between them. Though their method works on the so-called 
heterogeneous network, no labeled semantic relationships are actually utilized. The same 
problem occurs on J. Zhang et al. [46]. Though they devise a random walk model for ranking 
relevant objects in a Web network with multiple types of entities, the labeled relationships 
information between entities are still neglected. To achieving the tasks of ranking and searching 
for nodes in a relational graph, E. Minkov et al. [23] consider the typed information and take 
advantage of a supervised learning to improve the performance of random walk model. Though 
the high-order relationship is used for the ranking, the supervised approach needs prior 
knowledge about the network configuration, and thus not easily to apply to any heterogeneous 
network data. 
 

2.2 Network Clustering 

The term clustering means grouping nodes sharing common characteristics. The pre-specified 
definition of such characteristics usually determines the results. There are two major directions 
for node clustering in a network: namely to identify community structure, and social positions of 
nodes. For the former, the basic idea is to group nodes based on a graph topology principle, 
which states “clustered nodes are those tensely intra-connected in the graph structure while some 
loosely inter-connected nodes locate between clusters” [26]. On the other hand, social position-
based clustering groups the nodes based on the local structural patterns. That is, if two nodes 
have similar neighbors or have similar connections to others, they should be put together, 
regardless of whether they are from the same community. What follows is a brief introduction for 
existing methods on these two topics. 

There are several works related to detecting communities in a homogeneous social network. 
The general approach to find dense subgraphs is by partitioning the graph recursively M. Field 
[8]. KL algorithm [15] maximizes a benefit function to partition the graph greedily. Recently, 
researchers have proposed the modularity-based approach [6][12][26][27] for detecting 
communities. The idea behind modularity is to ensure the number of edges across groups is not 
only small but also smaller than expected. Besides, W. Hwang et al. [14] propose the bridging 
centrality integrating the global and local features to identify bridges between communities, and 
then removes some edges from the network by the Bridge-Cut algorithm to form several 
cohesive subgraphs. SCAN algorithm [45] defines structural similarity as the base to present a 
density-based structural clustering in a bottom-up manner. V. Satuluri et al. [30] propose 
utilizing stochastic flows for community detection. Despite their great success in homogeneous 
networks, none can be easily adopted in the heterogeneous domain.  

For heterogeneous social networks, the definition of community can differ from homogeneous 
social networks. A heterogeneous community does not have to process dense connections within 
a certain relational graph, but its members might share similar and frequent interactions with 
communities of other relational graphs. Spectral relational clustering [21][22][38] is one of the 
most well-known approaches to identify communities in a heterogeneous network, which 
formulates the problem into factorization on multiple matrices or tensor structures. Then, by 
optimizing a certain objective function with some relational constraints and the tolerant 
approximation, the relational clusters can be attained. Instead of partitioning the graph regarding 
patterns of interaction, we aim at grouping nodes based on their roles.  D. Cai et al. [5] address 
another kind of community detection problem in heterogeneous networks through learning an 
optimal linear combination of a user-queried relational structure. More recently, Y. Sun et al. [37] 
propose a NetClus algorithm to discover a new kind of clusters in a heterogeneous network, 



 
where each member in the cluster is a subgraph with star-shaped schema. However, their solution 
is restricted to this specific schema and therefore cannot deal with higher-order relational 
information.  

On the other hand, the social position analysis considers the neighbor structures of nodes to 
estimate the roles they play, which has similar goals as our social role-based clustering algorithm. 
Diverse social positions can be identified using various equivalence classes. There are three 
major kinds of equivalence class, including structural, automorphic, and regular equivalence [41]. 
Two nodes are considered as structurally equivalent if both have identical links to and from other 
identical actors. The automorphic equivalence defines two actors as equivalent if they have the 
same local structure (i.e., pattern of graph isomorphism). The third and the least strict is the 
regular equivalence, which defines two actors as equivalent if both have similar links to members 
of other regular equivalence groups. 

The existing solutions to clustering nodes based on social roles, such as the blockmodeling 
approach [43] and profile similarity approach R. Breiger et al. [4], suffer from the common 
limitation of the lack of ability to handle multiple relational data, let alone considering higher 
order connections. That is, past methods simply exploit the statistics of the immediate nodes and 
links for equivalence detection. Besides, J. Scripps et al. [32] identify different roles of nodes in a 
community, including ambassadors, big fish, loners, and bridges for homogeneous social 
networks. To the best of our knowledge, our solution to group nodes based on their semantic 
roles is the first to address this problem in the heterogeneous realm. It can be regarded as a 
generalized social role discovery model which simultaneously takes the diverse labeled relations 
and their higher-order combinations into consideration. D. Rogers et al. [29] propose the 
extended connectivity fingerprints as a kind of k-step traversals on molecular graph for 
substructure and similarity search. Lin et al. [19][20] propose a model to capture the semantics of 
nodes in a multi-relational network to identify nodes with abnormal behaviors. Our tensor based 
model can be regarded as a theoretically more sound, intuitive, and general model which can 
naturally adopt higher-order interactions as well as temporal information (by adding one more 
dimension in the tensor).  
 

2.3 Graph Abstraction and Summarization 

We further divide this research theme into three sub-categories: 

 Graph Summarization. It is about generating the compact summarized representation for a 
large graph. L. Zou et al. [48] propose summarizing a graph using the topological information 
of the original homogeneous graph. It is not a trivial matter questioning how their approach 
can be adopted to heterogeneous graphs. Y. Tian et al. [39] introduce the OLAP-style 
operations to summarize multi-relational graphs, in which users can apply drill-down and roll-
up to control summarized resolutions. However, they only use the immediate links of nodes 
and the high-order relationship information is ignored. S. Navlakha et al. [24] use the principle 
of Minimum-Description-Length to summarize single-relational graphs. They allow lossless 
and lossy graph compressions with bounds on the indicated error, and produce the aggregate 
graph. Nevertheless, it is not clear how their method can be applied to a heterogeneous 
network. 

 Network Abstraction for Visual Analysis. Network visualization aims at efficiently displaying 
a large network by drawing the structural data with some simple analyses for human 
explorations. P. Appan et al. [1] summarize key activity patterns of social networks in the 
temporal domain using a ring-based fashion. L. Singh et al. [35] develop a visual mining 
program to help people understand the entire multi-mode networks at different abstraction 
levels, in which the abstraction is performed by merging or dividing among different types of 
entities. Shen et al. [33] divide abstraction into structural and semantic parts, and present a 
visual analytics tool, OntoVis, where the relations in heterogeneous networks are reduced 
based on the concept of network ontology. However, all three suffer from insufficiently 
providing egocentric views to facilitate explorations. Besides, they consider simply links in 



the one step neighborhood of each node. We argue that high-order topological and relational 
information should be modeled to produce more meaningful abstraction from diverse aspects 
through the existing abstraction ideas [18][49] with the proposed signature profile model.  

 Network Skeleton. This refers to the hidden structural backbone of the network in a macro 
view. Network skeletons preserve various topological properties of the graph, and thus can be 
regarded as a kind of abstraction. A.Y. Wu et al. [44] use recursive graph simplification to 
construct a multilevel mesh, which is a reduced graph of microclusters and preserves the 
characteristics of scale-free networks. D. Vincent et al. [40] perform transitive reduction, 
which is an edge-removing operation without losing reachability between any two nodes, on 
directed graph data. They define transitive reduction as a minimal subgraph with the same 
transitive closure as the original graph. By detecting the overlapping maximal cliques as 
supernodes, N. Du et al. [7] build the backbone graph of the supernodes using the minimum 
spanning tree algorithm, where the amount of overlap serves as the distance between them. 
Though the above results simplify the network to some extent, it is unclear how their methods 
can be adopted to incorporate heterogeneous information.  

 

3. MODELING HETEROGENEOUS NETWORKS 

This section discusses our model for heterogeneous social networks. Our fundamental 
assumption is the information about a node has already been encoded in the form of a 
heterogeneous social network, and the semantics can be captured and formulated using the 
surrounding relational structures. We aim at profiling each node to a vector-based representation 
in an unsupervised manner, which automatically extracts relational features and measures the 
relatedness as feature values between the node and the corresponding features. The storyboard of 
the proposed semantics modeling for heterogeneous networks is shown in Figure 5. We first 
propose relation sequences as the features and define some data structures and operations on 
them. Using these definitions, all the relational information in the network will be described in a 
relational adjacency tensor. Finally, the vector-based signature profile for each node can be 
derived from the tensor. 
 

 
Fig. 5. The storyboard of semantics modeling. 

 

3.1 Problem Definition 

A heterogeneous network is composed of a topological part and relational part. Each node can be 
characterized using its neighborhood which consists of a set of directly or indirectly connected 
nodes and links.  

Definition 3.1 (Heterogeneous Social Network). A heterogeneous network H(V, E, L) is a 
directed labeled graph, where V is a finite set of nodes, L is a finite set of labels, and EV×L×V 
is a finite set of edges. Given a triple representing an edge, the source, label, and target map it 
onto its start vertex, label, and end vertex, respectively. The function types(V) → {{r1,…,rj}, 
riL, j 1} maps each vertex onto its set of type labels. 
 

The goal of our modeling is to transform a multi-relational graph to a vector-based 
representation without prior user knowledge, namely using an unsupervised method.  



 
3.2 Relational Adjacency Matrix 

As already mentioned, the role of each node is encoded by its relational neighborhood. This 
motivates our idea of defining the k-step relational adjacency matrix to capture the direct and 
indirect relationships between nodes. We start from some basic definitions of relational data 
structures. 

Definition 3.2 (Relation Sequence). A sequence of labeled relations is called a relation 
sequence (RS). A k-step relation sequence (k>0) is defined as a sequence of k labeled relations 
<rx1,rx2,…,rxk> where each rxkL. 

Definition 3.3 (Relation Sequence Group). The group of relation sequences {RS1,RS2,…} is 
called a relation sequence group (RSG). Note that RSi can be of any length, and duplicate 
elements can exist in an RSG. We can represent the duplicate elements in an RSG using a 
numerical number before each occurrence of distinct RS. For example, {3RS1,1RS2,…} means in 
this group there are three RS1 and one RS2. The counting is important since later we will show 
how it can be treated as the feature values in the signature profile. 

Definition 3.4 (Relation Sequence Matrix). A relation sequence matrix RSM is defined as an 
n×n matrix and each element of the matrix is a relation sequence group. In our model the 
constant n stands for the number of nodes in the social network. 

Then we define the multiplication and summation operations between two relation sequences 
and two relation sequence groups. 

Definition 3.5 (Multiplication on Two Relation Sequences). Given two relation sequences 
<rx1,rx2,…,rxi> and <ry1,ry2,…,ryj>, their multiplication (denoted by “”) is defined as 
concatenating the second sequence after the first one as <rx1,rx2,…,rxi,ry1,ry2,…,ryj>. Note that this 
operation is not symmetric. 

Definition 3.6 (Multiplication on Two Relation Sequence Groups). Given two relation 
sequence groups RSGa={RSa1,RSa2,…,RSan} and RSGb={RSb1,RSb2,…,RSbm}, their 
multiplication is defined as the group of all pair-wise relation sequences multiplied from both 
groups, as the following equation describes. If either RSG is an empty group, then the resulting 
relation sequence group is also empty. 

}{
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Definition 3.7 (Summation of Relation Sequence Groups). Given multiple relation sequence 

groups RSG1={RS11,RS12,…,RS1p}, RSG2={RS21,RS22,…,RS2q},..., RSGm= 
{RSm1,RSm2,…,RSmr}, their summation (denoted by RSG1+RSG2+...+RSGm) is defined as the 
group of all elements in every RSGs. That says, RSG1+RSG2+...+RSGm= 
{RS11,…,RS1p,RS21,…,RS2q,RSm1,…,RSkr}. 

Since each element in a RSM is a RSG, and we have defined the multiplication and 
summation for RSG, the multiplication of two RSMs can be defined as similar to the 
multiplication of two numerical matrices. 

Definition 3.8 (Multiplication of Two Relational Sequence Matrices). Given two relation 
sequence matrices RSMa and RSMb, and assuming ea

ij and eb
ij represents the element (which is 

an RSG) of the ith row and jth column in each matrix respectively. Let RSMab=RSMaRSMb, then 
eab

ij, the element of the ith row and the jth column of RSMab, can be derived as 
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  Now we can introduce the one-step and k-step relational adjacency matrix to model the 
neighbor relational structure of each node in the network.  

  Definition 3.9 (One-step Relational Adjacency Matrix). The one-step relational adjacency 
matrix of a given heterogeneous social network H (denoted by ReAM1) is a relation sequence 
matrix that captures the direct adjacency relationship between any two nodes. That is, given a 
social network with n nodes, each element in its one-step adjacency matrix is the group of direct 
labeled relations connecting two corresponding nodes. Note that there can be multiple direct 
connections between two nodes in the network, and a node can also connect to itself given there 
is a self-loop. 

For example, the ReAM1 of Figure 6(a) is shown in Figure 6(b). Note that r-1 here represents 
the inverse edge of typed label r, as the label for the edge is (v1, r

-1, v2) such that (v2, r, v1)E.  

Definition 3.10 (k-step Relational Adjacency Matrix). A k-step relational adjacency matrix of 
H, denoted by ReAMk, is defined as ReAMk-1ReAM1, and can be generated incrementally from 
the one-step relational adjacency matrix. 

For example, the ReAM2 is derived through ReAM1ReAM1. Figure 6(c) shows the 2-step 
relational adjacency matrix of 6(a) when multiplying 6(b) by itself. 
 

 

(a) (b) 

(c) 

Fig. 6. The example of deriving (b) ReAM1 and (c) ReAM2 from (a) a simple heterogeneous social network. 

 
The k-step relational adjacency matrix essentially captures all the k-step relational paths from 

one node to its k-step neighbors in the entire heterogeneous social network. Each element in the 
matrix represents the relational paths connecting two nodes. Each row in the matrix can be 
regarded as all the k-step outgoing paths from one node, and each column stands for all the k-step 
incoming paths into a node. 
 

3.3 Relational Adjacency Tensor 

Here we propose the relational adjacency tensor that integrates the relational adjacency matrices 
introduced in 3.2 to represent the surrounding environment of each node in a heterogeneous 
social network. A tensor is a generalized form of a matrix, a vector, and a scalar in the field of 
multilinear algebra. It is powerful for expressing high-order data. For example, the dynamic 
social network can be described by the time-evolved adjacency matrices [36]. In this case, a 3rd 
order tensor, with time being the 3rd mode, is used. DataCube such as the customer-product-
branch sales data can be represented using 3rd order tensors as well. 

 {<A>}   {<A>} 

{<A-1>}  {<B-1>} {<D-1>}  

 {<B>}  {<C>} {<B>} 
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{<D,A-1>} {<C-1,B>} {<D,B-1>}  {<C-1,B>} 

 {<B-1,B>, <A-1,A>} {<B-1,C>}  



 
Our modeling extends the original idea of the tensor from the numerical domain to the 

relational domain in social networks. The order of the proposed relational adjacency tensor is 
three: the first represents the source nodes, the second represents the target nodes and the third is 
the step size k. 

Definition 3.11 (Relational Adjacency Tensor). A 3rd order tensor, which consists of k slices of 
a series of relational adjacency matrices ReAM1, ReAM2,…, ReAMk, is called relational 
adjacency tensor, denoted by RATk. 

The RAT is constructed by combining the ReAMs (from ReAM1 to ReAMk in order) as the 
slices along the 3rd mode of k-step relations, as illustrated in Figure 7(a) and 7(b). 

 
Fig. 7. (a) ReAMk can be created progressively from ReAM1. (b) The RATk is composed of the slices from ReAM1 to 
ReAMk in order (c) Each horizontal slice of RATk is used to construct the signature profile of the corresponding node. 

3.4 Signature Profiles 

With the RAT, we can now introduce the signature profile as the model to capture the semantics 
of the nodes in a heterogeneous social network. Each horizontal slice (we call a signature slice) 
of RAT is used to represent a single node, as illustrated in Figure 7(c). A signature profile 
(denoted as sp) of each node can be summarized from the corresponding signature slice. The 
signature profile of each node v is a vector where each element in the vector stands for a relation 
sequence (or signature) and its value represents the frequency of that sequence in the slice. 
Figure 8 displays the deriving of signature profiles of v1 and v3 in Figure 6(a). First, the signature 
slices from RAT for v1 and v3 are retrieved, as shown in Figure 8(a) and 8(b). Then the relation 
sequences inside each slice can be listed and aggregated as the signatures, as shown in Figure 
8(c). Finally, the signature profile for each node can be attained in the vector-based 
representation from signatures and the corresponding count, as shown in Figure 8(d). Note that 
since the number of relation sequence in a heterogeneous social network is bounded, the vector 
size of each entity is also bounded. 

What we essentially do up to this point is to translate the original heterogeneous network into a 
vector representation of nodes. The major advantage of this vector-space modeling is now we are 
allowed to apply many existing data mining algorithms for heterogeneous social network 
analysis. Also this model is succinct and modularized while the operations are trivial to 
implement. In fact, for certain tools such as MATLAB which possess strong capability of matrix 
computation, one can even directly exploit the signature slice (in fact a relational matrix) for 
further computation without resorting to the vector profile (in which the target information is lost 
during aggregation). In the next section we will show how one can identify central nodes and 
perform role-based clustering based on this model. 

 
 
 
 
 
 
 
 



k=1:  {<A>}   {<A>} 
k=2:   {2<A,B-1>} {<A,D-1>}  

(a) The slice for v1 of Figure 5. 

k=1:  {<B>}  {<C>} {<B>} 
k=2: {2<B,A-1>}  {<C,D>} {<B,D-1>}  

(b) The slice for v3 of Figure 5. 

signaturev1 2<A>, 2<A,B-1>, <A,D-1> 
signaturev3 2<B>, <C>, 2<B,A-1>, <C,D>, <B,D-1> 

(c) 

 <A> <B> <C> <A,B-1> <A,D-1> <B,A-1> <C,D> <B,D-1> 
v1 2 0 0 2 1 0 0 0 
v3 0 2 1 0 0 2 1 1 

(d) 

Fig. 8. This example is based on Figure 6 and k is set to 2. (a) The horizontal slice for v1. (b) The horizontal slice for v3. (c) 
The signatures of v1 and v3. (d) The signature profile of v1 and v3. 

 
Algorithm 1. Tensor-based Semantics Modeling 
Input: H=<V,E,L>: a heterogeneous network; k: the step size for relation sequences.  
Output: SP(x): the signature profile for each node x, which is a feature vector 
1: Derive the one-step relational adjacency matrix ReAM1. 
2: RAT = [ReAM1]. 
3: for step = 2 to k do 
4:     ReAMk = ReAMk-1ReAM1. // iteratively get k-step relational adjacency matrices 
5:     RAT = [RAT, ReAMk]. // incrementally construct the relational adjacency tensor 
6: end for 
7: SG = {RAT(1:n, 1:n, 1:k)}. // collect all kinds of signatures (i.e., relation 

sequences) 
8: SP = new int[n][|SG|]. // initialize the signature profiles 
9: for xV do  // each horizontal slice  
10:    SP(x) = count and the times of each signature of x from RAT(x, 1:n, 1:k) 

and store the counts into the corresponding cell of SP. 
11: end for 
12: return: SP 
 

The complete procedures for our tensor-based semantics modeling can be elaborated by 
algorithm 1. Given the heterogeneous network and the step size, the algorithm first progressively 
attains the relational adjacency tensor (line 1-6). Then all signatures are collected (line 7) to 
construct the signature profiles (line 8). By visiting each horizontal slice of the tensor and 
counting the occurrence times of each node’s signature (line 9-11), the profile is produced. 
 

4. CENTRALITY AND ROLE-BASED CLUSTERING 

Two of the fundamental issues in social network analysis are to determine the centrality of nodes 
and to group nodes according to their characteristics. In this chapter, we intend to extend the 
concepts of centrality and clustering to heterogeneous networks based on the derived signature 
profiles.  
 

4.1 Heterogeneous Centralities 

Given the signature profile of each node, we propose three diverse centrality measures for 
heterogeneous social networks including diversity-based, contribution-based, and similarity-
based viewpoints, each of which possesses its own physical meaning. 



 
 

4.1.1 Contribution-based Centrality. Based on the idea an individual can be regarded as 
central if it significantly involves various types of social events, we propose contribution-based 
centrality utilizing the signature profile to find the central nodes that satisfy such a condition. 

The idea of contribution-based weighting focuses on measuring the extent to which a node 
contributes to a specific signature, compared with other nodes in the network. The term 
contribution in this sense is a relative and global concept. The equations below formulize how 
the contribution-based centrality of a node x, Ccont(x), can be computed using the signature profile, 
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where freq(x, signaturei) is the frequency of a signaturei occuring in x’s signature profile, and 
|signature| is the number of possible signatures. High contribution value indicates this node plays 
a significant role with respect to the event represented by this signature while a low contribution 
indicates it is not too involved in the corresponding behavior. 

In other words, we sum up the probabilities each signature occurs in x’s signature profile as its 
centrality score. The intuition behind this idea is that each signature can be treated as a kind of 
interaction of an individual with others. And since the contribution implies how significantly a 
node participates in a particular behavior, an individual significantly contributing to various 
signatures can be regarded as the central one. The contribution-based centrality to some extent 
can be regarded as the heterogeneous version of the degree centrality of homogeneous social 
networks. The main difference is that the former only counts the number of one-step direct 
“links” while the latter considers not only the higher order information (i.e., the neighborhood of 
a node) but also the semantics of the relations. 

 
4.1.2 Diversity-based Centrality. An individual can be regarded as a center piece in a society if 

it has connections to different kinds of groups or is involved in a diverse range of events. Similar 
to the idea of the “the strength of the weak tie” [11] which argues that the few interconnected 
links between different clusters could be the key to the compactness of a society, in diversity-
based centrality view we believe the nodes involved in more kinds of events are central. 

Here, we argue that the central nodes in a heterogeneous social network should be those 
involved in many different kinds of signatures, no matter how significantly they are involved. 
The intuition behind this idea is an individual involved in diverse kinds of events has more 
chance of being the center of the society and connecting different kinds of others. To compute 
diversity-based centrality Cdiv, we first convert the signature profile of nodes into a binary one 
(i.e., the values become 1 if it is not zero), and then sum up each row as the centrality score of 
each entity. 

The diversity-based centrality is positively correlated with the traditional degree centrality. 
However, the major difference lies in that the latter considers the number of interactions an 
individual is involved in while the former only consider the number of distinct interactions. 
Analogize to the cases in a homogeneous social network: the degree centrality corresponds to 
finding nodes having many contacts while the proposed diversity-based centrality corresponds to 
finding nodes involved in more weak links. 

 
4.1.3 Similarity-based Centrality. Motivated by the idea a focal person can usually attract 

individuals of similar aims and naturally becomes the center of the group, we argue that a node 
surrounded by many similar nodes can be regarded as a central one. We define the similarity 
between two nodes by the cosine similarity of the corresponding vectors of the signature profiles, 
which is given in the following equation (5). 
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where SP(x) is the vector of signature of x. Below in algorithm 2 we elaborate the procedure to 
generate the similarity-based centrality score of a node x, denoted by Csim(x). The neighbored 
nodes with identical types as x are first identified (line 1-2). Then we sum up the similarity scores 
between x and all of its neighbors, in which the similarity is divided by the geodesic distance to x. 
We consider the geodesic distance as the divisor because the closer nodes are supposed to have 
more impact on the centrality score. This method guarantees a high centrality score of x if and 
only if it is surrounded by nodes whose signature profiles are similar to x. 

Algorithm 2. Similarity-based Centrality 
Input: SP: the signature profiles of nodes; x: the indicated node; type(x): the type 
for node x; kneighbor: parameter to control the size of the neighborhood of x. 
Output: Csim(x): the similarity-based centrality score for the node x. 
1: neighborhood(x) = all nodes within kneighbor steps from x. 
2: Nt(x) = {x | ineighborhood(x) & type(i) = type(x)} 

3: 
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4: return: Csim(x) 
 

4.2 Role-based Clustering 

Using the signature profiles, nodes in a heterogeneous social network can be clustered based on 
the roles they play in the network. That is, we think the clustering could consider what kinds of 
interactions a node has with others and group nodes having similar interaction patterns with 
others would be grouped together, regardless of how far they are away from one another in the 
social network. 

Unlike the community detection methods which utilize structural information such as edge 
betweenness, geodesic distance, modularity, and etc., we propose creating a distance matrix 
among nodes using the signature profiles which uniquely consider the higher-order relational 
information of edges. That is, the distance matrix is not determined by the distance between 
nodes in the social network, but the distance between their signature profiles. Then we can apply 
various distance-based clustering algorithms (e.g., K-Means, hierarchical clustering) to the 
distance matrix for different purposes. Note that another advantage of our role-based clustering 
method over the community-based clustering algorithm is that the node types can also be taken 
into account since it is possible to consider only the distance matrix containing the same type of 
nodes. Therefore, nodes of different types (e.g., movie and person) will not be grouped together. 
 

5. EGOCENTRIC INFORMATION ABSTRACTION 

Information abstraction generally refers to the summarization and re-organization of 
overwhelming, raw information into a humanly-understandable representation while still 
retaining the important and meaningful information. The concept of information abstraction has 
not yet been formally defined in heterogeneous social networks, though the essences of several 
works, like centralities, PageRank, clustering coefficient and degree distribution [25], are related 
to abstraction in some sense. However, they all suffer a major weakness of summarizing a 
complex network into only a few numbers with the loss of a decent amount of information about 
connections.  

In this research, we exploit the idea of information abstraction in heterogeneous social 
networks. Further, given the fact that a real-world social network can contain millions of 
individuals and relations, and therefore users might not be interested in the network as a whole, 
rather they are particularly interested in the information of certain instances. Therefore, we 
propose the egocentric abstraction problem attempting to summarize the information of a given 



 
node. Borrowing from social network literatures [41], the node of interests can be referred to the 
ego. The ego node and its directly or indirectly connected neighbors compose a so-called 
egocentric network. The egocentric analysis highlights the micro view of the network. In other 
words, the information to be retained or discarded depends on the ego that users focus on. Thus, 
as will be shown in the evaluation, an egocentric abstraction can assist human in answering 
questions such as “which individual might be suspicious” or “what is special about the specified 
movie star” more efficiently. 
 

5.1 Problem Definition 

The formal definition for egocentric information abstraction in a heterogeneous social network is 
given as follows. 

Given: (a) a heterogeneous social network H, (b) the given node x, represents the ego, and (c) 
the information filtering threshold δ (0 δ1) to control the level of abstraction. 

Find: three egocentric abstracted graphs of x, each of which belongs to the subgraph of H and 
corresponds to one of the three proposed abstraction views. 

 
The egocentric information abstraction has four stages. First, a set of relation sequences are 

extracted from the surrounding substructure of the ego node. Second, the statistic dependency 
measures between the features and the ego node are computed. Third, some distilling criteria are 
applied to remove trivial information.  Finally, an egocentric abstracted graph is constructed 
incrementally. The elaboration of these four stages is provided in 5.2 to 5.5, the flowchart is 
shown in Figure 9. 

 
Fig. 9. The flowchart of egocentric information abstraction. 

 

5.2 Ego Feature Extraction 

We first extract the k-step neighbor subgraph Hk,x of the ego node x. Constraining the size of the 
neighborhood is reasonable since it is usually assumed farer away nodes do not have as 
significant inferences as the closer ones. Then we propose to exploit the relation sequence as the 
base (i.e., as the ego features) to represent the surrounding structure of an ego node. For example, 
by taking k=2, the set of distinct relation sequences of node A1 in Figure 1 is shown in Table I 
and the corresponding k-step neighbor subgraph is illustrated in Figure 10. Each relation 
sequence can be regarded as a kind of behavior of A1.  



 
Fig. 10. k-step neighbor subgraph H2,A1 for Figure 1 (k=2). 

Table I. Two-steps relation sequences from A1 for Figure 1. 

rs1 <hasActor-1, writeScript-1> 
rs2 <hasActor-1, direct-1> 
rs3 <spouseOf, writeScript> 
rs4 <hasActor-1, hasActor> 
rs5 <hasActor-1, originateFrom> 

 

5.3 Nodes and Paths Sampling 

In this section we perform certain statistic sampling on these extracted relation sequences (i.e., 
ego features) to compute the feature values. Two independent and identically-distributed (I.I.D.) 
random experiments are designed and applied. In the first random experiment (RE1), we 
randomly select a node x from the network, then randomly select an edge e1 starting from x, 
denoted by <x,e1,y>, further randomly select another edge e2 starting from y, denoted by <y,e2,z>, 
and so forth. This stops when the number of edges chosen reaches k. The second random 
experiment (RE2) looks very similar to the first, except that we start from a randomly chosen 
edge <a,e,b> instead of a node. Next we randomly pick another edge starting from node b. Again, 
this continues until k edges are chosen. The outcomes of either experiment is a path, and based 
on which we can define two random variables X and RS. X represents the starting node of that 
path and RS represents the relation sequence of this path. Note in this example, an instance of X 
is represented as x and one instance of RS is <e1,e2,...,ek>. We use X1 and X2 to denote the starting 
node produced by RE1 and RE2, and the same for RS1 and RS2. 

With the four random variables, we then define two conditional probability mass functions 
P(RS1=rs|X1=x) and P(X2=x|RS2=rs). We call the former local frequency of the ego node, since it 
essentially stands for the probability that a randomly picked relation sequence from x in fact 
equals rs. On the contrary, we call the latter relative frequency of the ego node, since it 
represents the probability that an ego x is involved as the starting node in a relation sequence rs. 
The former is called “local” because this particular feature of relation sequence is compared with 
the other features starting from the same ego node (regardless of how it distributed in the rest of 
the network). The latter is called “relative” since it depends on how this feature is distributed in 
the entire network. 

After sampling both RE1 and RE2 for sufficient amounts of time, it is possible to create two 
tables: tbllocal and tblrelative (e.g., Table II and Table III, assuming only 7 relation sequences) 
consisting of the corresponding conditional probabilities. We call such tables the vector-based 
summarization of nodes. That is, each row vector in both tables is the summarization of each 
node in the network. Note that in Table III the ranks of each P(X2|RS2) compared with all nodes 
of the same type are listed inside the parentheses. For example, in Table III, P(X2=x1|rs4)=0 is 
ranked as 99, which implies there are 99 nodes of the same type in the entire network since it 
possesses the smallest probability. Besides, the probability of each row sums to 1 in Table II 
while in Table III the probability of each column sums to 1. 

 



 
Table II. Conditional probabilities of RE1: P(RS1|X1). (tbllocal) 

 rs1 rs2 rs3 rs4 rs5 rs6 rs7 
x1 0.02 0.08 0 0 0.1 0.3 0.5 
x2 0.3 0.03 0.4 0.25 0 0 0.02
… … … … … … … … 
x100 0 0 0.01 0.07 0.9 0 0.02

 
 
 
 
 
 

Table III. Conditional probabilities of RE2: P(X2|RS2). (tblrelative) 

 rs1 rs2 rs3 rs4 rs5 rs6 rs7 

x1 
0.05 
(76) 

0.15
(5) 

0.31
(2) 

0 
(99)

0.06
(88)

0.28
(3) 

0.01
(34)

x2 
0.15 
(22) 

0 
(66)

0 
(72)

0.7 
(1) 

0.09
(32)

0.01
(68)

0.08
(21)

… … … … … … … … 

x100 
0 

(82) 
0.01
(60)

0.56
(1) 

0.05
(38)

0 
(93)

0.02
(51)

0.12
(12)

 

5.4 Information Distilling 

We propose two policies, frequency-based and rarity-based, to distill information from different 
views. Rarity and frequency basically occupy two opposite ends of the spectrum, and each 
reveals either important or meaningful information about the ego. Frequent behaviors are 
generally important for pattern recognition and rare events can sometimes lead to certain novel 
discoveries. Combining the two views (i.e., local and relative view) and two policies (i.e., 
frequency-based and rarity-based), four abstraction measures can be created, as shown in Table 
IV. Here we abandon the relative rarity view since it does not possess an apparent real-world 
meaning. Below we illustrate the ideas of the rest three views via an example using the above 
two tables. Note that for different datasets and diverse specified ego node, users can interact with 
our information abstraction system by controlling the parameters of step size k and the filtering 
threshold δ. These parameters allow informative flexibility and tolerate the cases sensitive to 
noise. 
 

Table IV. The four abstraction measures from two viewpoints. 

 Local Relative 
Frequency Local Frequency Relative Frequency 

Rarity Local Rarity Relative Rarity 
 

5.4.1 Local Frequency. It chooses the frequent P(RS1|x) relation sequences from the vectors as 
the important ones. For example, if the threshold δ is set to 2/7, only the top two frequent relation 
sequences in Table II (i.e., rs6 and rs7) are picked to represent x. In other words, rs1 to rs5 are 
filtered out since they do not occur as frequent as other relation sequences with respect to x. The 
idea behind this view is that x is summarized by the most frequent behaviors it involves. 
 

5.4.2 Local Rarity. Opposite to local frequency, the rarity view of abstraction keeps the rare 
events happening to x and ignores the frequent ones. For the same example δ=2/7, rs1 and rs2 will 
be distilled while the rest will be ruled out. Note that the “rare events” consider only those 
happening at least once, therefore excluding relation sequences whose conditional probabilities 
are 0 such as rs3 and rs4. The idea behind this view is that rare relation sequences could indicate 



something that should not happen but in fact still occurs, and thus demands more attention. The 
other reason such a view of abstraction should exist is that rare events in a large network are 
generally harder to detect than frequent ones. 
 

5.4.3 Relative Frequency. This uses Table III instead of Table II. P(X2=x|RS2=rs) represents 
how frequently the ego x is involved in rs compared to other nodes. Since ΣXP(X2|RS2)=1, we can 
treat each column in Table III as a relative comparison among all nodes for a certain relation 
sequence rs. Then P(X2=x|RS2=rs) is representative of x if this value is relatively high compared 
to other nodes. In the example, rs3 and rs6 will be chosen to represent x since they are relatively 
high (i.e., ranked 2nd and 9th) compared to other nodes. The idea behind this view is that it picks 
the features best distinguishing x from others. Furthermore, since a heterogeneous social network 
generally has different types of nodes, it makes more sense to only compare the nodes of the 
same type when determining the rank of P(X2|RS2). For instance, it might not make sense to 
compare the number of publications among people from different research areas. 
 

5.5 Abstracted Graph Construction 

Now we have distilled features as the abstraction for an ego node. One plausible form is to report 
distilled relation sequences and corresponding probabilities to the users. Though it seems to be a 
reasonable output since P(RS1|X1) or P(X2|RS2) can serve as a term that explains why such an 
abstraction is made, an alternative and more understandable way is to convert the distilled 
information back to a graph. Here we use an incremental method to obtain a subgraph composed 
of only distilled relation sequences and the corresponding nodes. 

Figure 11 illustrates our idea. Assume we want to keep the top 2 ranked relation sequences and 
filter out the rest. The relation sequence of the highest score (e.g., rs1) is first used to match the 
original network to obtain a subgraph that originates from the ego x and contains all the nodes 
involved in rs1 (see Figure 12(a)). The same action is then performed on the next best relation 
sequence. The final abstracted graph of the ego node x is shown Figure 12(b). 

 
(a) 

ID Ranked Relation Sequence Score 
rs1 <r1, r4

-1> 0.36 (2) 
rs2 <r1, r2

-1> 0.08 (5) 
rs3 <r3

-1> 0.09 (10) 
rs4 <r3

-1, r4> 0.02 (79) 
rs5 <r1> 0.005 (99)

(b) 

Fig. 11. (a) An example Hk,x and (b) the ranked relation sequences with scores. 

 

 
(a) (c) 

Fig. 12. (a) The abstracted graph after adding rs1 (b) The final graph after rs1 and rs2 are added. 



 
 

Note that it is not feasible to produce the abstracted graph by removing the discarded relation 
sequences since edges involved in one relation sequence might also occur in others. Therefore, 
eliminating one of them will sometimes cause the informative relation sequences to disappear. 
The complete algorithm of our egocentric information abstraction is given in algorithm 3. We 
first extract the k-step neighbor subgraph for the given ego node (line 1), and then perform 
sampling to derive local and relative tables (line 2-8). According to the three designated 
viewpoint of abstraction, the most relevant relation sequences are picked (line 9-17). Finally, the 
abstracted graph is constructed incrementally (line 18-22). 
 
Algorithm 3. Egocentric Information Abstraction 
Input: H: a heterogeneous network; x: the query ego node; k: the step size for relation 
sequences; δ: the information filtering threshold; view: policy for information distilling 
Output: Habs: the abstracted graph from different views 
1: Extract the k-step neighbor subgraph Hk,x of x. 
2: // derive the table of local measure 
3: tbllocal = P(RS1|X1) using SP. 
4: // derive the table of relative measure and rank each column 
5: tblrelative = P(X2|RS2) using SP. 
6: for j = 1 to |signatures| do 
7:     Compute the ranked value of tblrelative(:, j) in descending order. 
8: end for 
9: distilledSet = {}. // collect the signature of top score of specified view 
10: if view = “localFrequency” do 
11: distilledSet = distilledSet argmaxOfTopδ(tbllocal(x, signature)). 
12: else if view = “localRarity” do 
13:     // note that those scores equal to zero are ignored 
14: distilledSet = distilledSet argminOfTopδ(tbllocal(x, signature)). 
15: else if view = “relativeFrequency” do 
16: distilledSet = distilledSet argmaxOfTopδ(tblrelative(x, signature)). 
17: end if 
18: Let Habs = NULL. 
19: for sigdistilledSet do 
20:     instances = Find path instances in Hk,x, whose relation sequence equals to sig. 
21:     Habs = Habs   instances. 
22: end for 
23: return: Habs. 
 

6. EXPERIMENTAL STUDIES 

Evaluation is generally a challenging issue for social network analysis. Tasks such as centrality, 
clustering and abstraction naturally do not possess a unique and authoritative answer (therefore 
people have proposed different kinds of algorithms to tackle things from different aspects). 
Nevertheless, we argue that having no gold standard in nature should not become an original sin 
that hinders the progress of an area. Therefore we design several diverse experiments for our 
model and tasks using both artificial and natural datasets, and hopefully the evaluations from 
different angles can provide a more general explanation about what kind of outputs the proposed 
algorithms can produce as well as their value. 

6.1 Experiment Design 

The focus of our first evaluation, following a similar strategy as other centrality algorithms 
[14][17][47], is mainly about demonstrating what kind of results can be obtained from the three 



proposed centrality methods as well as their meaning and uniqueness compared with the results 
acquired from other methods. The second experiment we conducted is to perform a role-based 
clustering on a movie dataset. This evaluation is not aiming to prove the correctness of the results 
(again, there is no apparent gold standard for roles in a heterogeneous network), instead it is 
designed to demonstrate the difference between our role-based clustering and the conventional 
community detection as well as provide intuitive insight to show the validity of our outputs. 
Borrowing from the conventional evaluation strategy utilized in the visualization society, our 
third experiment emphasizes displaying several abstracted social networks obtained from 
different egocentric views, and based on which one can easily grasp the meaning and usage 
scenario of the algorithm. The above three experiments are performed on top of a natural movie 
dataset acquired from the UCI KDD Movie repository. The fourth experiment is performed on a 
synthetic crime analysis task in which the gold standard is known. The goal is to find out whether 
egocentric abstraction can improve the accuracy and efficiency of human decisions in terms of 
identifying suspicious candidates from a heterogeneous social network. 
 

6.2 Data Collection 

In this section we elaborate how a natural and a synthetic heterogeneous social network are 
obtained for evaluation.  
 

6.2.1 UCI KDD Movie Dataset. The first heterogeneous social network is generated from 
extracting entities and relations from UCI KDD Archive movie dataset [13]. In this network, 
there are about 24,000 nodes representing movies (9,097), directors (3,233), actors (10,917), and 
some other movie-related persons (500) such as producers and writers (the numbers in 
parentheses show the number of different instances for each node type). We also extract 126,926 
relations between these nodes. Totally, there are 44 different relation types in the movie network, 
which can be divided into three groups: relations between people (e.g., spouse and mentor), 
relations between movies (e.g., remake), and relations between a person and a movie (e.g., 
director and actor). The amount of diverse relations makes it a complicated heterogeneous social 
network for humans to analyze.  

 

 
Fig. 13. Event-type hierarchy of the simulated Russian organized crime data. 

 
6.2.2 DARPA Crime Dataset. The crime dataset we used is part of the simulated dataset 

developed during the US Defense Advanced Research Projects Agency (DARPA)’s Evidence 
Extraction and Link Discovery Program (see [31] for additional contexts). The data was 
generated by a simulator of a Russian organized crime (or Mafiya) domain that simulates the 
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entire process of ordering, planning, and executing high-level criminal activities such as murders 
for hire or gang wars. The hierarchy of event types is shown in Figure 13. The highest level 
events, gang wars and industry takeovers, both involve lower level events such as contrast 
murders, which in turn involve some planning, financing, execution, etc. 

The dataset we employ contains 9,429 nodes, and 16,257 links. There are 16 different node 
types (e.g., Murder, MurderForHire, Observing, and Planning) representing objects and events 
and 31 different link types (e.g., hasMember, eventOccursAt, victimintended, and 
socialParticipants) representing the relationships between those nodes. It contains 42 Mafiya 
groups, and 20 contract murder events. On the other hand, the observability of the dataset is quite 
low, which means some of the events are not shown in the data (the higher level an event is, the 
higher change it would be omitted, and level 5 events are completely unseen in the data). Besides, 
the noise of the dataset occurs to some extent. That is, some information about the links are 
missed or even labeled incorrectly. Such data can, presumably, cause some problem for the 
human analyst. 
 

6.3 Results of Heterogeneous Centralities 

In this experiment we apply our centrality measures to the same KDD movie dataset to identify 
central actors and compare the results with those acquired from some homogeneous centrality 
measures. Note that the homogeneous measures are computed by simply regarding all different 
relations as the same type. That is, to perform traditional centralities, all the typed information is 
removed from the heterogeneous network. The step size k for the modeling is set to 2. The results 
for homogeneous and heterogeneous centralities are shown in Table V and Table VI respectively, 
where we list the top-10 centered nodes and the corresponding scores based on each centrality.  

We observe that nodes with high heterogeneous centrality scores are not necessarily the ones 
with high homogeneous centrality scores, and vice versa. Note that the person Hitchcock stands 
out in most of the cases because this dataset is collected and managed by a fan of Hitchcock. 
Therefore, there is more information about him than others and this consequently makes him a 
central one in most of the centrality analysis. One interesting observation is that Hitchcock is not 
a central node in our similarity-based centrality measure. This is because there are very few 
instances in this network that are similar to him. Therefore, he can seldom attract similar entities. 

Here, we emphasize some actors to show the differences between the proposed centralities and 
the homogeneous ones. First, Jean Renoir and Anthony Quinn are both regarded as the central 
node in most of the heterogeneous centrality theories but none of the homogeneous ones. This 
indicates they are involved in many kinds of relationships with others, and they do not have 
sufficient connections with others nor sit in a crucial position to connect to other nodes to be 
detected by the homogeneous centrality methods. The real-world information tells us both Renoir 
and Quinn have several roles as an actor, director, writer, and producer. Therefore, it is 
reasonable to assume they have diverse connectivity with others through these multiple identities, 
and can be considered a legitimate central or important person in the movie society. The second 
interesting case is Humphrey Bogart. Differing from Renoir, he does not appear in the top-10 list 
of any heterogeneous centrality measure, but has a high degree centrality and eigenvector 
centrality. According to Wikipedia, he is one of the most popular actors of the early 20th century 
(has acted in 128 movies) and remained an actor for most of his life. This makes him a favorite 
node for homogeneous centrality but not as crucial in heterogeneous centrality measures. 

 
Table V. The top-10 ranked results for homogeneous centrality measures. 

 Homogeneous Centrality 
Heterogeneous 

Centrality 

 Degree 
Betweenn

ess 
Eigen. 

Contributi
on 

Diversity Similarity 

1
Alfred 

Hitchcock 
Alfred 

Hitchcock
Alfred 

Hitchcock
Alfred 

Hitchcock
Alfred 

Hitchcock
Frank 
Sinatra 

2
Martin 

Scorsese 
Lyle R. 
Wheeler 

Martin 
Scorsese 

Martin 
Scorsese 

Anthony 
Quinn 

John 
Barrymore 

3 Humphrey Robert Humphrey Ernst Ian Julia 



Bogart Goulet Bogart Lubitsch McKellen Roberts 

4
Henry 
Fonda 

Frances 
Fisher 

Henry 
Fonda 

Cecil B. 
DeMille 

Spencer 
Tracy 

Elia 
Kazan 

5
Buster 
Keaton 

Jennifer 
O’Neill 

Burt 
Lancaster

Jean 
Renoir 

Jean-Luc 
Godard 

Judy 
Garland 

6
Burt 

Lancaster 
Wilford 
Brimley 

Buster 
Keaton 

John 
Wayne 

Yves 
Montand 

Anthony 
Quinn 

7
James 

Stewart 
Martin 

Scorsese 
James 

Stewart 
Elia 

Kazan 
Maggie 
Smith 

Buster 
Keaton 

8
Gray 

Cooper 
Derek Farr

Cary 
Grant 

Anthony 
Quinn 

Paul Papa
Jean 

Renoir 

9
Cary 
Grant 

Cecil B. 
DeMille 

Gray 
Cooper 

Sean 
Connery 

Jeanette 
Macdonal

d 

Robert 
Benchley 

1
0

Vincent 
Price 

Steven 
Spielberg 

Vincent 
Price 

Buster 
Keaton 

Harry Ritz
Robert 
Duvall 

 
Table VI. The top-10 ranked results for heterogeneous centrality measures. 

 Heterogeneous Centrality 
 Contribution Diversity Similarity 

1 
Alfred 

Hitchcock 
28.41 Alfred 

Hitchcock 
127 Frank 

Sinatra 
136.50 

2 
Martin 

Scorsese 
15.59 Anthony 

Quinn 
70 John 

Barrymore 
74.50 

3 Ernst Lubitsch 13.01 Ian McKellen 69 Julia 
Roberts 

73.75 

4 
Cecil B. 
DeMille 

12.19 Spencer Tracy 66 Elia Kazan 70.00 

5 Jean Renoir 12.00 Jean-Luc 
Godard 

65 Judy 
Garland 

69.25 

6 John Wayne 11.06 Yves Montand 61 Anthony 
Quinn 

68.50 

7 Elia Kazan 11.01 Maggie Smith 60 Buster 
Keaton 

67.75 

8 
Anthony 
Quinn 

11.00 Paul Papa 59 Jean 
Renoir 

66.00 

9 Sean Connery 10.01 Jeanette 
Macdonald 

58 Robert 
Benchley 

65.00 

10 Buster Keaton 10.00 Harry Ritz 57 Robert 
Duvall 

63.25 

 
This experiment on the real movie dataset shows that by taking advantage of higher-order 

relational information, our heterogeneous centralities can identify meaningful central individuals 
that can hardly be found by exiting homogeneous measures. 

 



 

 
Fig. 14. Normalized heterogeneous centrality scores (diversity, contribution, and similarity) with respect to the top-1000 

ranking list in the real movie dataset. 

 
In addition, to realize and compare the three heterogeneous centralities, we also show the 

distributions of their centrality scores with respect to the top-1000 ranking lists on the real movie 
datasets, as given in Figure 14. All the centrality scores are normalized to [0, 1], where the 
normalized scores of rank-1 equals to 1.0 and do not show in the figure for easy exploration. We 
can observe that the diversity-based centrality has similar trend of distribution as the 
contribution-based one. It is because both are directly computed from their signature profiles. 
Besides, the contribution-based centrality is stricter than the diversity-based one since it further 
considers the relative importance of each signature. Hence, the trend of the contribution-based 
one drops a bit faster than the diversity-based one. Moreover, the similarity-based centrality 
exhibits more significant distinguish ability and indicate that only few individuals in a 
heterogeneous network can attract those with similar behaviors in their neighborhood. For all the 
three proposed centralities, we can obtain some significantly central individuals if the top-50 
ones are returned. 

6.4 Results of Role-based Clustering 

In this experiment, we validate our role-based entity clustering through demonstrating how it 
finds entities of different roles and comparing its result with the traditional community detection 
method. 

Again we conduct the experiment using the UCI KDD movie dataset. For visualization and 
explanation purposes, here we extract only a subgraph from the original network and use RAT2 
to produce the signature profiles. Also, we choose the nodes of type “actor” to perform the role-
based clustering. To be more precise, we generate a distance matrix based on the signature 
profiles of all actors in the extracted graph and apply K-means clustering algorithm to them. The 
number of clusters is set to 8 for visualization purpose. Simultaneously, we use the method of 
removals of high-betweenness edges method [26] to perform community detection for 
comparison. 

Figure 15 displays the resulted graph. The shaded regions of different sizes and colors are 
clusters identified by the community detection algorithm, where there are a total of seven 
communities in the graph. To facilitate visualization, diverse types of relations (i.e., edges) are 
colorized differently, and the names of the nodes were not labeled. This graph demonstrates eight 
different role-based clusters we have identified, namely “A”, “B”, “C”, “D”, “E”, “F”, “G”, and 
“H”. Unlabeled nodes are non-actors (e.g., movies). One advantage of our approach is that it can 
produce the representative relation sequences of each role, as listed in Table VII. Such 
information can essentially provide the explanation of the clustering results. 



 

Fig. 15. The resulted graph of our role-based clustering. 

 
Based on Figure 15, we can observe that the members in each role-cluster are scattered among 

different communities. It makes sense since actors in distinct groups could perform similar roles. 
We can further observe role “B” dominates a large portion of the network. Most of the relation 
sequences of role-B actors represent common behaviors for movie actors (e.g., such an actor 
played in a movie which has a certain director). These actors of role-B are generally regarded as 
full-time actors and seldom play other roles such as director, producer, or writer in their career. 
On the other hand, we can see the behaviors of those actors with role “A” and “D” differ from 
“B” to some extent. One special signature for actors of role “A” is they once played in some 
movie which was remade into other movies later. (e.g., Carrie Fisher and others performed in the 
movie “When Harry Met Sally”, which was later remade into another movie “If Lucy Fell”). The 
actors of role “D” all cooperated with certain visual directors in a movie. The actors in role “C” 
(e.g., Randy Quaid) have some sibling(s) who also work in the movie industry (note that only 
movie-related persons are listed in this dataset).  Role “E” includes people who married to 
another movie person, such as Dennis Quaid and Meg Ryan as well as Tom Hanks and Rita 
Wilson. Finally, classes “F”, “G”, and “H” represent people who play multiple roles such as 
actor-and-writer, actor-and-director, or actor-and-producer in this network. Based on k-means 
clustering, there happens to be only single instance satisfying certain criteria in this network. 
Therefore, they become single-element clusters (or outliers). Note that it is also possible to apply 
different kinds of clustering algorithms such as hierarchical clustering methods to generate 
different kinds of clustering results. 
 
 
 
 



 
Table VII. The behaviors (i.e., relation sequences) that each kind of role involves in. Note the abbreviations: w=“write 
script”, m=“musical direct”, d=“direct”, p=“produce”, v=“visual direct”, and c=“cinematize”. 

Role Behaviors (i.e., relation sequences) 

A 
<hasActor-1>, <hasActor-1, w>, <hasActor-1, m>, <hasActor-1, remake-1>, 
<hasActor-1, d>, <hasActor-1, hasActor>  

B 
<hasActor-1>, < hasActor-1, w>, <hasActor-1, m>, <hasActor-1, c>, <hasActor-1, 
d>, <hasActor-1, hasActor>, <hasActor-1, p>, <hasActor-1, remake> 

C 
<hasActor-1>, <siblingOf>, <hasActor-1, hasActor>, <siblingOf, spouseOf-1>, 
<siblingOf, hasActor-1> 

D 
<hasActor-1, hasActor>, <hasActor-1, m>, <hasActor-1, v>, <hasActor-1, p>, 
<hasActor-1, d>, <hasActor-1> 

E 

<hasActor-1>, <spouseOf>, <spouseOf-1>, <siblingOf-1>, <-p>, <hasActor-1, w>, 
<hasActor-1, m>, <hasActor-1, v>, <p-1, d>, <hasActor-1, remake-1>, <hasActor-1, 
c>, <hasActor-1, d>, <spouseOf, siblingOf-1>, <spouseOf-1, p-1>, <p-1, hasActor>, 
<hasActor-1, hasActor>, <siblingOf-1, hasActor-1>, <spouseOf-1, hasActor-1>, 
<hasActor-1, p>, <hasActor-1, remake>, <spouseOf, hasActor-1> 

F 
<w-1>, <d-1>, <w-1, remake>, <w-1, w>, <w-1, hasActor>, <w-1, m>, <w-1, c>, <d-1, 
p>, <w-1, p>, <w-1, remake-1>, <d-1, hasActor>, <d-1, remake>, <w-1, d> 

G <d-1>, <d-1, hasActor> 
H <p-1>, <p-1, hasActor>, <p-1, d>, <p-1, w>, <p-1, p> 

 

6.5 Egocentric Abstraction on the Movie Dataset 

We evaluate our egocentric abstraction model using the KDD movie dataset. First we choose 
“Meg Ryan”, a famous actress, as the ego node to demonstrate the egocentric abstracted graphs. 
We have to point that this UCI KDD dataset is neither complete nor unbiased, therefore certain 
statistics collected based on it might not reflect the real-world status. The 2-step neighbor 
subgraph of “Meg Ryan” is shown in Figure 3 and the filtering threshold δ is arbitrarily set to 
20%. Despite the seems-to-be small neighborhood size, we observe it is still quite complex (116 
nodes, 137 edges and 18 different relation sequences). 

The abstracted graph of local frequency is shown in Figure 16, capturing the regular behavior 
of Meg Ryan. We can observe she acted in many movies, especially in the comedic, dramatic, 
and romantic categories. Besides, her husband, Dennis Quaid, is also an actor in many movies. 
They co-starred in three of them. 

The local rarity view is shown in Figure 17. It captures the rare behaviors. We can observe she 
is also a producer of a movie (i.e., the movie id is lak16). Besides, her husband’s brother (i.e., 
Randy Quaid) also works in the movie industry (since only movie-related persons are listed in 
this dataset). Finally the movie (i.e., noe3) she acted in, the cinematographer (denoted as ‘c’) is 
listed in the dataset. This is a rare pattern for her because in her other movies the 
cinematographers are not listed. 

 



 
Fig. 16. Local frequency of “Meg Ryan.” 

 

 
Fig. 17. Local rarity of “Meg Ryan.” 

 
The relative frequency view is shown in Figure 18, comparing the behaviors of Meg Ryan 

with other actors and showing she was significantly involved. We can see an interesting behavior 
in that she acted in relatively many remade movies. Also, she produced a movie (i.e., lak16), and 
such a behavior is not common for other actors. Finally, there is one rare path of her in the rarity 
view (i.e., her husband’s sibling is also a movie person). This turns out to be rare among other 
actors, and thus becomes a relatively frequent behavior of hers (i.e., very few others in this 
dataset whose husband’s sibling is also a movie person). 

 



 

 
Fig. 18. Relative frequency of “Meg Ryan.” 

 
In this case study, we have used a heterogeneous movie network to demonstrate which kinds 

of information can be revealed through which egocentric views. We have also demonstrated that 
through our abstraction mechanism, it is possible to find not only some expected details (e.g., 
Ryan acted in many romantic movies) but also some unexpected yet interesting facts (e.g., Ryan 
acted in many remade movies and produced a movie) about the ego node. It might even satisfy 
some hard-core fans by revealing certain information about her ex-husband. 
 

6.6 Human Study for Crime Identification 

In this experiment we evaluated the quality of our system through checking whether it can assist 
human subjects to identify the crime participants in an artificial dataset. We utilize the contract 
murder crime dataset as described in section 6.2. The goal of the evaluation is three-fold: first, 
we want to know whether and which of the egocentric abstracted graphs can assist human 
subjects in making more accurate decisions in terms of identifying the criminal participants. 
Second, whether the proposed abstractions can reduce the time the subjects need to perform such 
identification. Finally we would like to learn whether the human subjects feel more confident 
about their decision given the abstracted information. 

The experiment setup is as follows: we first choose 10 plausible gang nodes among which 
three were truly involved in the highest level events (i.e., gang war and industry takeover). For 
each gang node, three different views of egocentric abstracted graphs were generated. Together 
with the original k-neighborhood graph (we choose k=3 in this experiment), we will have four 
different set of networks (each contains 10 independent networks corresponding to 10 plausible 
gangs) presented to the subjects.. To avoid interference among different tasks, the IDs of all 
candidate gangs are randomly given for each task. These four sets of resulting graphs are shown 
to a total of 20 human subjects (they were not told in which order of datasets they should pursue) 
and the users were asked to select three (out of ten) nodes that are most likely to commit high-
level crimes for each set. Therefore, we can examine how many candidates were picked correctly 
for each set. Before the experiment, the subjects were asked to study the background knowledge 
of this domain so they understood the meaning of each relation and the node types as well as the 
meaning of the events. 



The four generated graphs of one criminal node are illustrated in Figure 19 to 22, which are 
corresponding to the original 3-neighborhood graph, local frequency, local rarity, and relative 
frequency in order. Note that the filtering threshold δ is set to 0.2, which implies we only keep 
20% of the relation sequences during abstraction. The black nodes are nodes representing 
criminal candidates. 

 
Fig. 19. The original 3-neighborhood graph. 

 

 
Fig. 20. Abstracted graph of local frequency. 

 



 

 
Fig. 21. Abstracted graph of local rarity. 

 

 
Fig. 22. Abstracted graph of relative frequency. 

 
The results are displayed in Table VIII. We also show the improvement over k-neighborhood 

graph in the first column and a 95% confidence interval for average time and confidence. 
 
 
 



Table VIII. Raw k-neighbor graph and four abstraction measures from different aspects with their 95% confidence 
interval. 

  
Avg. 

Precision 
Avg. Time 
(minutes) 

Avg. Confidence  
(1~5, 5 is the highest) 

No 
Abstraction 

k-neighborhood
Graph 

39/60 36.6 ± 6.6 3.15 ± 0.36 

Using 
Abstraction 

Local 
Frequency 

41/60 
(+3.3%) 

18.9 ± 5.9 3.20 ± 0.35 

Local 
Rarity 

44/60 
(+8.7%) 

13.9 ± 3.7 3.45 ± 0.33 

Relative 
Frequency 

47/60 
(+13.3%)

10.9 ± 2.2 3.73 ± 0.39 

 
In terms of accuracy, the results show the users can at least do as well as using the original 

graph when using the abstracted ones. Since the non-abstracted graph contains the complete 
information, it makes sense to assume subjects can do as well as using the abstracted ones at the 
cost of spending more time on the data. Our explanation for the reason that the users can even 
perform better (the improvement can be as high as 13.3%) in the abstracted graph is that 
although certain information is lost during abstraction, it is likely the critical information are kept 
while some noise is filtered out, and therefore has less chance of misleading. The major 
improvement, as shown in the forth column of Table VII, lies in efficiency. The results show 
users utilize significantly less time (<50%) to reach better-quality results. The improved accuracy 
and efficiency truly demonstrate the abstraction can facilitate further human analysis since it 
retains critical information and significantly removes uninformative information. 

In this dataset, there are some “key evidences” indicating the high-level events. After 
manually analyzing the three kinds of abstracted graphs, we have realized each abstraction view 
more or less captures different parts of those key evidences. For example, a kind of relation 
sequence representing “the gang has hired some middleman intending to pursue something 
illegal” happens only to the high-level crime participants; therefore it can be highlighted using 
the relative frequency view, which becomes important evidence for the human subjects to make 
the right decision. This is the major reason that this view eventually leads to the best results 
among others. 
 

6.7 Discussions 

There are two issues worthy of further discussion. 
 Efficiency of the Proposed Algorithm. There are two apparent bottlenecks for the proposed 

algorithms. The first is the generation of the relational tensor and the second is to estimate the 
conditional probabilities for abstraction. To generating the relational adjacency tensor 
efficiently, we are going to design a cloud computing platform using Hadoop/Map-Reduce 
framework that allows the computation in parallel. The second one lies in the need to sample a 
sufficient amount of representative paths for each the relation sequences. A technique called 
likelihood weighting, which has been applied successfully in the inference procedure of 
Bayesian Networks, can be applied here to force the occurrence of some rare events. Then the 
likelihood can be re-weighted based on the frequency of the forced decisions. This facilitates 
the design of an anytime algorithm. That is, we can still produce results of certain quality 
given insufficient time or resources, and the quality of the results can improve with increased 
time or resources. 

 Parameters. Several parameters can be used to control the process of centrality, clustering, 
and abstraction: The first is the propagation distance k (or the k-step neighbor for the signature 
profile) and the second is the information filtering threshold for abstraction. Increasing k 
allows farer away nodes to come into play at the cost of efficiency and possibly introducing 
more noise; while increasing  would boost the density of the abstracted graph. Given the 
small world phenomenon in most of the social networks, k shall be set to a small number. We 



 
recommend determining k based on the connectivity of nodes in the network and  according 
to the number of different relation types. 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

In this research, we present a novel framework for knowledge discovery in heterogeneous social 
networks. Complex information about the graph topology and relational semantics is modeled 
through an unsupervised, automatic, and robust mechanism.  

Here, we summarize the contribution in the following points: 
 A tensor-based relational adjacency model with operations about relation sequences is 

proposed to catch the direct and indirect information for nodes. This model can 
simultaneously capture the topological and relational semantics of a heterogeneous network. 
Besides, this model is succinct yet powerful, and it is modularized enough to facilitate fast 
implementation. 

 We define three brand-new centrality measures for heterogeneous social networks, including 
contribution-based, diversity-based and similarity-based centrality. And each estimates the 
nodes’ importance from distinct points of view. The experiments on a real-world movie 
dataset demonstrate that it can truly identify central nodes that are otherwise hard to find using 
existing methods. 

 We present a role-based clustering schema to group nodes based on their higher-order 
relational connections in the network. An experiment is conducted to explain its effectiveness 
and difference compared with the conventional community detection algorithm. 

 We propose the ego-centric abstraction problem as well as its solutions. Three viewpoints, 
including local frequency, local rarity, and relative frequency, are provided to extract different 
aspects of important information from the network. We also propose an incremental method to 
reconstruct the abstracted graph for advanced exploration and visualization. The experiments 
are conducted on both real-world and synthetic dataset. The outcomes not only demonstrate 
the usability of our approach but also show the designed egocentric abstraction can assist 
human analyst in making more accurate, efficient, and confident decisions. 

 
There are two future directions: 

 From Individual to Group. So far we have only defined centrality at the individual level. For 
some real-world marketing applications, we think the group-centric importance measures can 
be significantly beneficial. Therefore, in the future we would like to extend our model to 
consider the centrality of a group of nodes. 

 From Static to Dynamic. One important future plan is to extend the model of the relational 
adjacency tensor (RAT) to the time-evolved domain by adding the 4th order element (i.e., time) 
so it is possible to pursue mining in dynamic heterogeneous social networks. For example, the 
evolution of individual’s behavioral pattern can be formulated using time-based signature 
profiles.  
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