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Abstract—Graph mining is a popular technique for discovering
the hidden structures or important instances in a graph, but the
computational efficiency is usually a cause for concern when
dealing with large-scale graphs containing billions of entities.
Cloud computing is widely regarded as a feasible solution to the
problem. In this work, we present an open source graph mining
library called the MapReduce Graph Mining Framework
(MGMF) to be a robust and efficient MapReduce-based graph
mining tool. We start from dividing graph mining algorithms into
four categories and designing a MapReduce framework for algo-
rithms in each category. The experimental results show that
MGMF is 3 to 20 times more efficient than PEGASUS, a state-of-
the-art library for graph mining on MapReduce. Moreover, it
provides better coverage of different graph mining algorithms.
We also validate our framework on billion-scaled networks to
demonstrate that it is scalable to the number of machines. Fur-
thermore, we test and compare the feasibility between single ma-
chine and the cloud computing technique. The effects of different
file input formats for MapReduce are investigated as well. Our
implemented open-source library can be downloaded from
http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/
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L INTRODUCTION

There are many popular graph mining tasks [1], such as
computing properties of networks (e.g., degree distribution),
estimating centralities (e.g., PageRank [2], random walk with
restart [3], Betweenness Centrality [4]), counting triangles, and
finding connected components [1]. Because online social net-
work services are becoming increasingly popular (e.g., Twitter
and Facebook), there is an urgent need for an application that
can perform graph mining efficiently on large-scale social net-
works containing billions of vertices or edges. Cloud compu-
ting can be regarded as a plausible solution for large-scale
graph mining since its scalability and efficiency. At present,
there are three major cloud computing frameworks for graph
mining: MPI-based (e.g., Parallel BGL [5]), BSP-based (e.g.,
Pregel [6] and Surfer [7]) and MapReduce-based (e.g.,
PEGASUS [8]) frameworks. MapReduce [9, 10] is a popular
cloud computing framework that provides high throughput,
satisfiable scalability and fault tolerance. Many tools [11,12,13]
have been developed under MapReduce to solve graph mining
problems in large-scaled graphs. PEGASUS [8] is a state-of-
the-art open source MapReduce-based library that provides
several implementations of graph mining algorithms. Although
PEGASUS has proposed several efficient implementations for
cloud computing, we found that there is still room for im-
provements in terms of time and space complexity. For exam-
ple, PEGASUS still takes 100 seconds per iteration to run Pag-
eRank on a graph with 282 million edges and 59 thousand ver-

978-0-7695-4799-2/12 $26.00 © 2012 IEEE
DOI 10.1109/ASONAM.2012.77

434

tices on a cluster machine with 30 nodes. Besides, PEGASUS
only provides solutions for matrix-vector-multiplication (MVM)
based algorithms; hence, it cannot be used with other important
graph mining algorithms, such as the Betweenness Centrality
and Closeness Centrality. In this work, we present an open
source graph mining library called MapReduce Graph Mining
Framework (MGMF), which provides scalable and efficient
solutions for various graph mining algorithms. MGMF com-
prises primitive functions, distributed algorithms and optimiza-
tion methods for diverse kinds of algorithms. We can divide the
graph mining algorithms into the following four categories
based on how information is collected in a graph: (1) Traverse
all, (2) Traverse Partial, (3) One-Hop, (4) Multi-Hop. We dis-
cuss them in Section 3.

We conduct experiments on real-world networks and syn-
thetic networks at the billion scale of vertices/edges to compare
the performance of the proposed framework with that of
PEGASUS. The results show that using the PageRank algo-
rithm, our framework can run up to 20 times faster than
PEGASUS on the Kronecker synthetic dataset, and 3 times
faster on the real-world Twitter dataset. Besides, we test and
compare the feasibility between single machine and MapRe-
duce technique according to the runtime. We also investigate
the effects of file input format on throughput and efficiency.

The major contributions of this paper can be summarized as
follows:

1) We propose an efficient framework, MGMF, which
comprises primitive functions, distributed algorithms, and
optimization methods for various graph mining tasks based on
MapReduce. The framework is scalable to the number of
machines.

2) We divide the graph mining algorithms into four
categories. Besides, we propose some novel and efficient
implementations for algorithms in each category. The
experimental results show that the runtime is reduced to less
than 1/3 that of the state-of-the-art MapReduce package.

3) We implemented a high performance open source
library for large-scaled graph mining tasks. Our framework is
available by this URL: http://mslab.csie.ntu.edu.tw/~noahsark/
MGMF.

The remainder of the paper is organized as follows. Section
2 provides some essential background information. In Section 3,
we introduce the proposed MapReduce Graph Mining Frame-
work. In Section 4, we describe the experiments conducted to
evaluate the proposed framework, and analyze the results. Sec-
tion 5 contains some concluding remarks.
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II.

In this section, we introduce the fundamentals of MapRe-
duce, Hadoop, and some file input formats for graph mining
under cloud computing. We also review the state-of-the-art
graph mining solutions provided by PEGASUS, which com-
prises primitive functions, MapReduce-based algorithms, and
block input formats (Mpjoer)-

BACKGROUNDS

First, in Table 1, we define the notations used in the re-
mainder of the paper.

B. PEGASUS: Matrix-Vector Multiplication on MapReduce

The Matrix-Vector Multiplication (MVM) operation is a
useful and general mathematical representation for graph min-
ing. In MVM, each vertex can pass its local information to
neighbor vertices (i.e., vertices that are one hop away) by mul-
tiplying the adjacency matrix by a vertex vector. As shown in
the PEGASUS paper [8], many graph mining algorithms can be
represented in the form of MVM, including PageRank and
breadth first search.

PEGASUS [8] is an open source library based on Hadoop

TABLE L SYMBOLS for large-scale graph mining problems. It provides three primi-
Symbol Definition tive functions for MVM:
G =(V,E) . .
a graph consists of vertices V" and edges £ - o . . .
Z"‘g average degree of all vertex in G V=MxV = assign(v, combineAll({xj=1..n,
out output degree of vertex i and x;= combineZ(m,-J, V/)})) 1)
4 vertex vector consists of value (e.g. PageRank)
for each vertex in G 1) combine2(m;,,v;): multiplying m;; and v,
viEV element of 7, which is vector value (e.g. PageRank), ) ( A j) PLyIng mi) /
identified by unique vertex id i 2) combineAll(x;,...,x,): summing » multiplication results
14 number of vertices in G f rtex i
E edge set consists of all edges in G Or vertex 1.
e ;€L edge, represented by two vertex id (v;v)) . . . . . —
denote the edge direction from i to ] 3)  assign(vyV,e,): updating the previous value of v; with
|E| number of edges in G new result v,,,.
M adjacency matrix, consists of alle € G
mi; element of M, represents edge e;; and the weight TABLE II. MAPREDUCE-BASED ALGORITHM FOR MVM: TWO-STAGE MVM
Megge adjacency matrix represented in edge format
Mg adjacency matrix represented in adjacency list format St Two Stage MVM
M f . . age o o
block adjacency matrix represented in block format 1% stage 2" stage
Mapper process run Map(key, value) on each input record M key = 7. value = m.xv;
Reducer process run Reduce(key, values) on each key Map Input Ez;i””e v @) (be;y & eyj ’j? :jz luerT, i} Vi
output by Map() ! - — —
Pu number of maximal concurrent Mapper processes Map() l? anut(a) tgen yl'elld (©). identity mapper
(i.e. the Mapper Capacity of Hadoop cluster) If input(b) then yield(d). '
P number of maximal concurrent Reducer processes Map Output/ | (c) key =, value = m; (c) key =, value = m;;xv;
(i.e. the Reducer Capacity of Hadoop cluster) Reduce Input | (d) key =i, value =v; (d) key =i, value = v;
P block V;idﬂ; in for;mt ,ﬂflmoek  block If input(d), then output (f) | For all (c), apply Vyey =
FOWpik, row and column identifier of a bloc :
ol under the format of Mr. Reduce() for all (©)(d), combineAll(xi,...Xn),
bik 't of Myiock ) apply combine2(m;;,v;), and then apply
(FOWeiemis row and column identifier of element i and yield(e) .
COlotomi) inside the block under the format of M, - assign(viVues)
Reduce (@ key =/, .
A.  MapReduce, Hadoop, and File Input Format Output value = m;;xv; (e) key = j, value = Vye

MapReduce [9,10] is a distributed computing framework
developed by Google. It provides two basic user definable
functions — Map (key, value) and Reduce (key, values) - for
key-value based processing. Each MapReduce stage involves
the following steps: (1)Input, (2) Map(), (3)Shuffle & Sort, (4)
Reduce(), and (5)Output. The framework provides several ben-
efits, including fault tolerance, load balance, and simple APIs;
and it has been shown that the throughput is scalable to the
number of machines. Hadoop [14] is a mature implementation
of MapReduce that allows programmers to define the following
utilities: Map(), Reduce(), Combiner(), getPartition(), in-
put/output format, and counter. For more details, readers may
refer to [9, 10, 15, 16]. To handle graph data using MapReduce,
we have to save the graph in a file. The efficiency of I/O can
vary significantly with different file input formats. There are
two basic file input formats for graphs [16]: the edge input
format (M,4,.) and the adjacent list input format (M,;). The
edge input format (M,,) represents an edge m;; in the form (i, j,
my) per line; and the unit record is an edge. The adjacency list
input format (M,4) represents M in the form of {v;,{m;, m,,...,
m,}} where m, is the nth adjacent edge of v;; and the unit rec-
ord is a vertex.
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(f) key = i, value = v;

PEGASUS proposes GIM-V BASE algorithm as a MapRe-
duce-based implementation for MVM. The steps of the algo-
rithm are summarized in Table 2. We call the algorithm 7Two-
Stage MVM because it must perform MapRedcue twice. In the
st MapReduce stage, Map() receives input from M and V, and
Reduce() performs combine2(m;j,v;) for the same vertex j. The
output of Reduce() is the result of intermediate multiplication.
In the 2nd MapReduce stage, Map() is used as an identity map
(the mapper simply yields its input as output). In addition, Re-
duce() performs combineAll() and assign() independently to
update the new vector value. All MVM-based algorithms (e.g.,
PageRank and random walk with restart) can be cast in the
form of these three primitive functions. Then, PEGASUS ap-
plies the Two-Stage MV M algorithm to perform the MVM op-
eration. PEGASUS also transforms algorithms of PageRank,
random walk with restart, diameter estimation and connected
component search into the form of the three primitive functions,
and further investigate the scalability of Two-Stage MVM based
on the implementation of PageRank. Their source codes of
PageRank, diameter estimation and connected component
search have been released by PEGASUS.




To improve the performance, PEGASUS uses the block file
input format (we call it Mj,), which divides the matrix M into
several small square blocks with a fixed width wy;. Each block
is represented in the form of (roWy,COlpi, {FOWejemi COLetemi}) @S
a line in the input file. Exploiting M, can reduce the number
of input lines (the default unit record in Hadoop), shrink the
input file (with a properly chosen wyy), and, reduce the number
of records shuffled in MapReduce as a consequence. The re-
sults of experiments show that My, is 2 to 5 times faster than
M, 4. on PageRank.

III. MGMF: MAPREDUCE GRAPH MINING FRAMEWORK

To provide an efficient cloud computing solution for graph
mining on MapReduce, we consider the essential components
of the successful cloud computing solutions. Generally, the
framework of a cloud computing solution is comprised of three
types of components:

1) Primitive Function: basic functions, such as APIs for
programmers to implement different algorithms.

2) Distributed Algorithm: algorithms with a distributed
mechanism to execute the primitive functions

3) Optimization Method: some methods used to speed up
the system.

TABLE III. MAPREDUCE GRAPH MINING FRAMEWORK
Type of Primitive MapReduce- Optimization
algorithm Sunction based algorithm method
Traverse combine2() One-Stage MVM Table
All combineAIl() Fast MVM
3 assign()
o averse combine2() with
partial .
prunning
One-Hop None lor2 Table
MapReduce job
Multi-Hop compyte( ) Vertex-Iterator Table
combine()
TABLEIV. CATEGORIZATION OF GRAPH MINING ALGORITHMS
Type of .
algorithm Example Algorithms
Traverse All | Pagerank [2], Random Walk with Restart [3]
Traver: Diameter Estimation [17], Find Connect Component [1], Eigen
a(: tiea lse Vectors, Belief Propagation [18], Bellman-Ford (Single Source
P Shortest Sath) [19], Minimum Spanning Tree [19]
One-Ho In/Out Degree Distribution [20], Input format translation:
P Maqge, Mag, Mysoct, Counting | V.| E], and graph density [20]
Multi-Ho Counting triangle [1], Computing Clustering Coefficient [21],
P Closeness Centrality [20], Betweenness centrality [4]

For example, the PEGASUS framework uses combine2(),
combineAll(), and assign() as the primitive functions, Two-
Stage MVM as the distributed algorithm, and M,y as the opti-
mization method. Several other systems adopt this framework,
e.g. MapReduce [9], Pregel[6], and Surfer[7].

The proposed framework, MGMF, first divides graph min-
ing algorithms into four categories. Then, by using the three
functions defined above, we propose solutions for algorithms in
each category. The proposed MGMF framework is shown in
Table 3 and Table 4 lists the graph mining algorithms for each
category. We describe these four categories in the following.

1) Traverse All: This category covers the algorithms that
must traverse all edges in each iteration. Algorithms in this
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category can be handled by iterative matrix-vector
multiplication. The computation is repeated until some
convergence criterion is met. The time complexity of each
algorithm is O(n(|V]+|E|)), where n is the number of iterations.
Note that the number of iterations is usually much smaller than
|V] or |E|.

2) Traverse Partial: Only a subset of edges in the graph
need to be traversed in each iteration. The algorithms in this
category can also be solved by iterative matrix-vector
multiplication. However, as only some edges need to be
traversed, a pruning method can be applied to simplify the
computation. The computation cost is less than that of the
Traverse All category. The design of the pruning algorithm
will determine the computation cost.

3) One-Hop: Algorithms in this category only require
information from nodes that one hop away from each vertex;
and one or two iterations are sufficient for computation (e.g.
computing degree distribution). The time complexity is O

(IVT+IED.

4) Multi-Hop: Algorithms of this category require
information from nodes that are several hops away for each
vertex. The time complexity is much larger than the order of
polynomial to |V] or |E|. For example, the complexity of
Betweenness Centrality is equal to O(|V]|E|)

Most Traverse All and Traverse Partial algorithms can be
implemented by multiplying the vertex vector using the adja-
cency matrix (MVM); thus, they can be handled by PEGASUS.
To improve the efficiency of PEGASUS's MVM, we propose
three modifications: 1) using combine2() with the pruning
technique to improve the primitive functions; 2) employing the
Fast MVM framework to improve the MapReduce-based algo-
rithm; and 3) exploiting the table structure proposed by Chen et
al. [7] to speed up the optimization process. Normally, One-
Hop and Multi-Hop algorithms are not implemented through
MVM. Even the modified MVM framework yields little im-
provement on them. We propose a simple and straightforward
implementation on MapReduce for One-Hop tasks. For Multi-
Hop tasks, we propose using compute() and combine() as prim-
itive functions and Vertex-lterator as the MapReduce-based
algorithm. We also use the fable optimization technique to im-
prove the overall performance. In the following subsections, we
describe our modifications of MVM, our framework for Trav-
erse All and Traverse Partial, the framework for One-Hop, and
the framework for Multi-Hop.

A.  MapReduce-based algorithms for MVM: One-Stage MVM
and Fast MVM

As mentioned earlier, PEGASUS [8] proposes the Two-
Stage MVM algorithm, which need to perform MapReduce
twice; combine2(), combineAll(), and assign() are the primitive
functions. Lin et al. [16] describes an implementation of BFS
and PageRank on MapReduce. Inspiring from their idea, we
propose a generalized MapReduce-based MVM algorithm
called One-Stage MV M, as shown in Table 5. As its name indi-
cates, our One-Stage MVM contains only one stage within
MapReduce to perform an MVM operation, but it could incur
some overheads. The input format of One-Stage MVM is lim-



ited to a customized data structure that combines the adjacent
list with the vector value of each vertex ({v;,{m;,m.,...,m,}}).
In Map() part, combine2() is performed while in Reduce() part,
combineAll() and assign() are performed.

TABLE V. ONE-STAGE MVM ALGORITHMS ON MAPREDUCE
Stage One Stage MVM
Map Input (a) data structure {v;,{m;,ms,...,m,}}
for each vj, m;; pair,
Map() apply combine2(m;;,v;) and then yield (c),
for(a), yield(d).
Map Output/ | (c) key =j, value = m;;xv;
Reduce Input | (d) key =j, value = {v;,{m;,ms,...,m,}}
For all (), apply view - combineAll(X,...,Xn), update
Reduce() structure by {assign(vivaen), {mmy, ..., m,}}, and yield (e)
Reduce . _
Output (e) key =j, value = {v;,{m,m;,....m,}}
TABLE VI. FAST MVM ALGORITHMS ON MAPREDUCE

Fast MVM
Input: Matrix M= adj list{(j, {i, m;;})}, Vector V'={(i, v;)}
Output: Result Vector V= {i, Ve }
Map(Key &, Value v);
if (k, v) is of type V then
Output (k, (“self”, v))
else if (k, v) is of type M then
v; = ReadValue(k) I(k: j)
for each (i, m;j) € vdo Hv{(i, mij)})
Output(k, (“others”, combine2(m;;,v))));
Reduce(Key , Value);
others_ v < [];
self v <[J;
for eachv € v[1..m] do
(tag,v') <v;
if tag =="“self” then
self v v’
else if tag == “others” then
Add v to others_v;
Output(k, assign(self v, combineAlli(others_v)));

Mk i, v vy)

//initialize
//initialize

TABLE VII. TIME AND SPACE COMPLEXITY OF TWO-STAGE MVM, ONE-
STAGE MVM, FAST MVM ALGORITHM
St Time Complexity
age Two-Stage MVM_| One-Stage MVM Fast MVM
Map Input 2(|E‘HVD/PM (‘E‘+|V|)/PM (‘EH"VD/PM
([EFV)/Py +
Map() 2(|EH{V)/Py (IEH|V])/Py O(ReadValue)
(IVI’Pm)
Map Output/
Reduce tnput | 2(EFIVD/Pe (E[+2V])/Px (EHV])/Py
2day(JV|/P dave(|V|/P
Reduce() 2d,el[VI/PR) ne([VIPR) el [VVPR)
Reduce (B[P (EFVI)/P VP
Output
Stage Space Complexity
g Two-Stage MVM One-Stage MVM Fast MVM
Map Input 2(|E‘HVD/PM (‘EHlVl)/PM (‘E‘HVD/FM
Map() o(1) Qave davg
Map Output/
Roduce Input | 2(EFIVD/Pe (EF2V)/Pe | (EHV)/P
Reduce() davg davg davg
Reduce ([E[+2|V])/P (EHVI)/P VP
Output R R R

The time complexity and space complexity of Two-Stage
MVM and One-Stage MVM are shown in Table 7. A MapRe-
duce stage involves 5 steps: Input, Map(), Shuffle & Sort, Re-
duce(), and Output. Here, we consider the data size and the
number of operations performed in each step. We also compare
the complexity of different MapReduce-based algorithms. The
Steps involved in Input, Shuffle & Sort, and Output perform
I/O via the memory/disk/network, so the computation cost is
proportional to the size of the required storage. As the steps of
Map() and Reduce() execute user defined algorithms, the input
records are processed one by one. That means the minimal
space requirement is the largest recorded input. We denote it as
the space complexity of Map() and Reduce(). The time com-
plexity is estimated by multiplying the time complexity of an
operation per record by the total number of records processed.
The number of records can be distributed in parallel to different
mappers Py, or reducers Py, so the complexity can be reduced
accordingly.

The complexity analysis shows that, in each stage, the
computation cost of Two-Stage MVM is either greater than or
equal to that of One-Stage MVM. For Input and Shuffle & Sort,
the computational cost of Two-Stage MVM in terms of time
complexity is about twice than that of One-Stage MVM. Thus,
we expect the overall performance of One-Stage MVM is at
most twice as good as that of the Two-Stage MVM. The disad-
vantage of One-Stage MV M is that the output to yields an adja-
cent list and a vector value in each iteration, which could put
some overheads for I/O.

We propose an efficient Fast MVM algorithm based on
One-Stage MVM. Specifically, we use a function ReadValue(k)
to read the vector value of vertex k from external source when
needed. This approach eliminates the need to combine the ad-
jacency list and vector value as an input record, at the cost of
some extra effort in executing the ReadValue() function. The
pseudo code of Fast MVM and its complexity are shown in
Table 6. We implement ReadValue(k) by reading the file of
vectors on HDFS (Hadoop Distributed File System [14]) via a
file stream. We also modify the partition function getParti-
tion(key, value, numOfReducer) in Hadoop to ensure that the
order of vectors is consistent for each output of MapReduce.
The partition function is called bin partitioner. 1t divides all
vertex ids into several bins of equal size (size=|V|/Pz), after
which each bin is processed by a specific Reducer.

The results in Table 7 show that Fast MVM outperforms or
is equivalent to One-Stage MVM in different stage; therefore,
we expect Fast MVM to yield a better performance than One-
Stage MVM. The experiments described later will follow the
analysis in Table 7.

B.  MVM algorithms: Traverse All and Traverse Partial

We divide the MVM algorithms into Traverse All and
Traverse Partial categories according to whether or all edges
need to be traversed during multiplication. For algorithms of
Traverse All category, to achieve the best performance, we
apply the Fast MVM algorithm instead of Two-Stage algo-
rithm for implementation. The primitive function of PageRank
implementation is the same as PEGASUS, and only the
MapReduce-based algorithm is refined in our case. For Trav-



erse Partial, we propose to modify combine2() with pruning
technique. This is possible since only updated vector values
from the previous MVM iteration are required for multiplica-
tion. The combine2() function can then be simplified to com-
bine2() with pruning" as shown in Equation 2. Here, v, ., de-
notes the vector value in the previous iteration and v; denotes
the vector value in the current iteration.

2

Diameter Estimation, Identification of Connected Compo-
nents and Breadth First Search (BFS) belong to this Traverse
Partial category. We take the Breadth First Search (BFS) algo-
rithm as an example, which can be applied to solve the single
source shortest problem. Initially, the distance value of each
vertex is set as infinity, except the source vertex (set as zero).
For each MVM iteration, every vertex calculates its distance
value by increasing one unit from its neighbors. The three
primitive functions are defined in the following:

1)
2)
3)

Combine2(m;;, v;) = m;; X V;if v pre, v,

combine2(m;;,v;): m;; x (v;+1) if v, 0, FV;
combineAll(x,,...,x,): MIN(x,,....x,)
assign(v,—,vnew): MN(Vi)Vnew)

The pruning method is applied to improve the efficiency.
The MVM operation is repeated until all vector values con-
verge.

C. One-Hop Algorithms

The One-Hop algorithms in Table 5 need only local infor-
mation (i.e., one-hop) for each vertex. Since there is no need to
perform iterative computation for One-Hop algorithms, they
can be executed in one or two stages of MapReduce. We show
the implementation of Out Degree Distribution and Input For-
mat Transformation from M, to M,y in Table 8.

TABLE VIII.  EXAMPLES OF ONE-HOP
e Format Transformation

Stage Out Degree Distribution from Moy to Moy
Map Input (@{(Lmi)} € My (2) mi; € Mege
Map() yield (b). yield (b).
Map Output/ _ _ = =mi:
Reduce Input (b) key = dyui, value =1 (b) key =, value = m;;
Reduce() For all (b), calculate For all (b), concatenate

educe d= Y1, and yield(c) all m;;, and yield(c)

Reduce (c) key = i, (out degree) (c) key =J,
Output value = d (frequency) value = {(j, {(i,mi))})}

D. Multi-Hop Algorithms

Graph mining algorithms that require global information
during computation (e.g. computing Betweenness Centrality)
are belonged to this Multi-Hop category. Since for each itera-
tion, a large amount of computation is needed to go through all
vertices in the graph, the time complexity of these algorithms is
usually very high. We will show it is inefficient to exploit
MVM for Multi-Hop algorithms in next paragraph. We propose
to use the Vertex-Iterator Algorithm for Multi-Hop algorithms.
In Map() part, LoadGraph() loads the whole graph into the
memory and performs Compute(G, i, v;) on each vertex i. In
Reduce() part, the partial values are gathered by combine().
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We take and implement Betweenness Centrality (BC) as an
example. Brandes [4] proposed an efficient algorithm for calcu-
lating BC, as shown in Equations 3, 4, 5. The operation in-
volves performing a bread-first-search on each vertex (source)
and calculating the partial centrality scores for other vertices

(targets).
O = p() O 3)
550 (V) = Zw:vsﬂ (w) (O-sv /O-sw) : (1 + 550 (W))
“)
CB (V) = Zsivilel/ 55[ (V) (5)

Where o;, is the number of the shortest path from vertex s
to vertex v; Py(v) is the set of predecessor vertexes of v in the
BFS tree starting from vertex s; &, (v) is the partial BC score
contributed from source vertex s to vertex v; Cp(v) is the BC
degree of vertex v. The time complexity for this algorithm is
O(V||E]). For a large-scale graph, || and |E| could be in the
order of billions. Thus, under MVM, the volume of

intermediate information shuffled between machines would
be O(|V]|E|), which could be intractable.

To apply the Vertex-Iterator algorithm to generate BC, we
implement Equations 3, 4 and 5 using Compute() and com-
bineAll() in MapReduce. First, the Compute() function executes
Equations 3 and 4 for each vertex in Map(). Second, the com-
bineAll() function performs Equation 5 in Reduce(). Through
this approach, the volume of intermediate information shuffled
between machines would be |E|Py + |V|Py = (|E|+|V]) Puws
which is more tractable than O(|V]|E|). Finally, the time com-
plexity is also reduced from O(|V]|E|) to O(|V||E|/Py + |V]
Py/Pr).

IV. EXPERIMENTS

In this section, we evaluate the efficiency and scalability of
our framework. We conduct a series of experiments to answer
the following questions:

1) Traverse All. Which of the following algorithms can
achieve the best performance given the same conditions: Two-
Stage MVM, One-Stage MVM or Fast MVM? Which one
would yield the best performance if we further exploit the
proposed optimization method (i.e., table or combiner)

2) Traverse Partial. How much improvement can the
pruning method achieve?

3) One-Hop. Are One-Hop algorithms scalable to the
number of available machines?

4) Multi-Hop. How much improvement does the Vertex-
Iterator algorithm yield in terms of efficiency?

We implement one algorithm for each question. Besides,
we use speedup and time efficiency criteria to evaluate the
scalability of the algorithms. Both criteria are widely used to
measure the performance of parallel systems. Speedup S, is
defined as S, = 7,/Tp, where T; is the running time using only



one process and 7 is the runtime using P processes. The effi-
ciency Ep is defined as Ep = Sp/P.

TABLE IX. ORDER AND SIZE OF NETWORKS
Dataset Nodes Edges Description
Twitter 75,792,429 1,468,365,182 | person-person in 2009
Erdés—Rényi2 177,147 1,977,149,596 | synthetic
Kronecker® 177,147 1,977,149,596 | synthetic
Wikipedia® 68,869,555 406,914,840 | doc-doc in 2010/01
DBLP 1,380,123 2,194,624 | person-doc in 2010/03

Table 9 lists the statistics of the datasets used in our exper-
iments, including two real-world and two synthetic networks.
For the synthetic networks, we generate graphs using two ran-
dom graph models: Erdés-Rényi [22] and Kronecker [23]. The
Erd6s-Rényi model is a very simple graph generation process
producing random graphs. With carefully-designed of the pa-
rameter (i.e., the link probability p), we generate graphs follow-
ing a certain real-world property (i.e., the existence of a giant
component). On the other hand, the Kronecker graph is a so-
phisticated one. It has been proven that the graph obeys many
real-world network properties, such as a power-law distribution
and the small-world property. For real-world networks, we use
Twitter [24] and Wikipedia, two of the most popular web and
social network services. Each network, except Wikipedia, con-
tains over 1 billion edges. We evaluate the performance on a
cluster system with eight computing nodes, each node is
equipped with two Intel E5550 2.67GHz CPUs, 32G DDR3-
1333 RAM, 1Gb Ethernet network and 1TB hard disk. In addi-
tion, we use Hadoop 0.20.2 with Mapper capacity = 8 and Re-
ducer capacity = 3 per node. All runtimes are averaged over 5
runs. The input format of M, with Gzip binary compression is
exploited for all of our algorithms and the compared approach-
es. It is because the experiment results indicate that M, with
Gzip outperforms than other setups, which are combination of
M, q4ee and Mj,q. (discussed in the succeeding section).

A.  Evaluating Traverse All Algorithms: Exemplifying by
PageRank

We implement PageRank on Two-Stage MVM, One-Stage
MVM and Fast MVM. All algorithms are executed on the four
datasets. The average runtime per iteration of PageRank is
shown in Figure 1. We can observe that: (1) Both One-Stage
MVM and Fast MVM significantly outperform 7Two-Stage
MVM (they are roughly twice as fast). Compared to Two-Stage
MVM, the Fast MVM reduces the runtime to 51% on real-
world networks and 40-45% on synthetic networks. One-Stage
MVM reduces the runtime only by 48-69% on real-world net-
works and by 64-76% on synthetic networks. Their variation is
quite large. (2) Generally, for low density dataset (i.e., the
average degree is low), such as Wikipedia, One-Stage MVM
performs slightly better than Fast MVM. For high-density
graphs, Fast MVM yields a better performance. The reason is
that Fast MVM has to do external access (HDFS, in our im-
plementation) to fetch the vector values, but One-Stage MVM
performs internal access (from HDFS, refer to [9] for the de-
tails), which has less overheads. Thus, the overhead is more
for Fast MVM in sparse graphs since the ratio of access and
processing (which is equal to the inverse of the graph's density)
is larger. Our experimental results also show that, for networks

'Twitter: available at http://an kaist.ac.kr/traces/WWW2010.html
?Erdés-Rényi: available at http://www.cs.cmu.edu/~ukang/HADI/
*Kronecker: available at http://www.cs.cmu.edu/~ukang/HADI/
*Wikipedia: available at http://mslab.csie.ntu.edu.tw/~noahsark/
*DBLP: available at http://mslab.csie.ntu.edu.tw/~noahsark/
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whose density is less than 5%, One-Stage MV M is a more suit-
able choice. (3) By integrating the proposed Fast MVM with
the Table method (a buffer in the mapper to cache the inter-
mediate data) proposed by Chen et al. [7], the performance
becomes even better. Compared to Two-Stage MVM, the
runtime is reduced to about 1/4 on real-world networks and
1/20 on synthetic networks. Similarly, the performance im-
proves on dense networks. (4) The Table method outperforms
Combiner in terms of runtime on both One-Stage MVM and
Fast MVM. We believe this is because the Table method sim-
plifies the output before the sorting step, and the Combiner
simplifies the output after the sorting step. Note that sorting
tasks in MapReduce procedures spend undeniable amount of
time. Interestingly, the experiment results show that using both
Combiner and Table do not achieve the best performance. We
believe this is because Table is a cache mechanism inside the
Mapper with fewer costs, whereas Combiner is a process out-
side the Mapper.

We examine the scalability of the proposed framework by
exploiting Fast MV M and the Table method on PageRank. The
runtime, speedup, and efficiency on the Kronecker network
are shown in Figure 2. The results demonstrate that on a clus-
ter machine containing up to eight nodes, our proposed meth-
ods are close to linear speedup and with efficiency at least 0.8
times.

B.  Evaluating Traverse Partial Algorithms: Exemplifying by
Breadth First Search

We implement Breadth First Search described in Section
3.B with Fast MVM and run on it on the Twitter dataset. In
addition, we implement the primitive function combine2() with
and without pruning. From the results in Figure 3, we can ob-
serve that the BFS takes 15 iterations to converge. However, by
applying pruning, the run time can be further reduced to rough-
ly 40%.

C. Evaluating One-Hop Algorithms: Exemplifying by
Calculating the Out-degree Distribution
We implement the Out-degree Distribution described in in
Table 8 on the Kronecker dataset. The results using different
numbers of computing nodes are shown in Figure 4. It can be
observed that the algorithm is scalable up to 8 computing
nodes with efficiency at least 0.6 times.

D. Evaluating Multi-Hop Algorithms: Exemplifying by

Calculating the Betweenness Centrality

We realize Brandes' Betweenness Centrality (BC) algo-
rithm as the example of the Multi-Hop category in the pro-
posed framework. We implement the Mapper program in C++
and use Hadoop Streaming to run MapReduce. The input file
of each Mapper is copied to each machine. The scalability is
shown in Figure 5. Our BC implementation algorithm has
good linear scalability. Since the complexity of the BC algo-
rithm is O(|V]|E]), it is computationally intractable to run it on
a network containing billions of entities. Therefore, we per-
form the experiment on the DBLP dataset, which comprises
1.3 million vertices and 2.1 million edges. It still takes 6 hours



to finish the experiment on a cluster system with eight compu-
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Figure 4. Experiments for One-Hop: Implementation of Out Degree Distribution on Kronecker Network
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V.

We have proposed the MapReduce Graph Mining Frame-
work (MGMF) for graph mining algorithms based on MapRe-
duce. MGMF divides the graph mining algorithms into four
categories based on what kind of graph information is needed
when performing algorithms. Our designed framework con-
sists of three components, including primitive functions, a
MapReduce-based algorithm, and an optimization method. We
demonstrate that the proposed algorithms are more scalable
and efficient than the state-of-the-art MapReduce-based graph
mining package (i.e., PEGASUS).

Specifically, we propose a comprehensive, end-to-end sys-
tem design for graph mining in a cloud environment. Our
framework contains a File Input Format, Primitive Functions,
MapReduce-based Algorithm, and Cache with Compression
methods for optimization. Besides, we compile our MGMF as
an open source, ready-for-use library available at
http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/. The data sets
used in the experiments are also available online. In the end,
we evaluate the usefulness and scalability of MGMF in a clus-
ter machine. We also demonstrate the usage of MGMF in di-
verse scenarios.

CONCLUDING REMARKS

For the future direction, we will improve the efficiency of
the computation on graph mining by modifying MapReduce.
Cohen [25] noted that map-reduce-reduce is a common opera-
tion for graph mining on MapReduce. That says carefully de-
sign of chained MapReduce operation could further reduce the
overhead between iterations.
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