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ABSTRACT
Network embedding aims at learning an effective vector transfor-

mation for entities in a network. We observe that there are two

diverse branches of network embedding: for homogeneous graphs

and for multi-relational graphs. This paper then proposes MARINE,

a unified embedding framework for both homogeneous and multi-

relational networks to preserve both the proximity and relation

information. We also extend the framework to incorporate existing

features of nodes in a graph, which can further be exploited for the

ensemble of embedding. Our solution possesses complexity linear

to the number of edges, which is suitable for large-scale network

applications. Experiments conducted on several real-world network

datasets, along with applications in link prediction and multi-label

classification, exhibit the superiority of our proposed MARINE.
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Figure 1: Homogeneous graphs (left) and multi-relational
graphs (right). The latter consists of multiple types of link
relationships (marked by various types of dashed lines) be-
tween node entities.

1 INTRODUCTION
The task of network embedding aims at learning a representation

for each entity in a network. The idea is to embed some properties

of a network into a vector space so that each entity is represented

by a low-dimensional feature vector. Such form of representation is

more ready for machines to perform further analysis, since most of

the machine learning and data mining models accept unstructured

feature vectors for training and prediction.

We observe that there are two branches of studies for network

embedding. One is to propose an embedding method for homoge-
neous graphs (Figure 1 left) [1, 7, 8, 10, 12, 17, 29–31, 33, 36–38, 40–
42, 45, 50–52], in which there is only one single type of nodes and

links. The major goal of this branch of work is to preserve cer-

tain properties in the linking structure of a network. Proximity
is the most emphasized property in the embedding of homoge-

neous graphs. Roughly speaking, proximity estimates the close-

ness between nodes, and thus a proper network embedding model

shall assign similar embeddings to nodes close to each other in

a graph. Preserving proximity will allow the model to accurately

perform some relevant tasks such as community detection (e.g.

closer nodes shall be grouped together) and link discovery (e.g.

nodes with common neighbors should be linked). The other branch

tries to obtain the embeddings of nodes in a multi-relational graph,
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i.e., knowledge graph (Figure 1 right) [3–5, 9, 11, 13–15, 18–20, 25–

28, 34, 35, 39, 44, 47–49]. A multi-relational network assumes there

are different types of links (e.g. different relationships between

users) in the graph, where key information depicting entities are

encoded. Each directed edge can be represented by a triplet (i,k, j ),
where node i connects to node j via relation k . For example, a node

X may connect to a node Y with relation teacher_of, but it can
link to another node Z with relation colleague_of. The majority of

the models for multi-relational graph embedding use an individual

embedding transformation for each type of edge relation. Then

based on certain algebraic operation (usually through addition or

multiplication) to combine embeddings of nodes and relations, the

multiple relationships in the embedding space can be recovered.

Even though a homogeneous network can be regarded as a spe-

cial case of multi-relational network with single type of relation, our

preliminary experiments have found that existing multi-relational

graph embedding methods do not necessary perform well on ho-

mogeneous networks. It is probably because most of the existing

studies do not emphasize on preserving the proximity information

in the network.

Thus, in this paper we propose a multi-relational graph em-

bedding model that preserves not only the relation information

but also the proximity information, with the goal to create a uni-

fied model that is suitable for embedding both homogeneous and

multi-relational networks. Although these two branches of studies

respectively propose embedding methods in its own domain, to our

knowledge, there has not yet been an effective unified model that

works for both homogeneous and heterogeneous scenarios, which

is the goal of this paper. Moreover, we also realize that directly

applying the existing homogeneous proximity models shall not

work for our situation since they do not consider the existence of a

variety of relations. Here we propose a novel idea to regularize the

importance of each embedding dimension based on the relation in

generating the score function for each relation triplet. That is, we

argue that some embedding dimensions are more important in pre-

dicting a type of relation while others are more important for other

relations. For instance, to determine whether an edge belongs to

‘classmate’ relationship, a latent dimension that represents ‘school

attended’ is probably more important than a latent dimension that

represents ‘favorite movies’. However, the later shall be more criti-

cal to determine the ‘friendship’ relationship between nodes than

the former. To achieve such goal, we propose a tensor-factorization

solution to regularize the importance of each embedding dimen-

sion based on the type of relations, trained based on the observed

relations in the network data.

Besides a general framework to embed either type of the net-

works, we further intend to incorporate node attribute information

into the embedding space. In practice one can usually observe at-

tributes (e.g. demographics or metadata) of nodes in a network.

Since such attributes provide semantic depiction about nodes, they

shall be considered together in the embeddings of nodes. For in-

stance, in a social network a user node can sometimes be associated

with some demographic information such as age or gender. There is

no reason to not incorporate such information in the node embed-

ding. For example, we hope the embeddings of two female nodes are

closer than the embeddings of two opposite-sex nodes, given the

other conditions are similar. Mathematically, such non-graphical

information attached to a node can be formulated as a real-valued

attribute vector for each node (note that a categorical attribute

can always be expanded into multiple binary ones). We notice that

some network embedding studies [12, 17, 30, 40, 45, 50, 51] have

considered node attributes in learning embeddings, but most of

the existing approaches require at least a few labels to guide the

learning. Furthermore, a very limited number of multi-relational

network embedding methods [18, 19, 48] consider node attributes,

as we have not yet seen any benchmark evaluation dataset that

contains attributes for nodes in multi-relational networks.

In this paper, we propose theMulti-relation,Attribute, pRoximity

Informed Network Embedding (MARINE)
1
, a probabilistic net-

work embedding model whose goal is to preserve the proximity
property, the edge relation and the node attributes information in a

low-dimensional embedding space. To achieve the goal, MARINE

maximizes the likelihood of not only the existing graph structure

but also the observed node attributes. To elaborate, we assign a

function to score each (source_embedding, relation_embedding, tar-

get_embedding) tuple and try to maximize the difference of scores

between the observed tuples and the unobserved ones. The scoring

function leverages the modeling of tensor factorization and embed-

ding translation. We show that the tensor factorization component

can preserve the proximity information for each type of relation,

which aligns well with the goal of most homogeneous network

embedding methods. Inspired by the results of word embedding

[23], we also consider the embedding translation, realizing the re-

lation information with the relative positions among embeddings.

In addition, we require the learned node embeddings to maximize

the generation likelihood of node attributes, which assumes the

embeddings of two nodes shall be closer if they have similar at-

tributes. Finally, we discover an effective usage of our framework

as an ensemble framework for multiple embeddings, and conduct

preliminary experiments to verify its usage in this direction.

We evaluate the model based on three different applications

with eight real-world datasets. The applications include link pre-

diction, and multi-label classification. We demonstrate that the

designed objective based on maximizing the above ideas allows

the proposed MARINE to outperform state-of-the-art competitors

in both homogeneous networks and multi-relational networks in

terms of effectiveness and robustness. With the support of addi-

tional attributes, MARINE can further boost its performance. We

also provide the visualization on various embedding results as an-

other form of evaluation. Last but not least, we show MARINE of

complexity linear in the number of nodes or edges, which enables

the efficient implementation in large-scale network data.

We summarize the contributions of this paper, as listed below:

• We propose a unified unsupervised embedding method, MA-

RINE, to enhance the existing solutions for multi-relational

network embedding models by preserving the proximity

and attributes information in addition to various types of

relations.

• Our proximitymodel is specifically designed formulti-relational

data, which allows the dynamic adjustment of importance

weights for embedding dimensions given different relations.

1
The code is available via https://github.com/ntumslab/MARINE
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• MARINE enjoys the running time linear to the number of

nodes and edges. Our framework also enables the embedding

ensembles. We conduct thorough experiments to justify the

above claims.

• We empirically conduct several experiments on real-world

networks, to examine how MARINE performs in the appli-

cations of link prediction and multi-label classification. The

results show the superiority capability of MARINE in learn-

ing better network representations.

The rest of the paper is organized as follows. Section 2 briefly

summarizes related work. Section 3 introduces MARINE in detail.

Section 4 reports the experimental results. Finally we discuss and

conclude our work in Section 5.

2 RELATEDWORK
We first discuss existing studies in homogeneous network embed-

ding. Most of the past models focus on preserving the proximity

property as it captures the neighborhood topology information of

nodes. Some important network mining tasks, such as link pre-

diction and community detection, can be addressed by discover-

ing proximity relations among nodes. Specifically, between any

node pair (i, j ), the h-order proximity estimates either the num-

ber of h-hop shortest paths from i to j or the probability of a h-
hop random walk from i to j. Relevant studies based on proxim-

ity assume higher similarity between the embedding vectors of

two nodes with high proximity. Singular value decomposition or

matrix factorization is commonly used to learn such embeddings

[1, 8, 12, 29, 36, 38, 40, 42, 50, 51] These models rely on a matrix

A ∈ RN×N pre-computed based on certain proximity estimation.

Then let A be approximated by a low-rank matrix multiplication.

Some models [7, 17, 41] consider deep neural network structures

like auto-encoders to exploit their non-linear mappings between

graph topology and embedding vectors. Inspired by recent word

embedding algorithms [23], another class of homogeneous graph

embedding methods [10, 30, 31, 52] gathers randomwalk sequences

as training set. The similarity of two nodes is expected to be high

if their positions are close in most of the random walk sequences.

There are some common concerns about the existing approaches.

First, several models [8, 12, 40, 42, 50, 51] require to factorize a dense

matrix, and thus cannot be scale to large graphs as the complexity

reaches O (N 2). Second, some approaches [1, 10, 12, 30, 31, 38, 40–

42, 45] assumes symmetric relations, that is, x⊤i x j = x⊤j xi for edge

(i, j ), and therefore cannot be used to handle directed graphs. Third,
as having been pointed out in LINE [37], it is hard for random

walk-based methods to explain explicitly what graph properties

are preserved in the embedding space. Our model is developed to

address the above issues.

On the other hand, multi-relational network embedding ap-

proaches often focus on learning a vector rk that represents the

embedding of edge relation k . Based on different assumptions, pre-

vious studies propose various scoring functions given a relation

embedding rk and the embeddings xi ,x j of two adjacent nodes.

It is further assumed that an observed edge (i,k, j ) with nodes

(i, j ) and relation k shall obtain a higher score value than an un-

observed edge, and a multi-relational graph can be regarded as a

set of multi-relational edges. There are two major classes of the

xi xj
rk θjθi

2 7 1 8 2 8 3 1 4 1 5 9

Figure 2: The notations in MARINE. There is an edge with
relation k linking from node i to node j, whose attributes
are θi and θ j , respectively.

Criterion 2: Node attributes ΘCriterion 1: Link structures S
Score function s(i, k, j)

Edge triplet (i, k, j)

Node 
embedding

xj

Node 
embedding
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T tk
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Mapping 
function
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preservation
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arg min Σ(i,k,j)∈ε, (i’,k,j’)∉ε - log σ(s(i, k, j) - s(i’, k, j’)) + Σi∈V || θi - f(xi) ||2

2

Node 
attributes
θi, θj

Figure 3: The overview of our proposed MARINE.

scoring functions. One is to build a bilinearity-like form x⊤i Rkx j or
its non-linear extensions [3, 13, 27, 28, 34, 35, 39, 49] to learn the

correlations between nodes (i, j ) with respect to a relation k . By
viewing an embedding vector as a point in multi-dimensional space,

another set of scoring functions aim to constrain the positions of

every embedding points [4, 5, 9, 11, 14, 15, 19, 20, 26, 44, 47, 48].

Given the transition scale rk of a specific edge relation k , let it be
fitted by the translation scale from point xi to x j . In other words,

they try to minimize distance ∥ f (xi ) + rk − д(x j )∥, where certain
mapping functions f and д are added to map the node embedding

space to the edge embedding space. We refer readers to a survey

paper [25] that introduces recent multi-relational network embed-

ding methods in details. To the best of our knowledge, the existing

multi-relational network embedding works has not yet considered

the proximity information.

3 METHODOLOGY
3.1 Problem Definition
Since homogeneous graph is a special case of multi-relational

graph and undirected graph is a special case of directed graph

(i.e. undirected graph can be regarded as a bi-directional directed

graph), here our task is formulated over the general directed multi-

relational graph. We also assume the nodes are associated with

some attributes. Out task can be formulated as:

Definition 3.1. LetG = (V, E,R ) denote a directedmulti-relational

graph, whereV is a set of nodes, R is a set of edge relations, and

E ⊆ V × R × V is a set of edges. Each node i ∈ V is appended

with attributes represented as a vector θi ∈ Ra .

Then our goal can be defined as:
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Definition 3.2. Given graph G, we would like to learn an em-

bedding vector xi ∈ Rd (d ≪ |V|) for each node i ∈ V in an

unsupervised manner.

Furthermore, for each type of edge in a multi-relational graph,

we will learn an embedding vector rk for its relation k . Figure 2
describes the notations. We expect the embedding would capture

not only the proximity information but also the the information

from link relation as well as the node attributes. In the next sections,

we begin to introduce howMARINE learns embeddingswith desired

properties.

3.2 Design Criteria
Since the learning of embedding is generally unsupervised, here

we formulate the task as an optimization problem. As stated previ-

ously, we would like to preserve both the link structure and node

attributes information. The link structure information can be fur-

ther decomposed into two components: proximity and relation. We

will then formulate the criteria in a probabilistic form:

Criterion 1. Link Structures S preservation: Given a relation

k ∈ R, let an observed edge (i,k, j ) ∈ E and a non-existing edge

(i ′,k, j ′) < E. Our model would like to assign scores s (i,k, j ) >
s (i ′,k, j ′). Such score reflects the query: how likely there is a rela-
tion of type k from node i point to j.

Criterion 2. Node Attributes Θ preservation: We assume for any

two nodes (i, j ), the distance between their embeddings (xi ,x j )
is positively correlated with the distance between their attributes

(θi ,θ j ).

Given the two design criteria, our task becomes a maximum a

posteriori (MAP) problem to find the optimal embedding x and r ,
given S and Θ. Using Bayes’ Rule:

argmax

x ,r
p (x ,r | S,Θ)

= argmax

x ,r

p (S,Θ | x ,r )p (x ,r )

p (S,Θ)

= argmax

x ,r
p (S,Θ | x ,r )︸          ︷︷          ︸

Likelihood

p (x ,r )︸ ︷︷ ︸
Prior

. (1)

The denominator p (S,Θ) can be eliminated due to no involvement

in the maximization in x ,r . To simplify the analysis, here we as-

sume no prior knowledge about the target embeddings, and hence

the prior distribution p (x ,r ) is assumed to be uniform and can be

ignored in the optimization process. Nevertheless, generalization

to non-uniform prior is possible with careful design on the form of

distribution. To make the joint probability p tractable, we adopt an

independence assumption S⊥Θ between S and Θ. We also assume

that the edge relation embedding r is independent of to the node

attributes given the node embedding, i.e., r⊥Θ | x . Therefore we
can simplify (1) as:

p (S,Θ|x ,r ) = pS (S|x ,r )pΘ (Θ|x ,r )

= pS (S|x ,r )︸       ︷︷       ︸
Criterion 1

pΘ (Θ|x )︸   ︷︷   ︸
Criterion 2

. (2)

We will elaborate pS and pΘ in Section 3.3 and 3.5.

The overview of our proposed MARINE is presented in Figure 3.

Given an edge triplet, MARINE learns their representations based

on the observations on link structures S and node attributes Θ.
We will elaborate the details of each component in the following

subsections.

3.3 Preserving Link Structures S
pS in Criterion 1 depends on the link structure. To fulfill this crite-

rion, we formulate the following likelihood function with respect

to edges:

pS (S | x ,r ) =
∏

(i,k, j ) ∈ E
(i ′,k, j ′) < E

Pr

(
s (i,k, j ) > s (i ′,k, j ′) | x ,r

)

=
∏

(i,k, j ) ∈ E
(i ′,k, j ′) < E

σ
(
s (i,k, j ) − s (i ′,k, j ′)

)
. (3)

Inspired by [32], (3) can be also approximated by differentiable

sigmoid functions σ (z) = 1

1+exp(−z ) . As we maximize the likelihood

(3), the gap between s (i,k, j ) and s (i ′,k, j ′) is enlarged consequently,
which satisfies the requirement of Criteria 1. The scoring function s
is defined based on the corresponding embeddings xi ,x j ,xi′ ,x j′ ,rk
(see (4)) to preserve the proximity and relation information, as will

be elaborated next.

3.4 Score Function Design
Criterion 1 demands the designed score function s to generate

higher scores for an observed edge (i,k, j ) ∈ E, and lower ones

for the non-existing counterpart (i ′,k, j ′) < E. To incorporate both

proximity and relation information, we design the score function

as follows:

s (i,k, j ) = (x j ⊙ xi )
⊤lk︸          ︷︷          ︸

Proximity preservation

+ (x j − xi )
⊤tk︸          ︷︷          ︸

Relation preservation

, (4)

where ⊙ denotes the Hadamard product. We express edge relation

embedding rk =
[
l⊤k t⊤k

]⊤
∈ R2d as the concatenation of two

embedding vectors lk ∈ R
d , tk ∈ R

d
, to achieve two different

preservation targets in (4). The first term of (4) is essentially a

tensor factorization to preserve proximity information. The second

term implies that translation direction between embeddings shall

be closer for the same edge relation. We do not set a relevant weight

between two terms of (4), since the weight is absorbed in lk or tk .
In the following paragraphs, we will discuss the insight of (4).

3.4.1 Proximity Preservation. Most previous studies on homoge-

neous network embedding adopt matrix factorization (see Section 2)

to learn embedding. Under such framework, given the embeddings

xi ,x j of node pair (i, j ), the existing studies mostly exploit inner

product ai j = x⊤i x j =
∑d
u=1 xiux ju to fit the proximity-related

value ai j . Random walk-based solutions also exploit the inner prod-

uct operation to learn the similarities among embeddings. Using

x⊤i x j presumes a strong assumption that each dimension in the em-

bedding space is equally important. Here we argue that for different

types of relations, the importance or weight of each dimension to

evaluate the proximity quality shall be different. We take a multi-

relation social network where nodes are people as the example.

Suppose that a single embedding dimension implies “salary” of
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a node. Let us compare two different relations: “colleagues” and

“friends”. This particular dimension shall play a more important role

to determine the former relationship than it is to the later one. It is

because two colleagues are more likely to earn salary in the similar

range than two friends. To model the influence of each dimension

of embedding given different relations, we expand two-way matrix

factorization into the three-way tensor factorization. The axes in
this tensor indicate subject node i , edge relation k and object node

j. Each binary element is set to 1 for edge (i,k, j ) ∈ E, and 0 for

(i,k, j ) < E Similar to the assumption in matrix factorization, a low

rank d is assumed for this tensor. The score of the embeddings of

tuples xi ,x j , lk is evaluated by a tensor product:

d∑
u=1

xiux julku = (xi ⊙ x j )
⊤lk . (5)

Note that in our design, the importance of each embedding di-

mension is regularized by the learned relation embedding lk , mean-

ing that different embedding dimensions can play different roles in

determining whether a relation shall exist between two nodes. The

next question we would like to answer is that why such design can
satisfy the proximity constraint. Next we would like to establish the

connections of our model to the first and second order proximity

defined in homogeneous networks.

Below we first provide formal definitions to such proximity.

Definition 3.3. Given a pair of nodes (i, j ), the first-order proximity
for their embeddings xi ,x j means a high score between xi and x j
in the embedding space, if there is an edge adjacent to i and j in
the network.

Definition 3.4. Given a pair of nodes (i, j ), the second-order prox-
imity for their embeddings xi ,x j means a high score between xi
and x j in the embedding space, if nodes (i, j ) share the same neigh-

bor set in the network.

Previous studies often adopt the inner product x⊤i x j or the

squared Euclidean distance ∥xi − x j ∥2
2
as the score function to

achieve proximity preservation. Our design criteria guarantees to

explicitly preserve the first-order proximity in a homogeneous net-

work. By Criterion 1, given fixed relation k , we have s (i,k, j ) >
s (i ′,k, j ′) for observed edge (i,k, j ) ∈ E and unobserved edge

(i ′,k, j ′) < E. Modeling Criterion 1 in MARINE likelihood (3) sat-

isfies the first-order proximity. Here we would like to prove that

applying (5) to a homogeneous network (or amulti-relation network

with single type of relation) can implicitly keep the second-order

proximity.

Lemma 3.5. Considering (5), MARINE implicitly preserves the
second-order proximity in a homogeneous network.

Proof. Given a fixed relationk , let two nodes (i, j ) have the same

set of direct successors. That is, for any node v (v , i,v , j), we
have either (i,k,v ) ∈ E, (j,k,v ) ∈ E or (i,k,v ) < E, (j,k,v ) < E.
With the progress of training, the objective function eventually will

cause observed edges and non-existing edges to become separable

in scores. Then there must exist a threshold ϵ such that

s (i,k,v ) ≥ ϵ as (i,k,v ) ∈ E,

s (i ′,k,v ′) < ϵ as (i ′,k,v ′) < E

, and eventually we can obtain ϵ = 0. If we consider only the tensor

factorization part s (i,k,v ) = (xi ⊙ xv )⊤lk = (lk ⊙ xv )⊤xi , then
for the above-mentioned node v , we have:

s (i,k,v ) · s (j,k,v ) = (lk ⊙ xv )
⊤xix

⊤
j (lk ⊙ xv ) ≥ ϵ2 = 0,

where lk ⊙ xv ∈ Rd . It implies that matrix xix⊤j is a positive

semi-definite matrix that has the non-negative trace property:

x⊤i x j = tr(xix
⊤
j ) ≥ 0.

In practice, with sufficient number of training epochs, our scores

(4) can move farther from the zero threshold such that s (i,k,v ) ·
s (j,k,v ) ≫ 0. It could lead to a high inner product x⊤i x j . In other

words, (xi ,x j ) could be close to each other in the embedding space,

if nodes (i, j ) share direct successors. Similar proof can applied to

direct predecessors (v,k, i ), (v,k, j ). □

3.4.2 Relation Preservation. This part was inspired by a word em-

bedding approach [23] illustrating the distribution of word em-

beddings in a two-dimensional space. It implicitly reveals the two

clusters of words, even though no label is provided to guide the

learning. Between two clusters, there exists an implicit relation

controlling the translation direction from one point to its adjacent

point in the other cluster. In contrast to implicit relation learning

in [23], we choose to put an explicit embedding translation term

in our score metric (4), thanks to the availability of the relation

information in multi-relational networks. Specifically, we expect

that given an edge (i,k, j ), the vector direction from xi to x j shall be
close to the relation embedding vector tk . The idea can be modeled

by the inner product:

(x j − xi )
⊤tk . (6)

In real-world multi-relational networks, similar type of nodes

might connect to similar types of others via similar relation (e.g.

sales to customers). They are more likely to be clustered together,

as shown in our visualization experiment.

As an additional bonus, the embedding translation term brings

an asymmetric similarity metric, that is, s (i,k, j ) , s (j,k, i ) by our

definition (4). Notice that the tensor factorization term is symmetric

since (xi ⊙ x j )⊤lk = (x j ⊙ xi )⊤lk . In a directed network, the

direction of an edge determines an asymmetric relation between

two nodes. Directed graphs are quite popular in real world. For

instance, the ‘following’ information in an online social network is

directional, meaning the opposite does not always hold. We observe

that a few prior approaches [31, 38, 41] cannot leverage the edge

direction information due to symmetric scoring functions. Using

the asymmetric nature of the embedding translation term (6), we

are allowed to model embeddings for directed graphs.

3.5 Node Attributes Θ
Based on Criteria 2, we need to design pΘ such that node attributes

θ ∈ Ra can affect the learning of embeddings x ∈ Rd . To satisfy

the criterion, we define a bijective mapping function θ = f (x )
to bridge θ and x . Thus embedding xi = f −1 (θi ) could approach

x j = f −1 (θ j ) if the corresponding attribute vectors θi ≈ θ j . Here
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we impose a multi-variate normal distribution for θ :

pΘ (Θ | x ) =
∏
i ∈V

N (θi | f (xi ),
1

2α
I )

=
∏
i ∈V

(π
α

)− a
2

exp

(
−α ∥θi − f (xi )∥

2

2

)
. (7)

where N (θ | µ, Σ) denotes a multi-variate normal distribution

with mean vector µ and covariance matrix Σ. Since the maximum

probability density appears in the mean for normal distributions,

(7) can model the approximate mapping θ ≈ f (x ) with uncertainty

as variance
1

2α . Any differentiable bijective functions f are allowed,

though in our experiments a naive linear mapping f (x ) =Wx + b
works well, which alleviates the need to tune potential hyperpa-

rameters of complex functions f . In the following sections, we use

notation ϕ ∈ {W ,b} as the parameters in function f .

3.6 Objective Function and Optimization
Combining (3) and (7), when minimizing the negative logarithm of

(2), we finally aim at solving:

arg min

x ,r ,ϕ
L =

∑
(i,k, j ) ∈ E
(i ′,k, j ′) < E

− logσ
(
s (i,k, j ) − s (i ′,k, j ′)

)

+ α
∑
i ∈V

∥θi − f (xi )∥
2

2
. (8)

We remove the constant terms in parameters x ,r ,ϕ. For large-scale
graphs the complexity is a concern, as there may exist quadratic

number of edge pairs ((i,k, j ), (i ′,k, j ′)) in (8). Fortunately we can

adopt the commonly used negative sampling technique to sample

a small subset of negative edge pairs for training. Referring to the

idea in [32], we sample Q ∈ N negative edges (i ′,k, j ′) < E for

each positive edge (i,k, j ) ∈ E, given relation k fixed. Viewing an

edge pair ((i,k, j ), (i ′,k, j ′)) as a training instance, we can apply

Stochastic Gradient Descent (SGD) to efficiently update x ,r ,ϕ in

differentiable (8). For our objective function L̃, with respect to one

training instance ((i,k, j ), (i ′,k, j ′)), SGD optimizes a parameter z
using the repetition of following update rule:

z ← z − η
∂L̃

∂z
, (9)

where η denotes the learning rate that can be automatically ad-

justed by certain optimizers like Adam [16]. Here we present the

derivatives of objective function L̃ over xi ,x j , lk , tk ,ϕ for SGD

optimization.

∂L̃

∂xi
= −σ

(
s (i ′,k, j ′) − s (i,k, j )

) (
(x j ⊙ lk ) − tk

)
− 2α (θi − f (xi ))

∂ f

∂xi
(10)

∂L̃

∂x j
= −σ

(
s (i ′,k, j ′) − s (i,k, j )

)
((xi ⊙ lk ) + tk )

− 2α
(
θ j − f (x j )

) ∂ f
∂x j

(11)

∂L̃

∂lk
= −σ

(
s (i ′,k, j ′) − s (i,k, j )

) (
x j ⊙ xi

)
(12)

∂L̃

∂tk
= −σ

(
s (i ′,k, j ′) − s (i,k, j )

) (
x j − xi

)
(13)

∂L̃

∂ϕ
= −2α

(
θ j − f (x j )

) ∂ f
∂ϕ

(14)

3.7 Model Analyses
3.7.1 Complexity. The execution time of MARINE is determined

by its SGD optimization as discussed previously. Given Q negative

sample edges for each positive edge, we haveQ |E | positive-negative
edge pairs to optimize our parameters. Therefore the overall time

complexity is O (Q |E |ω) where ω is the number of epochs. Our

experiments showω = 500 is sufficient for convergence. SinceQ ≪
|E| (Q = 5 in our experiments) and ω ≪ |E| in practice, MARINE

enjoys time complexity that is linear to the number of positive edges

|E |, satisfying the scalability requirement. The training data contain

|E | edges and a |V | attributes where each node has a attributes. As

a ≪ |V|, MARINE possesses space complexity O ( |E | + a |V |) is
efficient for practical applications.

3.7.2 Hyparameters. Observing the objective function in (8), there

is only one hyperparameter α to be tuned by human, while all the

other parameters can be learned during optimization. Note that

a more complex mapping function f could lead to more hyperpa-

rameters. However our experiment results suggest that a linear

mapping function without any hyperparameter can yield satisfiable

results.

3.7.3 Embedding Ensemble. Even the external node attributes are

not available, (7) can still be effective if we extract node attributes

from the input graphs (e.g. degree information). Furthermore, the

formula can be used as an embedding ensemble framework. That

is, to treat the embedding outcomes of one model as the existing

attributes Θ of the nodes. As will be described in the next section,

positive experiment results support such idea.

4 EXPERIMENTS
4.1 Experimental Setup
Following a similar setup as most of network embedding studies,

we conduct Link Prediction and Multi-label Classification tasks for

evaluations. Three widely compared classic models (DeepWalk,

LINE, TransE) and two of the start-of-the-art models (SDNE, ProjE)

in network embedding are chosen to compare with MARINE. Note

that DeepWalk, LINE and SDNE are models for homogeneous net-

works, while the other two are models for multi-relational networks.

All the embedding dimensions are fixed to 128; for the methods

requiring negative sampling, we set the number of negative sam-

ples to five times of the positive samples (i.e, Q = 5) as mentioned

in [10, 37]. Other hyperparameters are set to the default values

suggested by the original papers.

• Competitors from homogeneous network embedding:

– DeepWalk [31]: walk length t = 80; number of walks per

source γ = 10; window sizew = 10.
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– LINE [37]: total number of samples T = 10 billion; 64-

dimensional first-order proximity embeddings concate-

nated with 64-dimensional second-order proximity em-

beddings.

– SDNE [41]: first-order proximity weight α = 0.2; recon-

struction penalty β = 10; dimensionality of hidden layers

D = [1000].

• Competitors from multi-relational network embedding:

– TransE [4]: margin in score function γ = 1; dissimilarity

measurement d = L2.
– ProjE [34]: the original algorithm, denoted as ‘ProjE-ori’

in our tables, uses 25% of the total entities as negative

samples suggested by the authors. However, to be fair in

the comparison, we further compare with the performance

of five negative samples per training instance (denoted as

‘ProjE-Q5’). In addition, the list-wise version is selected

since it reaches the best performance as reported in the

paper.

While training our model, Adam optimizer [16] with suggested val-

ues (learning rate 0.001, parameters β1 = 0.9, β2 = 0.999, ϵ = 10
−8
)

is adopted. In all experiments, MARINE is trained for at most 500

epoches. All embeddings are initialized from samples of a uni-

form distribution ranged in [−0.05, 0.05]. For all experiment tasks,

MARINE learns the representation without using node attributes,

except for the experiments in Section 4.4.

4.2 Unsupervised Link Prediction
We use the same evaluation protocol as proposed in [4]. For each

pair of an edge relation k and an object node j, we rank all triplets

(i,k, j ) ∀ i in the descending order of scores, based on the scoring

function s (i,k, j ) of each model. The same procedure is then re-

peated for (i,k, j ) ∀ j. The performance is evaluated with respect

to the hit rate at 10 and Mean Reciprocal Rank (MRR). According

to the objective functions in the referenced papers, we review the

scoring functions of the baseline models in Table 1.

We use three datasets for link prediction evaluation:

• Datasets used in previous approaches for multi-relational

networks:

– WordNet (WN18) [24] is a lexical database for English.
It groups English words into sets of synonyms called

synsets, and records a number of relations among these

synonym sets. The relationships include hypernyms, hy-
ponyms, meronym, and other lexical relations. WN18 has

18 relations, 40,943 nodes, and 141,442 edges.

– Freebase (FB15K) [2] is a large collaborative knowledge
base of general facts. For instance, a triplet (Curtis Arm-
strong, place_of_birth, Detroit) indicates that a human en-

tity ‘Curtis Armstrong’ and a city entity ‘Detroit’ have
the relationship ‘place_of_birth’. FB15k has 14,951 nodes,

483,142 edges, and 1,345 relations.

• Datasets used in previous approaches for homogeneous net-

works:

– Protein-Protein Interactions (PPI) [6] is the dataset

used in [10], which is the subgraph of the PPI network

for Homo Sapiens. The original network has 3,890 nodes

(proteins), 76,584 edges (interactions), and 50 labels repre-

senting the biological states. For link prediction task, we

randomly remove 10% of existing edges for testing data

while ensuring the residual graph is connected.

The experimental results are listed in Table 2. The relatively weak

performance of DeepWalk, LINE, and SDNE is expected, since the

information of relations (and their direction in edges) is not utilized.

The results show that MARINE significantly outperforms all other

competitors when 5 negative links are sampled. It is competitive

to the state-of-the-art ProjE-ori which samples 25 percentage of

the negative samples. We further increase the negative sample

size of MARINE to 100, denoted as MARINE-Q100, and found the

performance can further be improved. We also realized that our

model performs significantly better on homogeneous network PPI,

which reflects that the current multi-relational solution might not

be the best solution for homogeneous network embedding.

Note that ProjE’s performance drops significantly while training

with fewer number of negative samples. The requirement of massive

negative samples in ProjE results in quadratic training complexity,

which is less suitable for large-scale networks.

From Table 2, we can find that the proximity preservation part

in MARINE dominantly contributes to the performance. As the

relation preservation part used in MARINE, the performance of

MARINE in WN18 and FB15K, where edge muti-relations are pro-

vided, is relatively better than that in PPI. Besides, the overall per-

formance can be significantly enhanced with the exploitation of

both terms together. The relation term mainly focuses on learning

different relations, while the link prediction evaluates the model to

distinguish different nodes.

4.3 Multi-label Classification
We follow the same evaluation protocol as in [10]: The embeddings

generated unsupervisedly by each model are used as the input

training features to train a multi-label classification, using one-vs-

rest logistic regression with L2 regularization
2
. The training and

testing data are split equally, and the procedure is repeated 10 times

to get the average. Micro F1-score and Macro F1-score are used to

evaluate the performance. The regularization strength parameter

C = 1.0 is not tuned, leaved as default value.

Three datasets are used for multi-label classification evaluation.

The first two networks are homogeneous and the last one contains

multiple relations.

• Homogeneous graphs including labels:

– PPI [6] has been introduced in previous subsection.

– Wikipedia [22] is the first billion bytes of the English

Wikipedia dump. The processed data [10] builds a co-

occurrence network of words, and the labels represent

the Part-of-Speech tags. The network has 4,777 nodes,

184,812 edges and 40 labels.

• Multi-relational networks including labels:

– Movies [46] is a complex network containing 41,412 enti-

ties with 20 labels (e.g., films, actors, directors) and 134,938

directed edges from 34 social relations (e.g., ‘lived-with’

and ‘married-to’).

2
scikit-learn package LogisticRegression’s LibLinear solver is used.
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Table 1: Score functions of our competitors. σ here denotes the softmax function.

Model Score function Ranking order

DeepWalk x⊤i x j descending

LINE x⊤i x j descending

SDNE ∥xi − x j ∥2 ascending

TransE ∥xi + rk − x j ∥2 ascending

ProjE σ (x⊤i tanh(u ⊙ x j +v ⊙ rk + b) + c ) descending

Table 2: Link Prediction results. Models are evaluated by Hit Rate at top 10 (HR@10) and Mean Reciprocal Rank (MRR).

Dataset PPI WN18 FB15k

HR@10 MRR HR@10 MRR HR@10 MRR

DeepWalk 0.0131 0.0187 0.4165 0.1503 0.0369 0.0187

LINE 0.1726 0.0819 0.0926 0.0347 0.0757 0.0345

SDNE 0.1049 0.0571 0.1951 0.0621 0.0720 0.0291

TransE 0.2101 0.0934 0.9215 0.3678 0.6089 0.3449

ProjE-Q5 0.3905 0.2345 0.8557 0.5901 0.3076 0.1636

MARINE-Q5 0.8602* 0.5671* 0.9253* 0.6211* 0.7202* 0.4861*
ProjE-ori 0.7441 0.5339 0.9389 0.7664 0.6957 0.5126

MARINE-Q100 0.8973 0.6665 0.9402 0.7034 0.7424 0.4044

* outperforms the second-best model at 0.01 level paired t-test.

Table 3: Multi-label classification results with respect to Micro F1-score and Macro F1-score. The last row shows the case
MARINE considering LINE’s embeddings as attributes (see Section 4.4).

Dataset PPI Wikipedia Movies

Micro Macro Micro Macro Micro Macro

DeepWalk 0.0839 0.0631 0.3485 0.0595 0.0260 0.0156

LINE 0.0527 0.0332 0.3794 0.0694 0.6958 0.1136

SDNE 0.0021 0.0014 0.2811 0.0215 0.4871 0.0635

TransE 0.0355 0.0209 0.3312 0.0401 0.8932 0.3479

ProjE-Q5 0.0855 0.0683 0.3142 0.0678 0.9315 0.7181

MARINE-Q5 0.0954* 0.0723* 0.4033* 0.1044* 0.9511* 0.7315*
ProjE-ori 0.1083 0.0849 0.4134 0.1338 0.9049 0.6243

MARINE-Q100 0.1064 0.0829 0.4117 0.1219 0.9587 0.7925

Ensemble(MARINE, LINE) 0.1085 0.0822 0.4132 0.1137 0.9502 0.6617

* outperforms the second-best model at 0.01 level paired t-test.

The results are listed in Table 3. Again, given micro F1-score and

macro F1-score, it is observed that MARINE significantly outper-

forms the others. In particular for the movie datasets that contain

multiple relations, even MARINE-Q5 can outperform ProjE-ori sig-

nificantly. For homogeneous networks PPI and Wikipedia, we can

see that the most contribution to MARINE performance lies in the

proximity preservation part, which consists with the perspective of

previous homogeneous network embedding papers. By contrast, in

the multi-relational network Movies the relation preservation part

devotes more to MARINE in classification problems. We notice that

using the original negative sampling strategy, ProjE can slightly

outperform our MARINE. However we emphasize that ProjE sam-

ples O ( |V |2) negative node pairs to achieve high performance,

which is not scalable at all. Under the same condition of sampling

only 5 negative edges per positive edge example, MARINE shall

significantly perform better than ProjE.

4.4 Exploiting Node Attributes
In this section, we discuss whether considering the node attributes

allows our model to further boost the performance. As the datasets

we used previously do not contain attributes, here we exploit the

HepTh co-author citation network consisting of 5,501 author and

17,286 paper entities to predict the future citation counts using

the network embeddings. The attributes are the ages of papers in

HepTh. Following the same setup as [43], we train the embeddings

on citations before 1999 and predict the number of citations after

2000. Random Forest Regressor (number of estimators = 32) is used
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(a) DeepWalk (b) LINE (c) SDNE

(d) TransE (e) ProjE (f) MARINE

Figure 4: Visualization of HepTh. The orange spots indicate papers, while the purple spots indicate authors.

to train on embeddings for prediction. Five-fold cross-validation

experiment is conducted; MAE (Mean Absolute Error) is chosen as

the evaluation metric. The baseline usage of attributes relies simply

on concatenating the embeddings with the attributes for training.

We can see from Table 4 that not all models can benefit from addi-

tional attributes, while our model yields significantly better results

than simply concatenating attributes with embeddings.

We also want to evaluate the performance of embedding ensem-

ble as described in Section 3.7.3. We try to combine our model with

LINE by treating its embedding results as our features, since LINE

performs well among classic baseline embedding models. The last

row in Table 3 shows that based on the ensemble of MARINE and

LINE, we can gain improvement on two of the three datasets. The

only exception is for the Movies dataset, probably due to the large

performance gap between these two models.

4.5 Visualization
Here we want to show how the embedding results are visualized

in the low-dimensional space. We apply visualization tool t-SNE

[21] on the embeddings learned from, for the ease of presenta-

tion, HepTh dataset. All the models learn the embeddings without

attributes. As Figure 4 suggests, the models that consider multi-

relational networks are able to better distinguishing between differ-

ent types of nodes. Both MARINE and ProjE can separate different

types of nodes, and MARINE further groups the same type of nodes

(purple spots) together. It shows that MARINE considers the rela-

tions of edges while preserving proximity simultaneously.

Table 4: MAE evaluation of predicting citation counts. The
comparison of the usage of node attributes in each embed-
ding model.

usage w/o attributes concatenate

DeepWalk 6.6568 6.1724

LINE 6.8721 6.8994

SDNE 6.0891 6.1112

TransE 6.2739 6.3335

ProjE-Q5 6.5164 6.4319

ProjE-ori 5.9996 5.8402

MARINE-Q5 5.9525 5.8201

MARINE utilizes attributes as Θ 5.7042

5 CONCLUSIONS
In this paper, we consider the twomain branches of network embed-

ding models: for homogeneous networks and for multi-relational

networks, or knowledge graphs. Our conclusion is that although

the existing multi-relational network embedding methods can be

adopted to homogeneous networks, the performance can further be

boostedwhile considering the relation-based proximity, as proposed

in this paper. Our experimental results suggest that by considering

graph proximity, relations, and attributes altogether, it is possible

to yield a more robust network embedding model suitable for differ-

ent types of networks. Finally, comparing with the state-of-the-art
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solution ProjE that requires significant amount of negative links

sampled, our model enjoys linear time and space complexity during

computation.
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