2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security,

Risk and Trust

Parallelizing Preferential Attachment Models for Generating
Large-Scale Social Networks that Cannot Fit into Memory

Yi-Chen Lo, Cheng-Te Li, Shou-De Lin

Dept. Of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
anauma3@gmail.com, d98944005@csie.ntu.edu.tw, sdlin@csie.ntu.edu.tw

Abstract—Social network generation is an important problem in
social network analysis. The goal is to produce artificial networks
that preserve some real world properties of social networks. As
one of most popular social network generation algorithms, the
Barabasi-Albert (BA) model is a method that can generate ran-
dom social networks with power-law degree distribution. This
paper discusses the situation of generating large-sized social net-
work that cannot fit into the memory. We design a parallel
framework to tackle this problem. The challenge lies in the fact
that the preferential attachment mechanism used in the BA model
has direct conflict with the concept of parallelism. To achieve the
preferential attachment, during the generation processes the de-
gree information of nodes needs to be known, which prohibits the
parallelism that allows nodes to generate edges independently. To
handle this issue, this paper proposes a method to generate the
expected accumulated degree of vertices for the parallel BA mod-
el. We further propose several novel techniques to reduce the
complexity of generating N vertices with P processes to
O(NlogN/P). We implement the model using MapReduce and the
experiment results show that our model can produce billion-sized
scale-free networks in minutes.

Keywords: graph mining; large-scaled social networks; social
network generation; Barabdsi—-Albert model; preferential
attachment; Map Reduce

L

The goal of social network generation is to generate artifi-
cial random graphs to model real world social networks prop-
erties. While the target size of social network graph data (usu-
ally in terms of the number of vertices in a network) to be
generated scales up, the execution time to generate a social
network grows drastically. This paper aims to efficiently gen-
erate realistic social networks whose sizes are too large to be
loaded into the memory of a single machine.

Many social network generation algorithms have been pro-
posed to fit real world social networks properties such as low
average path length, high clustering coefficient, and power-
law degree distribution. The Erdds-Rényi model [3], the
Watts—Strogatz model [4], and the Barabasi—Albert model [5]
(abbreviated as ER, WS, and BA model, respectively) are the
most famous social network generation algorithms that fulfill
the above properties. All three models can produce networks
with low average path length. The WS model produces net-
works with high clustering coefficient while the BA model
generates networks with power-law degree distribution. To
handle the limited memory issue in large-scale social network
generation, we can divide the generation task of different sets
of nodes to different processors in parallel. The ER and WS
model can be easily implemented in parallel since the genera-
tion processes of vertexes are independent of each other. Un-

INTRODUCTION

978-0-7695-4848-7/12 $26.00 © 2012 IEEE
DOI 10.1109/SocialCom-PASSAT.2012.28

229

fortunately, such nice properties do not apply to the BA model.
The BA model adds vertices with the preferential attachment
(PA) mechanism, which states that vertices with higher degree
values are more likely to be attached to the new vertices. That
is, while adding a new vertex into an existing network, it is
required to know the degree information of existing vertices to
satisfy the PA property. In this sense, we are facing a dilemma
while trying to parallelize a PA model. To add a node using
PA, the degree information of all other nodes is required;
however, the parallelization framework prohibits the spread of
degree information. Because each vertex generates its edges in
parallel, it is impossible to know the degree information of all
existing nodes without engaging significant communication
burden on the processors. Therefore, the original BA model
can hardly be parallelized.

In order to parallelize a PA model, we propose a method to
calculate the expected accumulated degree of each node inde-
pendently, and show that such degree information can be uti-
lized to perform PA. With an accurate estimation of the degree
change over time for each node, it is possible to break the de-
gree dependency among nodes to allow parallelism.

We first propose a naive method to compute the expected
accumulated degree which takes O(N?) time to add an edge
(the space complexity is O(N)). A binary search method is
then proposed to reduce it to O(NoghN). We further decom-
pose the degree-generation function into three components,
and propose constant solutions for each of them. Eventually,
adding a PA edge requires only O(logN) of computation time
and the overall time complexity for generating the network is
O(m*(N/P)*logN). Moreover, our memory usage is reduced to
O(N/P) for each processor, which means we can generate a
network with any size as long as there are sufficient processors
for parallelization.

Although the proposed algorithm is applicable on different
parallel computing frameworks such as MPI [12] and CUDA
[15], we implemented our model using MapReduce[1], which
is a distributed computing framework proposed by Google, as
the distributed framework to generate social networks.
MapReduce provides enhancement of efficiency (less execu-
tion time) and scalability in terms of network size (flexible
memory usage).Our experiment shows that the algorithm can
preserve the properties of power-law degree distribution while
improving the efficiency and scalability. A billion-sized net-
work can be created in minutes using relatively small amount
of processors.

The main contributions of this paper are:

1. Strategically, we propose to use ‘expected cumulative

degree’ of nodes to facilitate the parallelism of PA
models when the target size of networks is too large to

IEEE
computer
® psouety

fit into a single processor’s memory. Such idea, to our
knowledge, has not yet been mentioned in the area of
social network generation.

Tactically, our contributions are threefold. First, we
decompose the computation of the expected cumula-
tive degree into three sub-tasks, and propose a con-
stant-time algorithm to solve two of them. Second, for
the remaining task, we propose a constant-time ap-
proximation algorithm and prove the theoretical error
bound of it. Third, we propose a binary search model
for PA and exploiting caching mechanism to further
reduce the time complexity.

Empirically, we implemented a competitor’s model
for comparison, and show that our model is more con-
sistent in producing social networks that satisfy PA
property. Furthermore, our model has much fewer pa-
rameters and therefore can be used without significant
amount of efforts spending on parameter-tuning.

1L

In this section, we will first provide the background about
MapReduce framework and the BA model. Then we will in-
troduce related works in two categories: 1) existing MapRe-
duce graph libraries, and 2) existing parallel algorithm to gen-
erate scale-free networks, which share a similar goal with our
work.

A. MapReduce, Hadoop

MapReduce [1] is a distributed computing framework on
computer clusters proposed by Google. MapReduce provides
simple API of functional programming: user can execute a
MapReduce job by only defining two functions: map function
and reduce function. It also has the advantage that the underly-
ing framework can automatically handle complicated distrib-
uted computing issues such as machine failures, load balanc-
ing, data distribution and replication. With MapReduce, users
can run parallel jobs without tackling these difficulties.

In MapReduce, only one machine node is considered as the
master, and the others are worker nodes. The master would
assign map task or reduce task to the worker nodes. Input data
are first split into pieces. The number of pieces equals to the
number of worker nodes to be assigned with map task. Then
worker nodes assigned with map task read in corresponding
input split, parsing them into key/value pairs, and passing
them to map function. Intermediate key/value pairs are written
to local disk as outputs of map function. These pairs then are
divided into partitions by the partition function which can be
defined by user. The number of partitions is the same as num-
ber of reduce tasks. Each partition would be assigned to be
remotely read by a corresponding worker node assigned with
reduce task. Applying modulo operation by the number of
reduce tasks on hash value of key is one common example of
partition function. After a reduce worker read in all intermedi-
ate key/value pairs for its partition, the pairs are sorted by key
and pairs with the same key are grouped together. Then keys
and corresponding set of values are passed to the reduce func-
tion. The outputs of the reduce function from all reduce work-

BACKGROUND AND RELATED WORK

230

ers are appended as the final output. When all map tasks and
reduce tasks are finished, the MapReduce job is completed.

Hadoop[2] is the open-source implementation of MapRe-
duce from Apache. The methods we proposed in this work are
implemented and tested on Hadoop.

B. Existing Graph Libraries in MapReduce

There are already many graph libraries in MapReduce re-
leased on the Internet. PEGASUS [6] is a state-of-the-art open
source MapReduce library implementing many graph algo-
rithms and proposing primitive functions based on matrix-
vector multiplication for the algorithms. Lai’s work [7] cate-
gorized graph mining algorithms, designed solutions respec-
tively, and proposed many optimization techniques. Their ex-
periments showed their approaches can be faster in execution
time over PEGASUS. There are other MapReduce graph li-
braries such as Cloud9 [10]. Cloud9 is a MapReduce library
implementing design patterns and algorithms introduced in the
book Data-Intensive Text Processing [11] with MapReduce by
Lin and Dyer, and being served as the teaching and research
supporting tool of the book.

C. Barabdsi—Albert model (BA model)

Social network generation algorithms are designed to satis-
fy properties held by real world social networks such as short
average path length, high clustering coefficient, and power-
law degree distribution. A network having a property of pow-
er-law degree distribution is called a scale-free network. The
ER model [3], the WS model [4], and the BA model [5] are
frequently used social network generation algorithm. ER and
WS model can be easily implemented in parallel while it is not
the case for the BA model due to its preferential attachment
(PA) mechanism.

The BA model is a model for generating random scale-free
network. If the degree distribution, i.e. probability density
function of degree corresponds to the form p(x) = Cx% the
graph is said to satisfy power-law degree distribution. In the
BA model, the a value of degree distribution is proven to be -3.

The BA model adds vertices into the graph serially with
the mechanism of PA. A new vertex is added to the graph one
at a time till the graph grows to the target size. The probability
of a new coming vertex forms a link with an existing vertex is
proportional to degree of the existing vertex. It means new
vertices prefer to link with high degree vertices. It is an intui-
tive criterion because in real world these high degree vertices
stand for popular people in a social network or hot websites on
the Internet.

Here is one simple example of how the BA model gener-
ates a graph. In Figure 1, the graph starts with m,=3 fully con-
nected vertices. New vertex 4 is added with m=2 edges. Since
the degrees of the three vertices are the same, probability of
selecting vertex1, 2, and 3 to connect the new vertex to are
equally 1/3. Suppose vertex 2 and 3 are chosen to be attached
with the new vertex 4.

T

Figure 1. A example of the BA model generation

Next iteration, a new vertex 5 is added with m = 2 edges.
Now the degree of vertex 1, 2, 3, and 4 is 2, 3, 3, and 2, respec-
tively. The total degree is now 10 and the probability of each
vertex being chosen are 2/10, 3/10, 3/10, 2/10 respectively.
Vertices 2 and 3 have higher probability to be chosen than ver-
tex 1 and 4. Here vertex 3 and 4 are chosen to be attached with
the new vertex 5 as a result. Since m edges are added into the
graph each iteration, the total degree increases by 2m each iter-
ation. If we define the iteration =0 as the initial state, the total

degree of iteration 7 is total(f) = 2mt + 2 C;'* where the notation
C} stands for number of k-combinations of # elements.

One possible strategy to implement PA utilizes the accumu-
lated degree. The accumulated degree of the ith vertex is the
sum of all degrees of the vertexes that come before it (i.e. the
sum of degree from v; to v;.;). In the example above, the accu-
mulated degrees of vertex 1, 2, 3, and 4 are 0, 2, 5, and 8§ re-
spectively, and the total degree is 10. To select a vertex to link
to the new vertex, the model generates a random real number
between 0 and the total degree (10), and establishes a link with
the vertex whose accumulated degree is closest to but less than
the random number. For instance, if the number generated is
2.7, then the newly added vertex will establish a link with ver-
tex 2. If the next number generated as 7.13, then another edge
is attached to vertex 3.

That says, with the accumulated degree of each vertex, we
will be able to perform PA using a linear scan algorithm, with-
out having to know the exact degree of each individual vertex.

D. Existing Parallel Algorithms to Generate Scale-free
Network

The parallel version of R-MAT graph algorithm [13] in
Parallel BGL[8] and the parallel BA algorithm by Yoo et al. [9]
share the same goal of generating scale-free network in paral-
lel. Below we will introduce these methods and discuss poten-
tial issues in their works.

In Parallel BGL [8] graph generators are implemented includ-
ing ER model, WS model, and R-MAT graph [13] in MPI [12].
R-MAT algorithm generates configurable scale-free networks.
To add an edge into an R-MAT graph, it recursively divides
the adjacency matrix into four areas with user defined proba-
bility a, b, ¢, d till the area is left 1, i.e. pointing an element in
the adjacency matrix, the edge is added with the correspond-
ing index. This process loops till the target number of edges is
satisfied'. To achieve this goal, it first assigns each vertex to

! Note that, the distributed implementation of R-MAT in Par-
allel BGL is not described in the corresponding paper. We
obtained knowledge about their parallelization schema by trac-
ing their open source code.

231

one of the processes, and then in each process they add an
edge if one of the vertex pair is assigned to the process, other-
wise, they discard the edge. This design keeps the edges from
being duplicated in multiple processes but leaves a problem of
redundant iterations which generating discarded edges. As the
number of processes increases, it would be more difficult for
edges to hit corresponding processes, i.e. the overhead of re-
dundant iterations would be more significant. Therefore their
implementation is not well scalable.

Yoo et al. [8] designed two parallel graph generation algo-
rithms to generate scale-free networks, the parallel BA model
and parallel Kronecker model [14]. The parallel Kronecker
algorithm has higher degree of parallelism than the parallel BA
algorithm, but the structure of generated graph is heavily de-
pendent on the initial seed graph, thus it is more difficult to
configure desired properties. In the parallel BA algorithm, each
vertex is assigned to a process and each process is assigned to
one or more factions. A faction contains multiple processes and
a process may share multiple factions with any other process.
This algorithm is composed of two phases. In phase 1, each
vertex in a process determines which remote processes to con-
nect to, and send requests to the remote processes. The more
factions a remote process shares with local process, the more
edges the local process would link with it. Then in phase 2,
each process receives the request of establishing edges from
remote processes and determines which local vertices would be
connected based on PA. The number of factions and which
processes belong to which factions are left as degrees of free-
dom for users to determine. Since the edges added in phase 1
and 2 are all intra-faction, there is another parameter to estab-
lish some inter-faction edges with remote processes.

The main concern for this paper is that there are complicat-
ed parameters to tune in this system, including setting the num-
ber of factions, the variable size of each faction, the evolved
factions for each processor, incorporating inter-faction edges.
However in their paper they did not provide a suitable configu-
ration that can produce graphs with power-law distribution. As
will be shown in the experiment section, we re-implemented
their parallel BA algorithm and tried several configurations, but
found that power-law degree distribution property cannot be
attained in most of the configurations.

III.

In this section we introduce our method to parallelize the
BA model. We use the same notations as in Section2.C to de-
scribe parameters in the BA model: m,is the number of initial
fully connected vertices, and m is the number of edges
emerged from a vertex when it first joins the network. We
define #;as the i-th iteration and v; as the single vertex joining
the network in #; The total degree of the network at #; is denot-
ed as total(t;) = 2mi+2 CJ"°

To parallelize a BA model task of generating N vertices
with P processes, our goal is to assign N/P vertices to each of
the processors in sequence. Figure 2 shows an example of
generating a graph with 9 vertices divided into 3 partitions for
3 processors. Process 1, 2, and 3 are responsible of generating
the first three vertices (v; to v;), the next three vertices (v, to
vs). and the last three (v; to vg) respectively, while our goal is
to enable the parallelism of these three processors so they can

PARALLEL BA MODEL GENERATION ALGORITHM

create edges independently. v,, represents vertex x, v,, at time
¥, t,. Note that the newly added vertex in each iteration is
marked on the right-most position of each row. The original
BA model relies on the concept of PA, which requires the later
vertex (e.g. vertex 9) to obtain the degree information of all
other vertices (e.g. vertex 1~8) before determining which ver-
tices it should attach to (i.e. the higher degree the better
chance). In general, the PA property conflicts with the paral-
lelism framework. For instance, to perform PA for v4 when it
first joins the network, we need to know the degree of vertices
v; to vs. Unfortunately such information is not available be-

cause those vertices themselves are being processed in parallel.

Even if some vertices finish the generation process earlier,
their degree information can hardly be passed to the other pro-
cessors due to high communication cost between processors
during parallelism.

A. The parallel BA Approach Overview

In this section we propose a method that allows independ-
ency among link generation of each vertex. Our goal is to use
only O(m*N/P) of memory and adding an edge with
O(logN)of time

- i Iterations
Sty @ computedin
=1, (;]@(E)@ a Partition 1
t=t; L @f@
t=t, @ 1212 Partition 2
- tE @ \@ \,@
t=t, f@ "@ :’vg @ Partition 3
t=t; e »®
SN ANZNZ s @

Verticesin Partition 2 Partition 3
Partition 1

(a) Initial product (b) external product (c) internal product

Figure 2. Generating a graph of 9 vertices divided into 3
partitions in the BA model, the colored vertices are new
vertices

t= ty Notation of degree incremental terms
forvertexv, fromtimet, tot,
ECumbDeg(t, v,) / ECumDeg(t, v,)
t=t, =[If.,(1 + m/total(t;))

Figure 3. Explanation of graphic notation in Figure 2.

As mentioned in section 2.C, PA depends on knowing the
the accumulated degree of each vertex is known. Unfortu-
nately, similar to the degree information, the accumulated de-
gree of vertices cannot be obtained when PA is conducted in
parallel.

Given the accumulated degree is unknown, we propose to
generate the “expected accumulated degree” for each vertex in

232

each processor. The expected accumulated degree for a vertex
v at iteration ¢ is denoted as ECumDeg(t;, v).
In Section 3.B we will prove that

ECumDeg(t;, vi) = total(t;)* H’l—k

With this equation we can calculate the expected accumu-
lated degree of any vertex at any iteration in any graph parti-
tion, independent of degree information from other partitions.

In the example shown in figure 2, to introduce vy into the
network, we can naively apply (1) to calculate accumulated
degree of v; to vy at iteration 7y, and then for each new edge,
we have to generate a random degree and run linear scan to
find the vertex to attach it to. Unfortunately, to compute
ECumDeg(ty, v;), the term (1+m/total(t;)) would have to be
multiplied for 8 times (each with different t;), and similarly, 7
times for ECumDeg(ty, v;), and so on. That says, in order to
add a link, we need to calculate the estimated accumulated
degree for all N vertices requires the time complexity O(N?)
and space complexity O(N). It becomes computationally in-
tractable when N becomes larger

Trying to solve the efficiency problem when identifying
the vertex for PA, we found that it is not necessary to generate
the ECumDeg for every vertex. Instead of applying linear scan
to find the vertex to attach a new node to, we use binary search.
Take the example in Figure 2, suppose the vertex with accu-
mulated degree closest to but smaller than a random number R
is v,, we can first generate ECumDeg(ty, v,) and check whether
R is larger or less than it. If R < ECumDeg(ty, v,), we can than
generate ECumDeg(ty, v;) for comparison, and the process
continues until the target vertex is found. The target vertex can
be found in O(logN) steps. By applying binary search, we can
reduce the time complexity of PA from O(N) to O(NlogN).
The space complexity is O(1) since we compute ECumDeg(t;,
v;) on the fly and do not store it.

Next, we further reduce the complexity of PA by catego-
rizing the multiplications into three types: initial product, in-
ternal product, and external product, and cache the pre-
processed values. Figure 2 presents a diagram showing how
each vertex’s degree changes when new vertices are being
added. As will be shown in section 3.C, the internal and exter-
nal products can be generated in constant time using cache
technique. In section 3.D, we further propose an approximat-
ing algorithm that reduces the initial product to O(1). Eventu-
ally, we can significantly reduce the complexity from O(N?) to
O(logN). Below we provide detail description and formulae
about the proposed methods.

(1+m/total(t;)) (1)

B. Expected Value of Accumulated Degree

We propose to estimate the accumulated degree of nodes
for PA because it can be generated without knowing the at-
tachment outcome from other vertices.

ExpDeg(t;,vi) = ExpDeg(ty,vy) Hl:k] (1+m/total(t))) (2)

(2) is the recursive formula to express the expected degree
for a specific vertex with id v, (i.e. the k-th joined vertex) in a
specific iteration #. The total degree of at j-th iteration in the

BA model is total(t;)= 2mj+2 C;"O, since the total degree is

2C§”° at the initial state (¢ = 0) and every new vertex comes

with degree of m. A vertex’s degree gain on average m multi-
plies the proportion of the vertex’s to the current total degree.
The expected degree of a vertex k at iteration j is notated as
ExpDeg(t;, vi), and we can construct the recursive equation as:

ExpDeg(t,,v,)

m* ExpDeg (1, ,,v;)
total (1)

= ExpDeg (t,.,,v 1 +m/ t0tal (1)

= ExpDeg (¢,,v,)I_I:k1 (1+m/ tolal(t,.))

where ExpDeg(ty, vi) = mg— 1 if k=0, or m otherwise.

As we have mentioned previously, PA can be achieved by
the accumulated degree of vertices as well, and the expected
accumulated degree of vertex vy at iteration ¢ is defined as

ECumDeg(t;, vi) = Zj;l ©

The reason we prefer using accumulated degree than the
original degree of vertices is that then we do not really need to
generate the expected degree of each individual vertex. We
can use the equation we prove in Lemmal to generate the ac-
cumulated degree.

i1
Lemmal. ECumDeg(t;,vy) = total(t;)* H'::k (1+m/total(t;))

Proof.
From (2)(3),

ECumDeg(t;,v;)
k
= zizl ExpDeg(tj 5V1)
- Z; ExpDeg(t,,v,)H:kl (1+m/total(t,))

=total(t,)* [|, (1+m/ total(1,))

Note that Lemma 1 tells us that the ECumDeg values can
be generated using only the total vertex information in each
iteration. In the extreme case, to generate ECumDeg(t;, v;), we
will need to execute multiplication j-1 times. That says, when
the total number of vertices N grows, the complexity of gener-
ating the accumulated degree for the 1% vertex approaches
O(N). From here on we define a query as the computation of
the accumulated degree of a node. Therefore, for an iteration i,
we need to query i-1 times (from v; to v;;) in order to perform
one PA attachment, while performing binary search allows us
to reduce the complexity from O(N) to O(logN). That is, over-
all it takes O(NlogN) time to create a link through PA in our
parallel framework. In the next section we will further discuss
how to reduce the complexity to O(logN).

= ExpDeg (t,_,,v,) +

ExpDeg(t;, vi)

C. Decomposing Expected Accumulated degree

To avoid heavy computation from calculating the expected
accumulated degree, we exploited two ideas. The first idea
lies in reusing the result of computation. For example, we may
query the accumulated degree of the same vertex in different
iteration, ECumDeg(t;, v) and ECumDeg(t;.4, vi). Since both

233

requires the value of H]—1 (1+m/total(t;)), we can cache such

intermediate values to avoid re-calculating every term in every
query.

The second idea is to exploit the parallelism to calculate
the product of the term /+m/total(t;). Here we use Figure 2 as
an example. Assuming the vertex vy is just joining the network
and we need to establish its link. We need to generate ECum-
Deg(ty,v;), which is represented as vio in Figure 2.

We decompose H: (1+m/total(t;)) into three parts:
1) Initial product: the part of product in the partition where

the queried vertex is generated. In this example, I—[2

(I+mltotal(t,)).

2) Internal product: the part of product of terms within the
8

i=6

i=1

currently generated partition. In this example, H

(1+m/total(t))).
3) External product: the part of product from other parti-
tions which is multiplied across the whole partition. In this

example, H_5_3 (1+m/total(ty)).

In Figure 2 we marked the three products in the example of
querying expected acculumuted degree at .

Internal product can be easily calculated and cached while
going through generation iterations in one partition. Note that
the internal product terms to be multiplied in each process is
identical (e.g. for process 3, ECumDeg(ty v;) / ECumDeg(ts v;)
= ECumDeg(ty v;) / ECumDeg(ts v,)=...= ECumDeg(ty v;) /
ECumDeg(ts, v;)= [1-,(1 + m/total(t;)), therefore we can
calculate it once and reuse it using cache. Eveutally it takes
only O(1) to generate this number.

The external product represents the multiplications associ-
ated with vertices of other partitions. For example, for v,y, the
multiplication of v,, to v, is considered as an external product.
In general, for partitions that join later, the external product
represents more terms. Take Figure 4 for example, for parti-
tion 5, its external product equals to E2*E3*E4 and for parti-
tion 4 it is E3*E4. Here we have realized that there are total of
P?/2 such E; blocks. If we can pre-calculate in parallel and
store them in the cache of each partition, the external product
values can be generated in constant time as well. Note for each
query, every block except the top one (i.e. initial produce) and
bottom one (internal block) are considered as part of the exter-
nal block.

The time complexity to cache external product is O(P)
while space complexity is O(P). With this cache, we can ob-
tain external product in O(1) while being queried.

Unlike internal and external products, initial product for
every vertex being queried in the partition has different prod-
uct value. Neither caching initial product for every vertex, nor
calculating initial product for every query is tractable . There-
fore, we choose to apply approximation to initial products
which will be shown in the next section.

Our approximation generates the initial products in O(1)
time. In a nutshell, by using caching and approximation tech-
niques, we are allowed to reduce the time complexity of each
query to O(1).

Preprocessing Generation process of,Paniticn 5
OOO t=t, ® lterations .
e1[G0t O o
t=t;
Ooopanmanz =, (000 | @ Partition 2
E2| O t=t; g2 OQOC| O@
[ooo‘”m“ss‘“’ -ty [ooo 500
Q00 t=t; O00O[00| @ iti
Es[OO0 rocasns £t E3[OOO E{goo o® Pertons
[e]@] t=t, 00 o0 00e
=ty % * 000|@ i
E4[8 Partition 4 t:tij E4[888 EA@%% E{OO ol oe Partition 4
8aarm==r| . 4 833 4566100 0| coe
QOpartins |1, QOO QOO QOO QOO | @ Partiions
E5| OO Pmcessgrf, =ty QOO| OO0l 0OCQ|000|0®
OO t=t; 000]| OOO0| OCO|000|00C®
Vertices in~ m e A e
Partition1 Fartition2 Partition3 Partition4 Partition 5

Figure 4. Computing of

partition 5

external product in process

D. Approximation and Partial Caching of Initial Product

For initial product, every vertex in the partition results in
different product value. The first vertex of each partition re-
ceives N/P products, and N/P-1 for the next vertex, finally the
value for the last vertex of each partition is one. If we cache
initial product of all vertices in the same partition, the compu-
tation time is only linear of the partition size (number of verti-
ces of the whole graph divides by number of partitions). How-
ever, to cache the initial product, we have to store the initial
product of all vertices in each partition, which takes O(N),
which is not very realistic as we assume each partition has
only O(N/P) caching space.

Therefore we propose a fast approximation for the value of
initial product. The product of terms of (1+m/total(t;)) starts
from ¢ to ¢;,,, respectively, representing the start and end itera-
tion of the initial product.

Hj::’(l +m/ total (1,)) = 1+ d /(t, + CJ° | m)
The following is the process we obtain such approximation:
[T+ m torai(e) =TT+ mi@mi+ 2¢5m))
_ 2j+C Imy+1, L 2(j+d+C /m)+1

2(j+C)° /' m) 2(j+d+CJ° /'m)

_ 2+ ”*Ztm,+1 (4)
Ztstart 2tend

_ 3/2%5/4*7/6*..%(2¢,,+1)/2t,, 5)
3/2*5/4*7/6*... %2t . /(2t,,, —1)

_N2/m\2,,
B 2/7[02tstart

= i e =1+ 1 +C3 [m)

In (4) we apply the following substitution to make it simple

=j+C)"/m

t,,=j+d+C)/m
In (5) we multiply the term below which is equal to 1

(6)

5 tart

234

3/2%5/4%7/6% %2, (21, — 1)
3/2%5/4%7/6%..*21,, N2t 1)

Then (6) we apply the following equation of Wallis product

[16] for m.

This equation is true if j is infinite, or the error is known to be
O(1/j) from Stirling’s approximation. [17]
H 2i 2i) 22446688

=21 2i+1’ 13355779 2

The following are detailed induction for Wallis product substi-
tution in (6).

EEZ* %k (2tend +1)

2 4 6) 2tend

_ 133557, @ty —D,(Ct,+D
224466 2;W, 2

end 2¢
\/ Hk'(2k l 2k 1) (end

~2/7\2t,, (7)

Similarly,
357, ,
———=%_ v =2/ 72t 8
2 4 6 (2t3mrt _) start ()

Finally we obtained the approximation.
H:}_" (14 m/ total (t,)) = 1+ d (1, + C° | m)

To further discuss the error from this approximation, by
Stirling’s approximation, result of (7) becomes

JQ/ A/ 1+ 00/ +d))\ 21,

and (8) becomes

JQ/ImA1+00/)2,

So we consider the error in (6)
JQ/m)(A+00/ j))42t,,
JeImA+01/ +d) 2,

0 1+1/j
1+1/(j+d)
— tend \/0(j+d+(]+d)/]J
tc)‘art

j+d+1
= toa /L JOUH(d]) +d +1))

=t it (1+0(+d /(> + jd)))"”

In this approximation we obtained an error term of
(1+0(d/(*+jd)))"*. After the second partition, d < j sustains
since maximal value of d is N/P, the size of one partition and
from the second partition, j is larger than the size of one parti-

lend
t

start

172
or

tion. So the error term can be bounded as (1+O(1/)))
(1+O(P/N))'™ for partitions after the second partition.

However, this approximation does not work well in the be-
ginning partitions. So we calculate and cache the exact initial
product value for beginning partitions. We apply approxima-
tion only to the later partitions. With this approximation, parti-
tions that we have to cache the initial product value reduce
from all partitions to only the beginning partitions. We leave
the number of partitions to cache as a parameter in the system.
As a fact, in our experiment the approximation is almost pre-
cise enough to cache only the first partition so that the power-
law degree distribution is reserved.

Since we can calculate accumulated degree by composing
initial product, internal product, and external product, per-
forming PA for each new coming vertex can be parallelized.
We implement our algorithm in MapReduce.

E. MapReduce Algorithms

Table 1 shows the symbols and functions we use in our al-
gorithms. Table 2 shows the pseudo code of our algorithm and
table 3 presents the complexity analysis. We design the algo-
rithm into one MapReduce job. In both of Map and Reduce
phase, we use a single input number as the process id. Note
that in our example in Figure 2, we didn’t describe the details
to handle initial vertices in the BA model for simplicity, here
we will include them.

In Map phase, each processor calculates the external
product belonging to its partition and send the result as a key-
value pair to each process. The key is target process id, and the
value contains source process id and the partial external prod-
uct.

In Reduce phase, each processor generates vertices with id
it is responsible for, performing PA by calculating expected
accumulated degree to build edges. Since in the first partition
(pid=0) there are m, initial vertices, we handle it as special
cases in line 4, 13, 15-18. At the beginning of Reduce phase,
in line 1,2 it receives partial external products from all other
processors and calculate external products in line 5-8. Then in
line 9-13 initial product is cached according to C, the parame-
ter of number of partitions set to cache. In line 19-28, for each
iteration 7, one new vertex is joined and attaches edges with m
existing vertices. Note that we use the iteration number to as-
sign id to a vertex because only one vertex is added in every
iteration. In line 20 the internal product is accumulated with
the progress of iteration. In line 21-25, for each edges to be
added, a random number R is generated to perform PA. In line
23-25, binary search is conducted to find which vertex in the
known partition should be attached. In line 26 we handle the
case of choosing initial vertices with equal probability.

In the binarySearch function, firom and to are the candidate
vertices with minimal and maximal vertex id. Line 1 shows
the condition of continuing searching when there are at least
two candidates. Line 5-7 handles the case when internal prod-
uct overlaps with initial product. We set initial product to 1
and remove not used part in the latest internal product. In line
8-9, the queried vertex is in a partition whose initial products
are cached. In line 10-13 it handles the normal case that we
assign latest internal product and approximate the initial

235

products with the formula in Section 3.D. In line 14 we calcu-
late ECumDeg. In line 15-18 we compare ECumDeg with the
target accumulated degree and decide the interval to search for
next loop. Finally we take firom as the return value which pre-
sents the vertex id chosen to be attached with the new generat-
ed id.

F. Complexity Analysis

In Table 3 the complexity is presented in the aspect of one
processor (a mapper or a reducer). In Map phase, the input
size is O(1) since for a mapper it reads in a single number as
the process id. The time and space complexity in Map is the
number of vertices in a partition, O(N/P). The Map output size
and Reduce input size is O(P) partial external product to send
to or to receive from every other partition.

In Reduce phase, in line 5-8, it spends O(P?) time to calcu-
late external products and needs O(P) space to cache them. In
line 9-13 it spends O(C*(N/P)) time and space to calculate and
cache the initial products for first C partitions.

Note that in our analysis in Section 3.D, the error can be
bounded (1+O(P/N))"? if we set C=1. In line 19-28, it com-
putes O(m*N/P) edges, and thus using space of O(m*N/P) to
store the output edges. For each edge, it spends time of O(P)
to determine which partition the target vertex falls in and
spend time of O(log(N/P)) to perform binary search in one
interval partition. As to the Reduce output size, each process
output m edges for each of the O(N/P) vertices.

TABLE L SYMBOL AND FUNCTION
Symbol Definition
m the number of edges to be added for each iteration
my the number of vertices in initial state
C the number of partitions to cache exact initial
product
N the number of vertices to be generated
P the number of processes (the number of graph
partitions)
partSize N/P, the number of vertices in one graph partition
pid the partition id
partialExt the partial external product from single partition

to compute external product
vector of partial Ext

vector of internal product
vector of external product

partialExt vec
internal_vec
external vec

initCache vector of exact initial product cache

external external product

internal internal product

initial initial product

R random() * total(t-1), accumulated degree of the
vertex to be linked with the new vertex

inPart the partition where the queried vertex locates in

from the lower bound of search interval

to the upper bound of search interval

t end the last iteration in the queried partition

random() random generate a number within [0, 1]

sqri(t) square root of value ¢

total(t) 2mt+2C(my,2), total degree of the graph in time ¢

local(t) (z-1) mod partSize + 1, the serial number of vertex
t in the partition. 1 < local(f) < partSize

real(t) t+my— 1, the real vertex id of vertex 7 after take

initial vertices into consider

TABLE II. THE PARALLEL BA ALGORITHM

The Parallel BA Algorithm

Map

Input: single number represents pid
Output: (key, value)=(p, [q, partialExt])

Reduce Input: (key, value)y=(p, [q, partial Ext])

Output: output graph in edges

Map

1 pid < input value

2 partialExt — 1.0

3 for ¢ = pid*partSize+1 to (pid+1)*partSize

4 partialExt «— partialExt * (1+ m/total(t-1))

5 for p=0to P-1

6 output(p, [pid, partial Ext]);

Reduce

1 For each values pair [g, partialExt] gathered by key p

2 partialExt_vec[q] «—partialExt

3 pid «—p

4 if(pid = 0) output initial edges // initial vertices

5 for i =pidto 0 // calculate external product

6 externalli] < 1.0

7 for j = pid to i+1

8 external_vec[i] < external_vec[i] * partialExt vec[j] ;

9 forp=0to C /| caching initial
product

10 initCache[(p+1)*partSize] = 1.0

11 for 1= (p+1)*partSize -1 to p*partSize +1

12 initCache[t] = initCache[t+1] *(1+ m/total(t))

13 if(p = 0) initCache[0] « initCache[1] * (1 + m / total(0))

14

15 if(pid=0)

16 internal_vec[local(1)] <— 1 +m/ total(0)

17 else

18 internal _vec[local(1)] < 1.0

19 for t = pid*partSize+1 to (pid+1)*partSize // generate vertices

20 internal_vec[local(t)] <« internal vecl[local(t-1)] * (1 +
m/total(t-1))
//update internal product

21 for i=0to m-1

22 R = random() * total(t-1) //Get random R accumulat-
ed degree

23 from — 1

24 to — t-1

25 v <« binarySearch(R, from, to, external vec, inter-
nal_vec, initialCache, t)

26 if(v=0) v « randomly assign a value from 0 to m-1

27 else v « real(v)

28 output([real(?), v]);

binarySearch(R, from, to, external vec[P], internal vec[partSize],
initialCache[partSize*C], t)

[A S

0

while(to — from >1)
mid — (from+to)/2
inPart «— mid mod partSize
external «—external _vec[inPart]
if(inPart = pid)
internal —
nal_vec[local(t))/internal_vec[local(mid)];
initial — 1.0;
else if(inPart < C)
initial < initialCache[mid]
product

inter-

// assign cached initial

236

10 else

11 internal < internal _vec[local(t)]

12 t_end « (inPart+1) * partSize

13 initial «— sqri(1+ (t_end — mid)/(t+C(my, 2)/m))
14 ECumDeg « total(mid)*initial*external*internal
15 if(ECumDeg >R)

16 from — mid

17 else

18 to «— mid - 1

19 end while

20 return from

TABLE III. TIME AND SPACE COMPLEXITY

Stage Time Complexity Space complexity
Map Input o(l) o(l)
Map() O(N/P) O(N/P)
Map Output/
Reduce Input o) o)

. O((NTPy* *
Reduce() (m*log(NY+C) + P*) O((N/P) *(C+m) + P)
Reduce % %
Output O(m*N/P) O(m*N/P)

IV. EXPERIMENTS

The goal of this experiment is to examine whether our
model satisfies the power-law distribution. We evaluate the
scalability and efficiency on our model. Our experiment runs
on a cluster composed of 16 machines of total storage 4.7 TB
and each machine has 8 processors of Intel(R) Xeon(R) CPU
X5550 @ 2.67GHzs and 32 GB of memory. Each computing
vertex executes 8§ map/reduce tasks for 8 partitions and each
task using 2GB of memory. In the following experiments, we
set the number of initial vertices, m, = 3, the number of edges
to add for each iteration, m = 5, and the number of partition to
cache for initial product as 1.

A. PROPERTY OF POWER-LAW DEGREE DISTRIBUTION

We check the power law property of the generated graph
with 32 million vertices which is separated into 128 partitions.

We use the maximum likelihood estimation to fit the curve
of degree distribution of the generated graph, where degree
distribution is expected to correspond the form of p(x) = Cx“
with o being close to 3. As to test the closeness of fit, we
choose symmetric KL-divergence, which indicates better fit
with lower value. In Figure 6, the curve fit is observed corre-
sponding to the power-law distribution form of p(x) = Cx* with
a value -3.072330 which is close to -3 with symmetric KL-
divergence 0.096542. We generated 10 graphs by our algo-
rithm and the mean and variance of o are -3.072382 and
2.5867*10” and the mean and variance of symmetric KL-
divergence are 0.095940 and 1.2997*10°®. This results shows
that graph generated by our BA model algorithm consistently
reserves the property of power-law degree distribution in the
BA model.

We also evaluate the power-law degree distribution proper-
ty of graphs generated with Yoo’s parallel BA algorithm [9]
using the same graph size and number of partitions. Our ex-
periment confirms the conjecture mentioned in Section 2 that

due to large set of parameters in their model, the power-law
property can be very sensitive to those parameters and not
very stable. Unfortunately the paper did not mention an ideal
setup for the parameters, so we have tried several.

1.0E+00 : : : : :
| 100 1000 10000100000
1.0E-02
=
| 1.0E04
fim)
2
& 1.0£06
1.0E-08
Degree

Figure 5. The degree distribution of the graph generated by
our algorithm

We tried combinations of three kinds of parameters:

1) Faction distribution: the frequency distribution of pro-
cesses in factions. We tried linear distribution, normal distri-
bution, and exponential distribution.

2) Number of Factions

3) Inter-faction probability: the probability of establishing
an inter-faction edge.

The parameter sets we tried along with the result a value
and symmetric KL-divergence are listed in Table 4. The best
fit configuration we tried is to set the number of factions as 32,
probability of inter-faction edges as 0.2, and the frequency

distribution of processes in factions as exponential distribution.

The degree distribution of the generated graph is shown in
Figure 6. It has o value -3.169821 and symmetric KL-
divergence 0.162165. In comparison, our algorithm still fits
better. Furthermore, in their framework the higher-frequency
process would receive more messages which cause more
memory space usage and imbalanced computation load.

TABLE IV. THE PARAMETERS WE TRIED FOR YOO’S ALGORITHM AND
EVALUATION

Iiactl.'on . 1:;1 mber Inter-fa.c.ﬁon a value lS()meetFIC

distribution Factions probability Divergence

Linear 12 0.2 2.595655 0.862763
Linear 12 0.4 2.597332 0.851255
Linear 32 0.2 2.640092 0.543105
Linear 32 0.4 2.658891 0.509376
Normal 12 0.2 2.904816 0.744332
Normal 12 0.4 2.858247 0.740452
Normal 32 0.2 3.695472 0.329612
Normal 32 0.4 5.011678 0.426804
Exponential 12 0.2 3.012600 0.401900
Exponential 12 0.4 2.993955 0.385739
Exponential 32 0.2 3.169821 0.162166
Exponential 32 0.4 3.456464 0.183178

237

1.0E+00 : . .
] ‘\ﬂ 100 1000
1.0E-02
=
ﬁ 1.0E-04
[=]
&
1.0E-06
1.0E-08
Degree

Figure 6. The degree distribution of the graph generated by
Yoo’s algorithm

The parameter setup in our algorithm is very
straightforward. Besides the original parameters of the BA
model, we only have to determine the number of partitions to
cache the exact value of initial product. Moreover, our
algorithm has better load balance because every partition
generates the same number of vertices and edges.

B. TESTING SCALABILITY OF THE PARALLEL BA MODEL

To test the scalability and efficiency of our parallel algo-
rithm for the BA model, we experiment on how it scales up
with the graph size and number of computing nodes.

In the experiment of scaling up graph size, we fix the
number of computing nodes at 16 and scale up the size of the
graph to be generated to observe variation of execution time.
As shown in Figure 7, the execution time has linear relation-
ship with the graph size. The maximum graph was generated
in only 1149 seconds has 1,792,000,000 vertices and
8,960,000,000 edges with data size 177GB.

In the experiment of scaling up computing nodes, we fix
the graph size to generate at 128 million vertices and increase
computing nodes to test speedup and efficiency of our algo-
rithm. Speedup using P processes is Sp=T,/Tp, where T; is
runtime using single process and 7p is runtime using P pro-
cesses. Efficiency using P processes is defined as Ep= Sp/P,
where Ep =1 is the ideal efficiency that there is no overhead
during parallelization. Figure 8, 9, 10 shows the experiment
result of runtime, speedup, and efficiency when we using 16
computing nodes, the speedup is about 9.6 and efficiency is
about 0.6. The results show that our algorithm has good scala-
bility and efficiency.

There is no big difference between runtime of our algo-
rithm and Yoo’s algorithm since in both algorithms writing
output data into the distributed file system dominates the
runtime.

1400
1200
1000
800
600
400
200
0

Runtime (sec)

/
L
o
-/
”ﬂ’

T
0 256 512 768 1024128015361792 2048
Graph Size (1M vertices)

Figure 7. Experiment for runtime with 16 computing nodes
when increasing graph size

1200
1000
800
600
400
200
0

Runtime {sec)

\
\

N

\

. T'—-Q-—H

0 2 4 6 8 10 12 14 16 18
Number of Computing Nodes
(8 processors each)

Figure 8. Experiments for runtime generating 128 million
vertices to test scalability

12
10
S s
T 6
g 2
(75]
2
0

P
ad
/

o
v

T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18
Number of Computing Nodes

(8 processors each)

Figure 9. Speedup of generating 128 million vertices

1.2

1
0.8
0.6
0.4
0.2

0

Efficiency

&

e N

0 2 4 6 8 10 12 14 16 18
Number of Computing Nodes
(8 processors each)

Figure 10. Efficiency of generating 128 million vertices

238

V. CONCLUDING REMARKS

To parallelize the BA model, we proposed an idea of ‘ex-
pected accumulated degree’ for preferential attachment. We
further exploit several novel ideas to further reduce the com-
plexity. We can then parallelize the process in MapReduce and
create billion-size networks that satisfy power-law distribution
in minutes.

We believe some of our proposed ideas such as approxi-
mating the expected degree values can be applied to other par-
allelism tasks in social network, which becomes our future
work.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” OSDI, 2004.

[2] “Hadoop information,” http://hadoop.apache.org/

[3] P. Erdo”s and A. Re’nyi, Bull. Inst. Int. Stat. 38, 343
(1961).

[4] D. Watts and S. Strogatz (1998): Collective dynamics of
small-world networks. Nature, 363:202-204.

[5] R. Albert; A.-L. Barabasi (2002). “Statistical mechanics
of complex networks”. Reviews of Modern Physics T4:
47-97.

[6] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system. Data Mining, IEEE
International Conference on, 0:229-238, 2009.

[7] Hung-Che Lai, Exploiting and Evaluating MapReduce
for Large-scale Graph Mining

[8] Douglas Gregor, Andrew Lumsdaine. The Parallel BGL:
A Generic Library for Distributed Graph Computations.
In Parallel Object-Oriented Scientific Computing
(POOSC), July 2005

[91 Andy Yoo, Keith W. Henderson. Parallel Generation of
Massive Scale-Free Graphs. CoRR, 2010.

[10] Cloud9: A MapReduce Library for Hadoop,
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/con
tent/patterns.html

[11] Jimmy Lin and Chris Dyer, “Data-Intensive Text Pro-
cessing with MapReduce”

[12] Marc Snir, Steve W. Otto, David W. Walker, Jack Don-
garra, Steven Huss-Lederman (1995) MPI: The Com-
plete Reference

[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: Are-
cursive model for graph mining. In SDM, 2004.

[14] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Fa-
loutsos. Mathematically tractablegraph generation and
evolution, using kronecker multiplication. In Proceed-
ings of European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2005

[15] NVIDIA. 2007. CUDA Technology,
http://www.nvidia.com/CUDA.

[16] Sondow, Jonathan and Weisstein, Eric W. "Wallis For-
mula." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/WallisFormula.html

[17] Weisstein, Eric W. "Stirling's Approximation." From
MathWorld--A Wolfram Web Resource. http://mathwor-
ld.wolfram.com/Stirlings Approximation.html

