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ABSTRACT 

Cryptographic distinguishing attacks, in which the attacker is able 

to extract enough “information” from an encrypted message to 

distinguish it from a piece of random data, allow for powerful 

cryptanalysis both in theory and in practice. In this paper, we 

report our experience of applying state-of-the-art machine 

learning techniques to launch cryptographic distinguishing attacks 

on several public datasets. We try several kinds of existing and 

new features on these datasets and find that the ciphers’ “modes 

of operation” dominate the performance of classification tasks. 

When CBC mode is used with a random initial vector for each 

plaintext, the performance is extremely bad, while the 

performance for certain datasets is relatively good when ECB 

mode is used. We conclude that, in contrary to the findings of 

several existing works, the state-of-the-art machine learning 

techniques cannot extract useful information from ciphertexts 

produced by modern ciphers operating in a reasonably secure 

mode such as CBC, let alone distinguish them from random data. 

Categories and Subject Descriptors 

D.4.6 [Security and Protection]; I.2.1 [Applications and Expert 

Systems]; I.5.4 [Applications]; K.4.1 [Public Policy Issues]: 

Abuse and crime involving computers 

Keywords 

Computer Forensics, Cryptographic Distinguishing Attacks, 

Identification of Encryption Algorithm, Machine Learning 

1. INTRODUCTION 
In cryptography, if an attacker can extract enough information 

from a ciphertext and distinguish it from random data, then we say 

that he or she succeeds in launching a distinguishing attack. Such 

an attack might seem innocuous at a first glance, but it can 

actually lead to several powerful cryptanalytic attacks.  
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For example, Martin and Shamir gave a classical example of such 

amplification [1]. More recently, Albrecht, Paterson, and Watson 

gave another example in which they succeeded in attacking one of 

the most widely used Internet security softwares, the OpenSSH, 

by turning distinguishing attacks into plaintext-recovery attacks 

[2]. Therefore, distinguishing attacks have been playing an 

important role in modeling cryptographic ciphers, and many 

cryptographers believe that it is computationally infeasible to 

launch distinguishing attacks against reasonably secure ciphers 

such as DES and AES. 

In this paper, we focus on an important, albeit slightly easier task 

in cryptanalysis: Identification of encryption algorithm. It is easier 

in the sense that we don’t need to get too involved in what 

random data is from a technical or philosophical viewpoint. 

Furthermore, such a task can be important in scenarios like digital 

forensics because only the evidence from computer media is 

available. In these cases, we don’t even know which cipher was 

used to encrypt the messages, whereas in textbook cryptanalysis 

scenarios, the encryption algorithm is always given. In order to 

recover useful information without using any meta-data, the 

technique of identification of encryption methods is needed. 

Overall, this problem has not been investigated much in the 

literature. Furthermore, the few papers that have paid some 

attention to it almost all use a set of similar features and claim 

some success for ciphers operating in simple modes. In this paper, 

we compare the performance of existing features in different 

scenarios and show that the classification accuracy can 

significantly differ when different modes of cipher operation are 

used. Without loss of generality, we only consider binary-class 

cases, as multi-class tasks can be easily done by extending the 

approaches used in binary cases.  

We design different scenarios by introducing different modes of 

operations in encryption process. The mode of operation is a 

procedure that repeatedly uses a block cipher with a fixed key to 

encrypt a message whose length is larger than one block. The 

simplest one is electronic codebook (ECB) mode. In ECB mode, a 

message is divided into several blocks, and each block is 

encrypted independently. The advantage is speed because 

encryption of different blocks can happen in parallel. However, 

such a mode doesn’t provide semantic security, as the same 

plaintext block always encrypts to the same ciphertext block. The 

cipher-block chaining (CBC) mode is the most commonly used 

one. In CBC mode, the message is also divided into blocks, but 

before each block is encrypted, the plaintext is XORed with the 

ciphertext of previous block. For the first block, an initialization 
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vector (IV) is used to be XORed with the plaintext. Thus each 

ciphertext depends on all blocks processed up to the current block. 

2. RELATED WORK 
Genetic algorithm based methods are widely used in recovering 

secret keys in encryption algorithms, such as for substitution 

cipher [1], transposition cipher [4], knapsack cipher [5], and 

Feistel cipher [6], by localized searching in the key space. Neural 

networks are also used to break cryptosystems [7][8]. As will be 

detailed below, there are already some existing works on cipher 

classification based on statistics techniques.. 

There are some works done by Pooja on the classification of 

classical ciphers [9]. It includes substitution cipher, permutation 

cipher, polyalphabetic cipher, and a combination of permutation 

and substitution cipher. Several cost functions are proposed to 

distinguish classical ciphers by sorted or unsorted frequency of 

letters. An expected frequency of letters is also required, which is 

drawn from common English texts. 

Some early work of classifying modern ciphers has done by 

Chandra [10] by combining several decision logics to classify 

modern ciphers. Dileep [11] proposed to use support vector 

machine (SVM) and bag-of-words model for identification of 

block ciphers, which builds common or class-specific dictionary 

of (1) fixed length words and (2) variable-length words. Saxena 

proposed to use linear programming on the segments of 

ciphertexts to generate many test vectors [12] and use SVM to 

find good test vectors. Sharif used a number of classifiers on 8-bit 

histogram features for identification of encryption methods and 

reported that random forests outperform all other classifiers 錯誤! 

找不到參照來源。. Manjula proposed to use several features 

such as entropy, correlation coefficient of uppercase letters, and 

size of files to identify encryption algorithms by decision tree [14].  

As we will demonstrate in the rest of this paper, almost all these 

related works won’t work against a reasonably secure cipher 

operating in CBC mode. We will also give the reasons why they 

seemingly work in their reports and suggest what we should do in 

the future when doing research in this direction. 

3. EXPERIMENT 
In this section, we focus on using existing bag-of-words model of 

feature and the common classification framework in [11]錯誤! 找

不到參照來源。 to solve the problem of cipher identification. 

The framework is shown in Figure 1. 
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Figure 1. The Framework of Bag-of-word Approach 

 

3.1 Environment and Setup 
We use 3 kinds of dataset for validation, including text, images, 

and audio files. The Reuters21578 dataset [15] is a collection of 

news on Reuters newswire in 1987. In preprocessing step, we 

filter out documents smaller than 128 bytes in size. For images, 

we use Caltech 101 dataset [16], which is widely used in 

computer vision with 101 categories and total 19043 images in 

JPEG format. We note that the category information is not used in 

the experiments below. For audio files, MajorMinor dataset is 

used [17], which contains 2174 audio files in WAVE format. 

The experiments are divided into two parts. In the first part, we 

build one instance with one ciphertext. That is, we extract features 

of one instance from only one ciphertext sequence. To eliminate 

the effect of class imbalance, we only use 1000 ciphertexts for 

each class. The rule is very simple: for Reuters21578 and 

MajorMiner, we choose the largest 1000 documents. For Caltech 

101 dataset, we choose the largest 1000 images in “motorcycle” 

and “airplane” categories. In the second part, each instance is built 

to contain multiple ciphertexts, as we want to see if machine-

learning algorithms can perform better by using more types of 

information, e.g., positions in ciphertext sequences. Each 

ciphertext is generated by randomly picking a plaintext from 

dataset (with replacement); a random IV also needs to be picked if 

CBC mode is used. The block ciphers used below are Data 

Encryption Standard (DES) and Advanced Encryption Standard 

(AES), where 128-bit version of AES is used. Besides, the result 

generated from the stream cipher RC4 is also included. In all 

experiments, a fixed random key is used for each cipher. In each 

experiment, the datasets are divided into 5 parts, and we 

repeatedly use four of them as the training data while the 

remaining one as the testing data. We use cross-validation to find 

the best linear solver and parameters for each part, and the final 

results are the average of the 5 testing data parts. 

The main classifiers used are linear solvers in LIBLINEAR [18], 

including L2-regularized L2-loss support vector classification 

(dual), L2-regularized L1-loss support vector classification (dual), 

L1-regularized L2-loss support vector classification, and L2-

regularized logistic regression (dual). The linear classifiers are 

very fast and suitable for bag-of-words model. For some 

experiments, SVM with Gaussian kernel is also used to deal with 

small number of features via LIBSVM [19]. 

We use OpenSSL1 as our encryption tool, which is open-source 

and designed originally for the SSL/TLS protocol implementation. 

The random IVs are generated by Mersenne twister, a 

sophisticated pseudo random number generator [20]. 

3.2 Features 
We list the features we use in Table 1. The first two features are 

related to entropy, which are calculated on a per 16- and 12-bit 

symbol basis, respectively. A simple scaling has been done on the 

entropy features via divided by the maximum entropy. The third 

and fourth features are the number of symbols appearing in the 

ciphertext. Here 2 features are extracted, and the numbers are 

scaled via divided by the maximum possible number of symbols 

as well.  The fifth, sixth, seventh, and eighth features are 16-bit 

histograms with 65536 dimensions. The difference is that a 

different number of bits in the preceding ciphertext segment are 

XORed with the current segment to reflect the block lengths of 

DES and AES. Furthermore, although 8-bit histogram is used in 

Sharif’s work, we found that it contains no useful information, as 

each bin has almost the same probability in our datasets. The 

ninth feature is the varying length words proposed by Dileep. By 

choosing the four most frequently appearing 4-bit delimiters, we 

can derive a varying length word representation. However, we 

note that the fixed length word representation proposed by Dileep 

                                                                 

1 http://www.openssl.org 
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is not useful in our datasets because each word appears at nearly 

the same frequency. 

 

Table 1. The list of features used in experiments 

Feature Dimension Notation 

Entropy (1 symbol = 16 

bits) 

1 ENT1 

Entropy (1 symbol = 12 

bits) 

1 ENT2 

Number of 16-bit symbols 1 NSYM1 

Number of 12-bit symbols 1 NSYM2 

16-bit histogram 65536 HIST 

XORed with previous 16 

bits and build 16-bit 

histogram 

65536 XOR1 

XORed with previous 64 

bits and build 16-bit 

histogram 

65536 XOR2 

XORed with previous 128 

bits and build 16-bit 

histogram 

65536 XOR3 

Varying length words Varies with data VLW 

Distribution of intervals 

between 0x00 

Varies with data INT 

Ratio of zero in i-th byte, 

i=1…128 

128 ZRO_RATI

O 

Entropy of the i-th byte, 

i=1…128 

128 ENT_BYTE 

 

The tenth feature is inspired by the varying length words 

representation. The idea is to use only one delimiter, so we can 

record the length of interval between two delimiters. 

3.3 Experiment Result 
Table 2 shows the results of entropy-related features proposed by 

Manjula, in which results labeled with RBF are obtained using 

SVM with Gaussian kernel. Only Reuter21578 datasets can be 

partially classified with just 4 features in ECB mode. We believe 

the main reason is that the block sizes of AES and DES are not 

equal, and naturally the ciphertexts produced by AES tend to have 

higher entropy because it uses larger blocks. 

Besides, the content or size of plaintexts may implicitly affect the 

entropy. For example, some of documents in Reuters21578 have 

similar titles (No. 15871 and No. 15875), and some of the images 

in Caltech101 also have the same headers because their resolution 

is the same. For WAVE files, the results are not as strong. Our 

reasoning goes as follows. Assume two plaintext messages have 

one same block in the beginning, but other bits are totally 

different and random. Then the entropy should increase and 

approach maximum as the message size increases, resulting in 

poorer performance in classifying larger WAVE files. 

Table 3 shows the results of histogram-related features. The 

cipher used can be identified in all 3 datasets in ECB mode. It is 

consistent with the results obtained in Dileep’s and Sharif’s works. 

However, if CBC mode is used, and if different IVs are used to 

produce ciphertexts, then the resulting accuracy becomes close to 

50%, i.e., no better than coin flipping. This is because CBC mode 

can eliminate repeated patterns in ciphertexts. Besides, in the 

three bottommost rows, we try all 3 datasets with the same cipher 

but different modes of operation as labeled. Two of them can be 

classified with 100% accuracy, while image data has only 67.05% 

accuracy. There are two possible reasons. (1) A JPEG image 

consists of multiple segments, each of which begins with a 

marker2. Hence, the positions of one marker may vary in different 

files. (2) JPEG is a compressed format, which has higher entropy 

than uncompressed formats like text files. Nevertheless, the 

overall results of classification based on modes of operation are 

still quite acceptable.  

We also try the varying length words feature (in Table 4), 

originally introduced by Dileep. The dictionary is directly built 

from the instances we used. In summary, 949540 words are found 

from Reuters21578, while 3449174 words are found from 

Caltech101, but this feature still does not help anymore in CBC 

mode. As AES has passed some standard NIST randomness tests 

[21], we further propose several randomness-related features not 

included in the NIST tests. The classification results are in Table 

5, which shows that the accuracy is still around 50%. Therefore, 

the existing features do not seem to be effective in this scenario. 

The results of the case that an instance contains multiple 

ciphertexts are listed in Table 6. The term “bagsize” refers to the 

number of ciphertexts included in one instance. From the table, 

we found the accuracy tends to be around 50% as the bag size 

increases.  

 

Table 2. Classification results of entropy-related features 

Datasets Ciphers Features 
Modes of 

operation 
Accuracy 

Reuters2

1578 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+ 

NSYM2 

ECB 

74.10% 

80.20% 

(RBF) 

Reuters2

1578 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+

NSYM2 

CBC 

49.3% 

48.00% 

(RBF) 

Caltech1

01 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+

NSYM2 

ECB 

51.45% 

53.94% 

(RBF) 

Caltech1

01 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+

NSYM2 

CBC 

50.05% 

48.49% 

(RBF) 

MajorM

iner 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+

NSYM2 

ECB 

50% 

49.80% 

(RBF) 

MajorM

iner 

AES vs. 

DES 

ENT1+ 

ENT2+ 

NSYM1+

NSYM2 

CBC 

50% 

49.65% 

(RBF) 

 

                                                                 

2 http://class.ee.iastate.edu/ee528/Reading%20material/JPEG_File

_Format.pdf 
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Table 3. Classification results of histogram-related features 

Datasets Ciphers 
Modes of 

operation 
Accuracy 

Reuters21578 
AES vs. 

DES 
ECB 100% 

Reuters21578 
AES vs. 

DES 
CBC 51.05% 

Caltech101 
AES vs. 

DES 
ECB 100% 

Caltech101 
AES vs. 

DES 
CBC 49.95% 

MajorMiner 
AES vs. 

DES 
ECB 100% 

MajorMiner 
AES vs. 

DES 
CBC 50% 

Reuters21578 AES CBC vs. ECB 100% 

Caltech101 AES CBC vs. ECB 67.05% 

MajorMiner AES CBC vs. ECB 100% 

 

Table 4. Classification results of varying length words features. 

Datasets Ciphers Features 
Modes of 

operation 
Accuracy 

Reuters

21578 

AES vs. 

DES 
VLW CBC 49.05% 

Caltech

101 

AES vs. 

DES 
VLW CBC 49.55% 

 

Even for RC4, which has been shown to have biased outputs in 

the second byte 錯誤 ! 找不到參照來源。 , we still cannot 

distinguish it from AES, as is evident from the fact that accuracy 

is still around 50%. It shows that more training data or a larger 

bag size might be required. 

4. DISCUSSION AND CONCLUSION 
Our experiments show that the difficulty of this task may varies 

with type of plaintexts, size of documents, and the modes of 

operation used to encrypt. Several existing features are used to 

predict ciphers when different modes of operation, ciphers, or 

types of plaintexts are given. We found that the existing features 

are still not capable of distinguishing encryption algorithms in the 

scenario in which CBC mode is used with different IVs assigned 

to each ciphertext. In fact, random IV is also an important factor 

in this problem. For example, if only one fixed IV is assigned for 

every ciphertext produced by a fixed secret key, then those 

plaintexts with the same header must be encrypted in the same 

manner, and the contents of first block will be the same as well. 

Therefore, the classification task would be a little bit easier. Since 

the IVs are seldom the same in real world applications, this task is 

still very hard and challenging today.  

Overall, we find that state-of-the-art machine learning techniques 

are not yet effective for identification of encryption algorithm 

used given only a reasonably large number of sample ciphertexts. 

Despite that there have been successful reports in the literature, 

our experiments show that these works are flawed in the sense that 

they didn’t consider CBC mode of operation with random IV, 

which is the recommended configuration capable of providing the 

basic level of security. Perhaps more advanced machine learning 

techniques could be applied in this problem, but we suggest that 

researchers must use ciphers in CBC or similar mode with a 

random IV in the future. 

 

Table 5. Classification results of histogram-based features 

constructed from XORed segments and intervals between the 

delimiter ‘0x00’ 

Datasets Ciphers Features 
Modes of 

operation 
Accuracy 

Reuters2157

8 

AES vs. 

DES 
XOR1 CBC 49.10% 

Caltech101 
AES vs. 

DES 
XOR1 CBC 49.15% 

MajorMiner 
AES vs. 

DES 
XOR1 CBC 50% 

Reuters2157

8 

AES vs. 

DES 

XOR2+

XOR3 
CBC 51.05% 

Caltech101 
AES vs. 

DES 

XOR2+

XOR3 
CBC 49.45% 

MajorMiner 
AES vs. 

DES 

XOR2+

XOR3 
CBC 50% 

Reuters2157

8 

AES vs. 

DES 

INT+X

OR1 
CBC 52.55% 

Caltech101 
AES vs. 

DES 

INT+X

OR1 
CBC 48.90% 

 

Table 6. Classification results using multiple ciphertexts 

encrypted in CBC mode 

Datasets Ciphers Features Bagsize Accuracy 

Reuters

21578 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
100 48.10% 

Reuters

21578 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
200 50% 

Caltech

101 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
100 49.35% 

Caltech

101 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
200 50.25% 

MajorM

iner 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
100 49.55% 

MajorM

iner 

AES vs. 

DES 

ZRO_RATIO

+ ENT_BYTE 
200 50% 

Reuters

21578 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
100 49.90% 

Reuters

21578 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
200 50% 

Caltech

101 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
100 49.30% 

Caltech

101 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
200 50.05% 

MajorM

iner 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
100 50.40% 

MajorM

iner 

AES vs. 

RC4 

ZRO_RATIO

+ ENT_BYTE 
200 50.10% 
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