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Abstract. This paper proposes a novel unsupervised learning approach for 

Power Analysis – a form of side channel attack in Cryptanalysis. Different from 

existing works that exploit supervised learning framework to solve this prob-

lem, our method does not require any labeled pairs which contains 

{X,Y}={key, power-trace} information, but is still capable of deciphering the 

secret key accurately. Besides proposing a regression-based, unsupervised ap-

proach for this purpose, we further propose an enhanced model through exploit-

ing the dependency of key bits between different rounds functions in the en-

cryption algorithm to obtain more efficient and accurate results. Our experiment 

shows that the proposed method outperforms the state-of-the-art non-learning 

based decipherment methods significantly. 

Keywords: Power analysis, side channel attack, machine learning, unsuper-

vised learning, regression. 

1 Introduction  

In cryptography, side channel attack is a kind of attacking strategy that takes ad-

vantage of information gained from the physical implementation of a cryptosystem to 

obtain the cryptographic keys of the device. One major advantage of side channel 

attack lies in its non-intrusive characteristic that allows the attacker to obtain side 

information that facilitates the decoding of the key.  Side channel attack also enjoys a 

much lower computational complexity than cryptanalytic-theoretical attack, most of 

which is of super-polynomial complexity. For well-designed ciphers, side channel 

attack might be the only feasible way to recover the key to the device in practice.  In 

this work we would like to introduce a machine-learning based attacking strategy for 

side channel attack. 

We focus on a specific type of side channel attack called power analysis, but in 

general the proposed technique can be applied to several other kinds of side channel 

attacks such as electromagnetic attacks and acoustic cryptanalysis. Power analysis is a 
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form of side channel attack, which the power consumption of a cryptographic device 

(e.g. a smart card) is analyzed to hypothesize the cryptographic key of the device. As 

some cryptographic devices are implemented using semiconductor logic gates and 

current flows across the silicon substrate when change is applied to or removed from 

the gate, it is not hard to imagine that through examining the power consumption of 

the device externally it is possible to hypothesize what kind of operations (i.e. macro-

characteristics) are executed on the device chip. One can then use such information to 

guess the secret key that corresponds to the hypothesized operations.  

Le (2006) classified these techniques into two categories: attacks without reference 

devices and attacks using reference devices. With a reference device, it is possible to 

arrange different keys and plaintexts to feed into the device, and record the output 

cipher texts and power traces for further analysis. Without the reference device, while 

the outputs can still be measured, we have no idea what are the inputs (i.e. keys). 

Hence, attacks using reference devices is like the supervised machine learning scenar-

io, where the training data are labeled with known keys while no (input, output) rela-

tion is provided for the other case. Therefore attack without reference devices is con-

sidered a much harder unsupervised problem. 

In this paper, we propose an efficient, extensible unsupervised framework of power 

analysis based on machine learning techniques. We model the decipherment process 

as identifying a key that minimizes the training error of a given time stamp, which can 

be done unsupervised without labeled training data. Besides, the approach can be 

viewed as parameter estimation in abstraction, where the parameter domain contains 

all possible key candidates. To tackle sparse-training situation, we further propose a 

technique to exploit the dependency of multiple rounds functions in the encryption 

process. Finally we perform experiments in datasets obtained from DPA contest to 

show that the proposed method outperforms the competitors significantly. 

The contributions of this paper are as follows. First, to the best of our knowledge, 

there has not yet been any work aiming at exploiting machine learning approaches to 

perform unsupervised side channel attack. Here we show that with careful design, 

simple machine learning techniques such as regression models can be exploited to 

tackle a cryptography problem. In this work, we hope to send an encouraging message 

to ML researchers on how the bridge between machine learning and cryptography can 

be established by demonstrating how the side-channel attack problem can be conduct-

ed from learning point of view. 

2 Related Work 

The concept of side channel cryptanalysis was first proposed by Kelsey (1998), 

which describes the use of side channel information such as current consumption 

leaked from imperfect implementation to facilitate breaking the cipher system. It is 

conceptually different from traditional cryptanalysis. That is, side channel cryptanaly-

sis uses the correlation between plaintext and cipher text to guess what happens inside 

a cryptosystem, and further infer the key of the system. Side channel attack takes the 

fact that most implementations of a cryptography system are not perfect, and could 

inevitably leak some side channel information. The side channel information can be in 

the form of, for example, the electromagnetic (EM) gauged from CMOS device 



(Agrawal et al., 2002), or the electric current in standard block ciphers (Kocher et al., 

1999) such as what has been dealt with in Data Encryption Standard (DES) or Ad-

vanced Encryption Standard (AES). There are some other forms of power analysis, 

such as timing attack (Kocher, 1996), template attack (Chari et al., 2002), and acous-

tic attack (Backes et al., 2010). 

Analyzing the snooped data is a non-intrusive attack of a cryptographic implemen-

tation; and power analysis is one of the most successful forms of such attack. The key 

reason to the success of power analysis lies in that the power consumption of a device 

generally possesses some correlation to the intermediate values that can be produced 

based on the cipher algorithm. In other words, maximum correlation can be obtained 

given correct hypothesis on the key. Below we will discuss some popular approaches 

based on this concept including DPA (Kocher et al., 1999), CPA (Brier et al., 2004), 

and BS-CPA (Komano et al., 2010). 

Differential Power Analysis (DPA) is a type of attack that examines the power con-

sumption signals through exploiting statistic measures to retrieve the correct key 

which has the maximum likelihood of producing the observed power consumptions. 

Similar to DPA, Correlation Power Analysis (CPA) is based on the linear relation 

between the real power consumption of the device and the intermediate values from 

the encipher model; it can be regarded as a form of multi-bit DPA. Messerges et al. 

(2002) demonstrate that CPA is just another form under DPA divided by a normaliza-

tion factor. Built-In Determined Sub-Key Correlation Power Analysis (BS-CPA) is an 

enhancement of CPA that results in efficient trace usage. Whenever a sub-key is de-

termined in each S-box, the BS-CPA can pass such information to assist other S-

boxes to decrease the signal-to-noise ratio. In DPA contest 2008, BS-CPA has been 

proved to be the most effective method. We will later compare our method with it. 

In recent years, machine learning techniques have been playing an increasingly 

important role in attacking a cryptosystem. Bringing a marriage between machine 

learning and side channel analysis, Hospodar (2011) proposed a supervised learning 

architecture to attack an AES system by side-channel information. It regards the pow-

er consumption signal as an instance, divided the key bits into several binary labels 

and treats the problem as several binary classification tasks with Least Squares Sup-

port Vector Machine (LS-SVM) as the learner. The experiments show that LS-SVM 

is suitable for such purpose as it does a much better job than other approaches such as 

the template attack (Chari et al., 2002). A similar supervised approach is proposed by 

Lerman (2011).  

In practice, however, such labeled training examples are not available in most situ-

ations because it requires knowing the hidden key information in advance. Acknowl-

edging such fact, we design an unsupervised learning approach that follows different 

assumptions than the previous work. First, we do not assume that the label or ground 

truth (i.e. correct key) of the training data is known which is arguably a more realistic 

assumption for a decipherment problem. Second, the attacking scenarios are very 

different. In the LS-SVM case, reasonable amount of encrypted devices along with 

their encryption keys are required to establish the training corpus. In our case, only 

one single encrypted device with unknown key is needed. Given the above attacking 



scenario, we will compare our model with the CPA and BS-CPA, while the latter is 

the state-of-the-art. 

3 Methodology 

We start by interpreting the encoding process using Shannon's Noisy Channel Model. 

As shown in Figure 1, the inputs X to the channel contain a set of plaintext or known 

cipher-text (denoted as C={c1...cn}) and an unknown secret key (denoted as key), 

while the interaction of the inputs produces the observed outcome Y={y1...yn} that 

reflects a sequence of measured power consumption. Note that it is possible (and 

generally required for side channel attack) to use a variety of cipher-texts interacting 

with the same key to produce a set of observations. The noisy channel P(X|Y) can be 

considered as a black box that produces an output given an input. Given a fully ob-

served Y and a partially observed X with P(X|Y) unobserved, the goal then becomes 

to recover the missing part of X (i.e. the secret key) using Y and C. The problem can 

then be mathematically formulated as argmaxx P(X|Y). We can first use Baye's rule to 

decompose argmaxxP(X|Y) into argmaxx[P(Y|X)*P(X)]. This essentially tells us that a 

proper X should not only possess a higher chance to produce the observation Y, but 

also has a higher chance to occur among other X's. Here we assume no prior 

knowledge about X in a cryptography system, and consequently P(X) is uniformly 

distributed. In this problem, we are given a set of n instances as inputs 

X={xk=(ck,key), where k=1...n}, where ck is a known cipher-text with the correspond-

ing observation yk, but the secret key is unknown. Assuming the deciphering processes 

are independent for each cipher-text, the problem argmaxxP(Y|X) can be transformed 

to  

                                                      (1) 

Then it becomes obvious that with a faithful estimation of P(yk|ck.key), one can even-

tually solve (1) by enumerating all possible keys. Here, a faithful estimation of 

P(yk|ck.key) implies that among all possible keys (key1...keym), only the correct key 

(denoted as keyc) shall obtain high P(y|c,key) value. Mathematically, a faithful esti-

mation of P(yk|ck.key) should possess the following property: 

                                                            
                                            

In other words, incorrect keys should possess much lower probability of producing y 

than the correct one. After taking log on both sides, we can obtain  

   
 

                                                                  

                                                      

The above equation is reasonable as the power signature reflects only the interaction 

between the correct key and the cipher-text. Therefore, we propose a three-stage 

framework to solve this problem: 



1. Build m different learners ML1... MLm, each contains n instances (I1,...In) that cor-

respond to one single key: 

    {                                                 }         

 

 

Figure 1. The Framework. 

2. For each input instance (c, key), we generate a set of features f(c, key) to train the 

learners MLr. The generation of such features depends heavily on the backend 

cryptography algorithm. An example will be demonstrated in the experiment sec-

tion. 

3. We propose to model logP(yk|ck,key) using the inverse of training errors of the 

learners.  

Acknowledging the fact that P(yk|ck,key) represents how likely yk results from an 

interaction between ck and key, here we assume that the relationship between the 

input {c, key} and output y are learnable (i.e. low prediction errors) for correct key, 

and not learnable (high prediction errors) for incorrect keys. Therefore, the predicta-

bility of a machine learner has been used here to estimate the quality of a noisy chan-

nel. The channel corresponds to the right key should contain less noise and conse-

quently be more learnable.  Figure 1 illustrates the process. Next we assume the rela-

tion between trace sample y and features x generated from each pair of cipher-text and 

key candidate can be modeled simply as 

       

where n can be assumed as Gaussian noise as in (Prouff et al., 2009), and its density 

function can be written as 
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where   is the standard deviation of the noise. As a result, the weight vector w for 

each timestamp and each possible key candidate can be derived by ordinary least 

square (OLS). Furthermore, coefficients of determination are used to normalize dif-

ferent scales at different time stamps. 

Above we have explained how a supervised learning model can be exploited to 

solve such an unsupervised decipherment problem. However, for power analysis, 

there is still one more issue to be addressed. Although the outputs y for power analy-

sis can be regarded as a sampled time sequence {y1...yq}, truth is that for most of the 

features generated, only very few signal in certain particular time stamps of y reveals 

apparent relationships with respect to (c, key). That is, usually only the right combina-

tion of key (denoted as keyc) and time stamp (denoted as tc) possess higher learnabil-

ity than other time stamp. Therefore, instead of building m different learners, we pro-

pose to create m*q different learners (q represents the number of samples for each 

time sequence) and argue that the one with the best predictability does reflect the 

correct key and time stamp. 

3.1 Sub-key Breaker 

One major concern for such key-enumeration approach lies in the fact that there 

are exponentially many keys to try. To conquer this problem, we follow a commonly 

used strategy of CPA (Brier et al., 2004) to divide the key into several sub-keys ac-

cording to the permutation of inputs of substitution boxes (S-boxes). S-boxes are im-

portant components in many block ciphers to perform substitution and provide non-

linearity between cipher-texts and plaintexts. For instance, the length of key is 56 bits 

for DES; based on these 56-bit key, each round a 48-bit round key is derived and 

divided into 8 S-boxes (see section 4.1 for details). Generally each sub-key has certain 

physical meaning and we can extract features from it given some domain knowledge. 

Then we can apply the method proposed in 3.1 on each sub-key independently for 

better efficiency. 

3.2 Dual-round Approach for Multi-round Ciphers 

So far we have introduced our approach to obtain the secret key from power traces. 

The quality of the results depends significantly on whether there are sufficient exam-

ples (or traces) to learn from. Without sufficient training examples, by chance some 

incorrect key might possess high P(y|c,key) and create false positives under our 

framework. One practical method to determine whether there is sufficient trace is to 

draw the 'learning curve' that indicates whether the deciphered key becomes stable. In 

our experiments, we consider the deciphering process as completed if the results do 

not change after 100 additional traces are added. 

The method mentioned in 3.1 might not be as effective if the number of traces is 

not enough to reveal the correct key (or to eliminate the false positives). Experiments 

show that in multiple-round ciphers, the encryption process that affects the power 

signal in each round does correspond to one particular time interval. Therefore it is 



possible to generate multiple training instances based on information from different 

rounds. Remember in section 3.1 we have described how to break a longer key into 

sub-keys for analysis. In general these sub-keys are organized differently in different 

rounds. For examples, some bits might be grouped into the same sub-key in one 

round, and broken into several different sub-keys in another round. Truth is that for 

each round, some sub-keys can be deciphered easily (i.e. requires fewer traces to con-

verge to a steady results) while others require more training examples. Here we would 

like to further describe how one can fully exploit the side-channel information from 

multiple round ciphers given limited amount of traces. For Feistel ciphers with multi-

ple rounds such as DES, if we are given some information of dependency between 

sub-keys in different rounds, a modified version of our method can exploit the rela-

tions between these keys to improve the deciphering performance. The intuition be-

hind our idea is as follows: if a correct sub-key in one round is identified (i.e. pos-

sesses lower training error than most of other candidates), then we can propagate such 

information to other learners, and group the overlapped bit using the learned values. 

By doing such, the search space for other harder sub-keys is reduced, which alleviates 

the high demand for training traces and reduces the false positives.  

An example is shown in Figure 2. It is known that some of the key bits such as b0 

and b4 are used in both rounds, indicated by the connecting edges. Therefore, we can 

search for the key bits in these two rounds simultaneously. The difficulty of finding 

the correct key of the harder round (need more traces to break) can be reduced with 

the help of the easier one because of the increasing of signal-to-noise ratio when con-

sidering all cases at the same time. In dual-round approach, during training we first 

identify a set of S-boxes, called S-boxes set, whose bits overlapped with each other to 

some extent. Then within each S-boxes set, we train each of the S-boxes independent-

ly, but weighted-sum the errors of each to represent the quality of a particular assign-

ment of bits. The weight is determined by the inverse of the “number of S-boxes” in 

each round containing in this particular S-boxes set. That is, if an S-box set contains 

one S-box in round 1 and two S-boxes in round 2, then the weight for the round 1 S-

box is twice as much as that of the ones in round 2. Some values such as the normal-

ized error of S-box i of another round which can be pre-computed and stored for 

speed up. 

 
Figure 2. Example of key dependency. The endpoints of each edge have the same key bit. In 

other words, the key bits used in both rounds are overlapped.  
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4 Experiments 

We evaluate our models using the power consumption traces of the unprotected DES 

crypto-processor on the SecmatV1 SoC (System on Chip) in ASIC, which is provided 

by DPA contest 2008, which focuses on Differential Power Analysis like attacks. 

Here we select the first 1000 traces from secmatv1_2006_04_0809 for experiment 

with each trace containing 16 nominal DES runs. The raw signal of each trace looks 

like the one shown in Figure 3. To smooth the signal and eliminate apparent outliers, 

we take the average over ten original samples to become our sample for every power 

consumption trace in our dataset.. As the number of learners we need to create is pro-

portional to the number of temporal samples, here we choose to use only 20 samples 

per trace for efficiency purpose. Experiments show that we can still achieve high-

quality results based on only 20 learners. 

This experiment tries to address two issues. First, we would like to know whether 

our method can accurately identify the correct key. Second, given the correct key can 

be discovered, we want to compare our method with two popular non-learning based 

methods, CPA and BS-CPA, to see whether our method can find the correct key using 

fewer number of power traces (i.e. achieve the same quality using fewer data). For the 

second purpose, we gradually increase the training data size until the outputs become 

stable. Based on the rule from the DPA contest, the attack is considered successful if 

the correct key appears and remains unchanged for 100 consecutive trace additions. 

 

Figure 3. Average power consumption trace, containing 20003 samples. 

4.1 Feature Generation 

Here we first describe the encryption process of DES. In the encryption of DES, 

the plaintext is first permuted and divided into two 32-bit halves, L_0 and R_0. These 

two half-blocks are then processed by 16 identical stages called rounds. For each 

round, there is a 48-bit round key involved, which is a permutation of the original key 

and can be computed reversely. Hence, we can figure out 48 bits of the original key 

by revealing a round key and then the other 8 bits can be found by exhaustive search. 

In every round, the right half is expanded to 48 bits and XORed with the round key. 

Then it is split into eight 6-bit blocks and fed to eight S-boxes, each has a 4-bit output, 

and generates a 32-bit value which is then permuted again, XORed with the left half 

to become the new right half. For a typical implementation of the DES, the two half-



blocks keep the same addresses on the memory throughout the encryption. Therefore, 

after a round ends and before the next one begins, the register storing the right half 

must be replaced by a new value, which results in several bit flips and extra power 

consumption. By modeling the power consumption, we can derive the condition of 

the bit flips and eventually derive the round key. Because the eight S-boxes form a 

parallel structure, we can attack them one at a time. Each S-box is related to 6 bits of 

the round key and the four output bits are stored to some known addresses. 

We take the first S-box of the first round as an example. The right half before the 

first round, R_0, is known and the four output bits of the target S-box can be comput-

ed by assuming a hypothetical 6-bit value as the relevant part of the round key. There-

fore, we are able to find whether the bit flips for these four bits and can generate four 

features, each is 1 or 0, representing whether the bit flips or not. 

Thus, the first feature we extract is to compute the hamming distance, which 

measures the corresponding bits flip between the old and new right half of register in 

the first or the last round of DES (Kocher et al., 1999). The second feature is to com-

pute the hamming distance between the old and new left half of register in the first or 

the last round of DES (Almeida, 2008). The difference between left half and right half 

is that the left half inherits from previous right half directly and does not divide into 8 

S-boxes. Therefore, when we attack different S-boxes in a round, each S-box has its 

hamming distance value. Since the output of each S-box has 4 bits, the first feature 

value of each S-box is between 0 and 4. On the other side, the hamming distance of 

left half register is always the same in a round, because it inherits directly from the 

right half of previous round. Since there are 32 bits in the left half register, the second 

feature value of each round is between 0 and 32. In single-round approach, we extract 

those features in the last, or the 16th round, of DES. All traces and features are then 

normalized to zero mean and unit variance. 

4.2 Experiment of Single-round Approach 

In order to compare the efficiency of our model, we use CPA and built-in deter-

mined sub-key CPA (BS-CPA) (Komano et al., 2010) as competitive algorithms 

against our model. For each competitive algorithm we add 10 traces each time until a 

correct and stable key is found. As mentioned previously, we adopt the sub-key 

breaker to attack the sub-key (or S-box) one by one. Acknowledging the fact that the 

order of the traces to be added can affect the results as some training inputs are more 

representative, here we shuffle the order of traces each time and then average results 

from 20 different orders to obtain the average number of traces used for each algo-

rithm. We depict the average traces of each method in the left hand side of Figure 4. 

In some cases such as S-box3 or S-box7, our method gets worse results. The authors 

believe that it is caused by the noise in the current traces or overfitting; however, our 

learning-based method performs better than others in most of the cases. 



 

Figure 4. On the left hand side is average traces used for each algorithm, S-box of BS-CPA, 

CPA, and learning-based regression methods. On the right side is the comparison of our regres-

sion-based method and the dual-round approach. 

4.3 Experiment of Dual-round Approach 

In real world scenario, sometimes there are only limited numbers of traces availa-

ble. Therefore, we can resort to the dual-round approach that exploits extra multi-

round information. For DES, we exploit the first and the last rounds. That is, we ex-

plore key dependency between the first and the last of nominal DES round. Once we 

obtain a possible key candidate in one round with confidence, we can pass such in-

formation to the other round to reduce the search space of all possible key candidates. 

Before pursuing dual-round attack, we need to first observe the dependency of key 

bits, which can be derived from the encryption algorithm itself. For example, the bit0 

and bit2 of the S-box6 in the last nominal DES round do not have corresponding key 

bits in the first round. The bit1, bit3, bit4 and bit5 of S-box6 in the last round have 

corresponding key bit positions 35, 29, 34 and 24 in the first nominal DES round 

respectively. 

First round of S-box4                        First round of S-box5 

*   * *   * * * *   

 

 

 

*  *    

Last round of S-box6 

Figure 5. Key dependency between the first round of S-box4, S-box5 and the last round of S-

box6. 

The single-round results in Figure 4 show that S-box5 is the most difficult sub-key 

to attack, as it requires the most traces on average. If we can use the knowledge of key 

dependency from another round, it is possible to reduce traces required to attack S-

box5. Figure 5 shows the key dependency between the first round of S-box4, S-box5 

and the last round of S-box6.  We have realized that there are two overlapped keys 

between S-box5 in the first round and S-box6 in the last round, and another two over-

lapped bits between S-box6 in the last round with S-box4 in the first round. There-

fore, it is possible to propagate the key bits learned in an easier S-box (e.g. S-box4) to 



the harder ones. We realize such idea by considering the bits in these three S-boxes 

altogether, and use the weighted sum of the errors to evaluate the quality of certain 

assignment. Even though not all key bits has a corresponding mapping between the 

first and the last round, we still need to search all possible combinations of those non-

overlapped bits. The higher the key dependency, the more likely we can use fewer 

traces or training examples to decipher the key.  

4.4 Results of Dual Round Experiment 

Here we compare the dual-round approach with the single-round approach. We 

focus on deciphering the S-boxes in the last nominal DES round using the dual-round 

attack technique because we can easily compare the results with our single-round 

approach. 

Method Single-round approach Dual-round approach 

Used traces Avg. Avg. 

S-box0 82 76 

S-box1 101 82.5 

S-box2 97.5 101.5 

S-box3 118.5 115.5 

S-box4 99 70.5 

S-box5 121 89.5 

S-box6 104 89.5 

S-box7 117 112.5 

Table 1.  The experiment results of single-round approach and dual-round approach. 

The right hand side of Figure 4 shows the results of regression-based single-round 

approach and dual-round approach and Table 1 shows the numbers of average traces 

required for each S-box. Not surprisingly, the dual-round approach has better perfor-

mance than single-round approach in most situations. Such results demonstrate that 

dual-round approach can trim the search space to avoid the interference of some po-

tential false positives, because an incorrect key needs to perform well in both rounds 

to be selected as false positives, which is less likely to happen comparing with single-

round approach. 

5 Conclusion 

Side-channel attacks play an important role in cryptography. Despite that in theory, 

cryptographers can design provably-secure cryptographic algorithms, these algo-

rithms need to be implemented and carried out by computing hardware. The imple-

mentations can subject to side-channel attacks no matter how secure the algorithms 

are in theory. This is why many industrial and governmental standards such as FIPS 

(Federal Information Processing Standard), CC (Common Criteria), and EMV (Eu-

ropay, MasterCard, and VISA) require that compliant security products have various 

levels of countermeasure against side-channel attacks. It is therefore crucial to under-

stand how efficient such attacks can be with advanced techniques from, e.g., statistics 

and machine learning, as well as to gain some insights into how these attacks work in 



order to design more effective countermeasures. In this paper, we introduced a novel 

unsupervised, regression-based approach to perform side-channel attack. We further 

extend this approach to consider information from multiple rounds with promising 

results. We hope this paper can serve as an encouraging example to show how ma-

chine learning approaches can be carefully crafted to solve a well-known security 

problem. 
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