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Abstract—Recent natural language reasoning models have
achieved human-level accuracy on several benchmark datasets
such as bAbI. While the results are impressive, in this paper
we argue by experiment analysis that several existing attention-
based models have a hard time generalizing themselves to handle
name entities not seen in the training data. We thus propose
Unseen Filler Generalization (UFG) as a task along with two
new datasets to evaluate the filler generalization capability of a
natural language reasoning model.

We also propose a simple yet general strategy that can be
applied to various models to handle the UFG challenge through
modifying the entity occurrence distribution in the training data.
Such strategy allows the model to encounter unseen entities
during training, and thus not to overfit to only a few specific
name entities. Our experiments show that this strategy can
significantly boost the filler generalization capability of three
existing models including Entity Network, Working Memory
Network, and Universal Transformers.

Index Terms—machine reasoning, attention, unseen filler,
memory-augmented neural network, transformer.

I. INTRODUCTION

Researchers of machine learning [1]–[3] have started to

move on from perception tasks to cognition problems, which

leads to a surging area called Natural Language Reasoning

(NLR). Several memory augmented neural network models

have been proposed to conquer NLR problems. Memory

network [4] embeds memory matrix component into the

existing neural network architecture, so as to efficiently act

as a dynamic knowledge base to help with reasoning tasks.

Recently, Transformer [5] has arisen to be another new strong

competitor, which uses self-attention layers to replace con-

ventional recurrent neural network (RNN), so as to achieve

paralellizability and global receptive field. Based upon trans-

former, Universal Transformer (UT) [6] is claimed to gain even

stronger reasoning ability by adding recurrent inductive bias of

RNNs as well as a dynamic per-position halting mechanism.

With UT, the state-of-the-art result achieves a mean error

of less than 0.3% in bAbI [2], which is a commonly used

benchmark dataset for machine reasoning composed of 20

fundamental reasoning tasks.

Recently, researchers have raised questions about whether

the reasoning models really learn the expected behaviors.

§Equal contribution

In visual question answering, [7] exposes the weakness of

the models’ pathological behaviors, such as “tend to fail

on sufficiently novel instances” and “jump to conclusions”.

In Reading Comprehension, existing neural systems can be

fooled by appending only one adversarial sentence [8]. In

NLR, despite the high accuracy, we have found that the state-

of-the-art models are trained overfittingly and can be attacked

by simply replacing name entities. We argue that if the models

indeed learn how to reason from the content, then it should

still answer with high accuracy even if the names in the test

data are replaced with novel ones. For example, if we modify

the test data from “John travelled to the hallway. Where is

John?” to “Alice travelled to the hallway. Where is Alice?”,

we would expect NLR models to still give the answer correctly.

However, as will be shown later in Section III, we found that

the performance drops about 30% when test data is composed

of novel entities. That is to say, when confronting entities the

machine has never seen, it performs reasoning poorly.

In cognitive linguistics, a widely known theory called tensor

product representation [9]–[11] decomposes innate language

structure into filler-role bindings. For example, in the statement

“Mary journeyed to the bathroom”, the filler (Mary) is bound

to a specific role, which is the concept of someone journeying

to somewhere. Specifically, no matter what filler, seen or

unseen, is assigned to a specific role, the logic of “[Filler]

journeyed to the bathroom” remains identical. Under the

viewpoint of filler and role, we observe that current NLR

models suffer from systematic generalization toward unseen

fillers, which means modern models perform badly when

encountering fillers that is not seen in the training data. Take

language innateness into consideration, we would expect a

perfect reasoning model to learn the hidden logic rules on

role level instead of binding a role to some specific fillers.

In cognitive science, there is a long debate on language

acquisition between Innatism and Behaviorism. Innatism ad-

vocates Chomsky’s innate principle of language [12], while

Behaviorism supports Skinner’s behaviourist perspective [13],

[14]. As the pioneer of Behaviorism, Skinner advocated that

language learning proceeds with environmental factors. He

argued that language learning is typically through classical

or operant conditioning, which can be analogized to current

data-driven AI trend that most of current AI models are purely

trained by data starting from a blank slate. Chomsky, however,
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Training/Validation Data Test Data

Task 1

story:
Mary moved to the bathroom.
John went to the hallway.
query: Where is Mary?
answer: bathroom

story:
Carol moved to the hallway.
Alice travelled to the office.
query: Where is Alice?
answer: office

Name Entities {Daniel, John, Mary, Sandra} {Alice, Bob, Carol, Dave}
TABLE I: Training/validation instance and created test instance of task 1 of bAbI dataset are illustrated. The names in training and validation
data is sampled from the same set of names while the names in the test data is sampled from unseen set of names.

proposed the idea that “human languages, as diverse as they

are, do share some fundamental similarities, and that these

similarities are attributable to unique innate principles” [15].

Recently, scholars [3], [16], [17] have attempted to look for the

missing innateness in current AI models in order to develop

more human-like AI. In this paper, we will largely emphasize

on the innateness of filler and role in NLR, and expect NLR

models to learn these important concept during training. In

Section IV, we will furthermore propose a behavioral strategy

as a preliminary method trying to capture this innate concept.

In this paper we demonstrate by experiment that three

state-of-the-art, attention-based NLR models tend to overfit

on fillers in training data, and they are unable to unbind role

from filler in test data with unseen fillers. Thus, we propose a

new challenge, Unseen Filler Generalization (UFG), for NLR

models. We reconstruct two reasoning datasets by updating

test data with unseen fillers, with the intention to evaluate the

model’s ability of filler generalization. After that, we take the

first step toward solving this challenge by proposing a strategy

of Stochastic Entity Replacement (SER). SER is a one-shot

data-driven training approach to force model to unbind role

from filler during training phase. We show that by adopting

SER, the reasoning performance toward unseen fillers in test

data can be improved significantly.

The main contributions of this study are summarized as

below:

1) To our knowledge, this is the first work that directly

points out the unseen filler generalization problem ly-

ing within the attention mechanism of NLR models.

We investigate into three state-of-the-art models: En-

tity Network, Working Memory Network and Universal

Transformers.

2) As most of the existing reasoning datasets are not

suitable for testing the filler generation capability, here

we release two modified NLR datasets (UFG-bAbI,

UFG-CLUTRR) 1 to evaluate models’ capability of filler

generalization.

3) We propose a general one-shot learning strategy to solve

this task, and show that it does improve the UFG ability.

The remainder of the paper is structured as follows. In Sec-

tion II, we perform analyses on three state-of-the-art models

to demonstrate the filler generalization problem. In Section

III, two augmented datasets, UFG-bAbI and UFG-CLUTRR

1https://github.com/ntumslab/ufg

are detailedly introduced as well as the performance of state-

of-the-art models. In Section IV, we introduce the details of

SER along with the corresponding experiments. Finally, the

conclusion is summarized in Section VI.

II. FILLER GENERALIZATION PROBLEM

This section offers a deeper analysis about the overfit-

ting of fillers in several existing models. Here we choose

three state-of-the-art, attention-based models in NLR, Univer-

sal Transformers (UT) [6], Working Memory Network (W-

MemNN) [18], and Entity Network (EntNet) [19]. Universal

Transformers model is the leading representative from self-

attentive recurrent sequence models. In addition, among all

the attention-based memory models, Working Memory Net-

work introduces relational components while entity modeling

concept is proposed in Entity Network.

We use task 1 of the bAbI dataset to demonstrate the

overfitting toward namesets in training data. Table I gives

a simple example of the task. The task is composed of

stories and queries regarding four persons and their action.

Each sentence in a story states that one person moves to

somewhere else, and the final query is a question simply

asking the location of one of the four persons. In task 1 of

the original bAbI dataset, there are only four constant names

among all training, validation, and test data, which are John,

Mary, Sandra, and Daniel. To examine the reasoning capability

when encountering unseen names, we create new test data by

substituting the names in the original test data into novel ones,

for example, Alice, Bob, Carol, and Dave.

We then first train all three models with original training

and validation data. And after training the models as noted

in original papers, we separately test the models with original

test data and new test data. We will show and analyze the

phenomenon that the trained models tend to perform better

on the original test data, and significantly worse on the new

test data. Since the model design differs among all three

models, below we provide diverse analyses to explain the

observation. Nevertheless, the ideas behind the following three

demonstrations are similar, which are to show that the models

learn some neuron-level patterns that benefits the reasoning

with seen names, but such patterns vanish when confronting

unseen entities.

A. UT: Universal Transformers

Universal Transformer [6] is one of the latest state-of-the-

art models in NLR. Fig. 1 presents the layout of UT. Based
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Fig. 1: The network diagram of UT.

upon vanilla Transformer [5], UT emphasizes recurrence over

depth and also add dynamic per-position halting mechanism.

The input story sentences (s1...sL) along with query q are

encoded using positional encoding first. Next, self-attention

layer repeats in variable iterations determined by an Adaptive

Computation Time algorithm proposed in [20]. In each itera-

tion, queries Q, keys K, and values V of each hidden state are

retrieved with parameter matrices. Each hidden state attends

to others through a compatibility function of its own Q and

other’s K. For bAbI tasks, only the encoder part of the model

and a succeeding multi-class classifier are used. The formula

of the scaled dot-product attention is:

Attention(Q,K,V ) = So f tmax(
QKT
√

d
)V

where Q,K and V are queries, keys and values of hidden states,

and d is the number of columns of Q,K and V .

We first trained a UT model with original training data till

it achieves error < 5%. Next, we focus on the first iteration

of self-attention layer, which directly operates self-attention

mechanism among input sentences. We classify the input

sentences and queries by the name they involve, into four

groups. Then we examine the attention distribution of each

group of query, to each group of input sentences.

Fig. 2(a) shows that after trained with original training data,

when testing with the same nameset (John, Mary, Sandra,

Daniel), queries can be perfectly attended to the exact sen-

tences containing the same name, so as to perform succeeding

reasoning task. However, this ability is only limited to the

names appearing in the training data. In Fig. 2(b) we can see

that when using unseen names in test data, model loses the

ability to attend queries accurately, and thus may not perform

the task well. We expect UT as a less entity-centered model, as

well as possessing similarity-based self-attention mechanism

to be free from problem of filler generalization. It turns out

even the latest model still suffers from it.

B. W-MemNN: Working Memory Network

Working Memory Network [18] is a model that combines

Memory Network and Relational Network [21]. It consists of

three main modules: an input module, an attentional controller,

and a reasoning module. Fig. 3 presents the layout of W-

MemNN. The input story with sentences (s1...sL) is first en-

coded by gated recurrent unit (GRU), into memories m1...mL.

Next, several hubs with multi-head attention mechanism are

sequentially arranged, to extract information from m1...mL.

Each attention head has an independent projection matrix W
to calculate the attention α toward every sentence. Finally, the

hidden state of all hubs joint pairwisely together with query,

and go through the reasoning module, to generate the answer

to the query. With the same design of the original paper, we

use four hubs and eight-headed attention mechanism in each

hub. Within each attention head, the formula of the attention

toward sentence memory mi is:

m′i =Wmmi

αi = So f tmax(
uT m′i√

d
)

where Wm is the projection matrix of attention head m, u is the

query embedding or previous hub’s output, d is the dimension

of mi, which acts as a normalizer here.

We first trained a W-MemNN using original training data till

early stopping is performed2, and then observe the attention

distribution toward each sentence. We can see that in Fig.

4(a), where the original test data is used, each attention

hub (consisting of 8 consecutive attention heads, namely 1-

8, 9-16, 17-24, 25-32) has high attention level to sentences

containing one specific name. This phenomenon shows that

W-MemNN probably performs reasoning in the original test

data by assigning each attention hub to take charge of one

name, and store related information of that name. However, in

Fig. 4(b), this phenomenon vanishes when the new test data

with unseen names are used. With new test data, attention

hubs can not focus on specific name as they did with original

test data. That is to say, machine possibly learned overfitting

specialization toward seen names in training data, and is not

capable of dealing with unseen names in the new test data.

C. EntNet: Entity Network

Entity Network [19] is the first memory network designed

for learning and memorizing entities in latent space. Fig. 5

presents the layout of EntNet. The model consists of three

main modules: an input encoder, a dynamic memory, and

an output layer. The input story with sentences (s1...sL) is

first encoded using positional encoding and fed into recurrent

dynamic memory component. As the sentence embedding

feeding into model one by one, independent memory slots

update their hidden state according to the input gate level g of

each slot toward the sentence. Finally, the answer to the query

is calculated according to the content h of each memory slot,

2W-MemNN experiment code is based on the github repository:
https://github.com/jgpavez/Working-Memory-Networks
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(a) UT with seen entities (b) UT with unseen entities

Fig. 2: The analysis of self-attention mechanism of UT. Queries and sentences are classified into four groups according to the name involved.
In Fig. 2(a), we can see query attends well to the sentences of same group. In Fig. 2(b), however, query attends disorderly.

Fig. 3: The network diagram of W-MemNN.

query embedding q, and the attention level p of each slot to

the query. Specifically, the update rule of the dynamic memory

is:

g j← σ(sT
t h j + sT

t w j)

h̃ j← φ(Uh j +V w j +Wst)

h j← h j +g j� h̃ j

h j← h j
∥
∥h j

∥
∥

where h j is the hidden state stored in memory slot j, w j is the

“key” of memory slot j, and g j is the gate level of memory

slot j when encountering st . U , V , W are transition matrices

in regard of updating dynamic memory. And the formula in

output module is:

p j = So f tmax(qT h j)

u = ∑
j

p jh j

y = Rφ(q+Hu)

where q is the question embedding, and p j is the attention

level that the model put on memory slot j, when confronting

the query q. H, R are transition matrices to retrieve the output.

After an EntNet is trained with designed early stopping

criteria3, we probe the gate and attention distribution in each

memory slot during different phases. Fig. 6(a) and Fig. 6(b)

both consist of four subplots. Each subplot is related to the

sentences containing one certain name. In each subplot, the

left part shows the gate level of each memory slot during

sentence feeding. The right part of the subplot is the attention

level of each memory slot during answering. We can see that

in Fig. 6(a), gate level during sentence feeding and attention

level during answering align similarly in all four subplots.

Moreover, in each subplot there are one or more dominant

memory slots (notated in bold with *) that have at the same

time both high gate level during sentence feeding and high

attention level during answering. This means that the dominant

memory slot is responsible for both storing and retrieving

information related to the certain name. It is probable that

EntNet learns to arrange memory slots to take charge of

specific name entity. However, in Fig. 6(b), when confronting

unseen entities, the phenomenon vanishes. In all four subplots

of Fig. 6(b), no memory slot has at the same time both high

gate level during sentence feeding and high attention level

during answering. This means that the model may not perform

reasoning task well in the way it did with seen name entities.

III. DATASET DESIGN AND EXPERIMENT

A. Dataset

In order to examine filler generalization capability of an

NLR model, we propose a task called Unseen Filler General-

ization (UFG). In UFG we randomly replace name entities in

3EntNet experiment code is based on the github repository: https:
//github.com/jimfleming/recurrent-entity-networks
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(a) W-MemNN with seen entities (b) W-MemNN with unseen entities

Fig. 4: The analysis of attention mechanism of W-MemNN. Sentences are classified into four groups according to the name involved. The
attention level of each attention head toward each group of sentences are displayed. In Fig. 4(a), each attention hub (attention head 1-8,
9-16, 17-24, 25-32) is specialized to attend to one group of sentences. In Fig. 4(b), however, attention heads attend disorderly.

Fig. 5: The network diagram of EntNet.

the test data with unseen ones which are not existing in the

training data. Formally, we create an unseen entity pool first,

and UFG-modification means to pick certain number of name

entities from the pool, and replace the name entities in test data

respectively. In this way, while still evaluating the reasoning

ability of models, UFG confines the evaluation toward unseen

name entities, which makes the evaluation rely greatly on the

generalization capability of models.

In this work, we propose two datasets, UFG-bAbI and UFG-

CLUTRR as our benchmarks. UFG-bAbI and UFG-CLUTRR

are variant versions of two widely representative tasks, bAbI

[2] and CLUTRR [22], [23]. The former is composed of

logic tasks that a reasoning system should require; the latter

measures a reasoning system’s systematic generalization of

logic rules by evaluating on held-out combinations of relation.
1) UFG-bAbI Dataset: bAbI is designed to simulate human

reasoning between entities and relations. A typical story and

question of bAbI is depicted in the left part of Table I. We

apply UFG-modification to bAbI dataset and yields the UFG-

bAbI dataset to evaluate filler generalization capability. In this

work, only tasks in bAbI that contains name entities in stories

and queries are selected. We do not consider tasks that the

name entities exist in answers because it means that models

need to make prediction on a new class when meeting unseen

filler, which is much more challenging. The final chosen tasks

are Task 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20. Novel

entities are randomly sampled in test data as illustrated in the

right part of Table I.
2) UFG-CLUTRR Dataset: CLUTRR is proposed to eval-

uate combinatorial generalization ability on relational reason-

ing. Table II shows an example with k=3, where k stands for

the length of the reasoning path. Given kinship description in

story, the machine is asked to predict the relationship between

the first entity and the last one. In this work, “k=2,3/k=2”,

“k=2,3/k=3”, “k=2,3/k=4” tasks are chosen. For example,

“k=2,3/k=2” means that the reasoning path may be 2 or 3

in training data, and would be 2 in test data. We apply UFG-

modification to the dataset generation process to yield UFG-

CLUTRR dataset.

B. Benchmarking the Current NLR Models

We then use the proposed UFG-bAbI and UFG-CLUTRR

datasets as benchmarks to test the ability of filler generaliza-

tion on the three NLR models. In addition to directly solving

tasks with models, we also perform two embedding methods,

GloVe [24] and BERT [25], to examine whether lexical and

contextualized embeddings would give help. We will first

elaborate the experiment setup, and then reveal our result and

discussion.
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(a) EntNet with seen entities (b) EntNet with unseen entities

Fig. 6: The analysis of attention mechanism of EntNet. Sentences and queries are classified into four groups according to the name involved.
The gate level of each slot toward each group of sentence during sentence feeding is displayed in the left part of each subplot. The attention
level during answering is displayed in the right part of each subplot. In Fig. 6(a), we can see in each subplot the left and right part align
similarly, and there are one or more dominant memory slots (notated in bold with *) with both high level of left and right part at the same
time, which means to be responsible for both storing and retrieving information related to the certain name. However, in Fig. 6(b), this
phenomenon vanishes.

Training/Validation Data Test Data

k = 3

Timothy is Amy’s son.
Timothy has a wife who is Rose.
...
Elbert is a son of Rose.
Predict: Elbert is Amy’s grandson.

Kaiden has a daughter called Matilda.
Lennox is Matilda’s husband.
...
Gage is Lennox’s son.
Predict: Kaiden has a grandson who is Gage

Name Entities {Timothy, Amy, Rose, Elbert} {Kaiden, Matilda, Lennox, Gage}
TABLE II: Training/validation instance of CLUTRR and test instance created by UFG-modification are illustrated. The training and validation
data is sampled from the same set of names while the test data is sampled from novel entities. Here k=3 means the length of relation path
is three, and therefore four name entities are involved.

1) Experiment Setup: For UFG-bAbI, we follow the design

of bAbI that each story is composed of four name entities, and

the size of seen entity pool and unseen entity pool are exactly

four. For UFG-CLUTRR, following the settings from original

paper, each story contains k+1 name entities, while the size

of seen entity pool and unseen entity pool are both 300. Both

datasets are generated with UFG-modification depicted above.

We train the models using the training data and decide the

stopping criteria using validation data, both of which are with

seen entities. Model performance are evaluated using test data,

which is with unseen entities.

We first examine the performance of all three models on

the original bAbI and CLUTRR dataset. Next, we test the

model with UFG-bAbI and UFG-CLUTRR, to demonstrate

the inherent performance decay with unseen entities. The result

serves as a primary baseline. Next, a simple solution one might

come up with to tackle with unseen entities, is to make use

of pre-trained word embeddings, since pre-trained embeddings

might be able to solve the out-of-vocabulary nature of unseen

fillers. Thus, we conduct two naive embedding methods as

baseline solutions. The first one is to use pre-trained GloVe

embeddings [24]. The other one is to make use of the contex-

tualized sentence embeddings, BERT [25], such that not only

to solve the out-of-vocabulary problem, but also to catch the

contextualized meaning surrounding the unseen fillers. Two

embedding methods are tried on UT, which is the best model

among three.

C. Results and Discussion

1) UFG-bAbI: Table III shows the performance of three

models in original bAbI and UFG-bAbI, on different tasks. We

can see that all three models perform well in original bAbI,

while the performance drops significantly in UFG-bAbI. The

value in the parentheses indicates the performance degradation

of UFG-bAbI compared to original bAbI tasks. We can also

observe a trend that the filler generalization capability im-

proves from EntNet to W-MemNN then to UT, as the degree

of entity-centered characteristic decreases. However, even in

UT, there is still a large gap of the accuracy between seen

and unseen fillers. In addition, we experiment on the pre-

trained embedding method with UT as showed in the last

two columns. The result tells that the pre-trained embedding

method gives limited help, and even worse to have negative

effect in some tasks. With the experiment result, we want to

47

Authorized licensed use limited to: National Taiwan University. Downloaded on June 21,2021 at 10:48:56 UTC from IEEE Xplore.  Restrictions apply. 



point out that the essence to solving UFG problem may not

lie in the way to do with fixed, pre-trained word or sentence

embeddings.

It is worth noting that Task 20 performs strongly and doesn’t

degrade as expected. The UFG-bAbI worst case is still 0.882 at

least and in UT the accuracy is nearly perfect. If we look into

the data, we can find that each question sentence is followed

by an informative story line immediately which is sufficient

to answer the question. And there is no multi-hop case. For

example, in story/question: “Yann went to the kitchen. Why

did Yann go to the kitchen? thirsty,“ model can easily infer

answer by memorizing kitchen and thirsty pair. Althought

Yann is unseen filler here, the model is trained to only look

for the last noun (kitchen) in the previous sentence instead of

name entities (Yann).

2) UFG-CLUTRR: Table IV shows the performance of the

three models in the original CLUTRR and UFG-CLUTRR

dataset under different task settings. In the left part of the

table, all models perform relatively well on original CLUTRR

dataset. The error arises when k in the denominator increases,

which is consistent with the finding in the original paper

that task difficulty increases with longer reasoning path. The

“Unseen” part of the table shows the performance degradation

due to unseen filler generalization challenge. We can see that

all models have a hard time to handle the unseen entities,

and the accuracy drops even more significantly than that in

UFG-bAbI. It is probably because CLUTTR is inherently more

difficult than bAbI. Again, we observe that UT suffers from

filler generalization less than the other two models, and neither

GloVe nor BERT provides beneficial effect to the problem.

IV. STOCHASTIC ENTITY REPLACEMENT

Seeing that pre-trained embeddings method such as GloVe

and BERT provide limited help to UFG problem, here we pro-

pose a data-driven one-shot learning approach called Stochas-

tic Entity Replacement (SER). SER aim to prevent model from

overfitting to name entities in training data, and guide model

to treat the fillers more generally. Simply saying, we replace

the name entities in training data stochastically. To elaborate,

the name entities in each training sample are replaced with

unseen ones during every batch iteration. That is to say, models

now deal with every unseen filler for “one-shot” in every

iteration, and will never encounter the same entity again during

the whole process. In this way, SER is actually providing

infinite novel entities for the training phase, until the early

stop condition is met. The main purpose of creating diversity

of entities in training data is to make sure the model does not

learn to embed information in the specific entities.

By applying SER, training difficulty will increase because of

facing distinct name entities in each batch iteration. However,

it is exactly the increasing of training difficulty that force

models not to overfit to specific name entities, and enhance

the generalization ability. Models trained with this method may

generalize better since they are facing same distribution of en-

tities between training and test data. With a broader viewpoint,

we force the model during training phase to optimize toward

the actual goal, the generalization toward unseen fillers.

In the cognitive science perspective, SER is the hybrid

training strategy that bridging behavior learning and language

innateness. By designing environmental factors (SER data-

driven training), neural models learn to develop language

innateness properties (unseen filler capability).

In our implementation, as to replace the entities with unseen

ones in every iteration, what we technically do is to randomize

the embedding of name entities at the beginning of each batch

iteration. In this way, novel random embedding is treated as a

brand-new entity just like using a novel name entity in high

level. And model will not bind role to specific entity since the

optimization of name embedding during training is nullified.

A. Performance of SER on UFG

SER is a general strategy that can be applied to an arbitrary

NLR model. Here we apply it to the three models and test

on UFG-bAbI and UFG-CLUTRR datasets. The experiment

setup and training details follow the same configurations as

depicted in Section III.

1) UFG-bAbI: Table V shows the performance of models

trained with SER in UFG-bAbI. The value in parentheses

indicates the difference of accuracy comparing to performance

without SER in Table III. In general, the average performance

of SER-augmented models has well improved. Among three

models, SER-UT performs best, but SER-EntNet gains the

most improvement comparing to the result without SER. It

is reasonable that EntNet benefit most from SER, since it is

the most entity-centered model among three. However, we

also notice that in some tasks, applying SER does not gain

improvement and even worsen the performance. It is probably

because those tasks are relatively difficult to be learned with

SER, so that models could not converge before early stopping

was met. This phenomenon is prominent especially in task

2 and 3, which is consistent with previous results [19] that

the models might have a hard time solving multiple supports

problem in stories.

2) UFG-CLUTRR: Table VI presents the experimental re-

sults of SER method in UFG-CLUTRR. In general, all SER-

augmented models achieve better accuracy regardless of the

length of k. SER-UT again obtains the best result among three.

In addition, the accuracy decreases as the underlying reasoning

path increases, confirming with the design of logic rules

generalization [23] that task gets harder with longer reasoning

path. We also notice that the improvement by SER is much

greater in UFG-CLUTRR than in UFG-bAbI. However, even

though SER-augmented models greatly improve the result

toward UFG, the gap between performance of seen and unseen

entities remains noticeable, which means there are still room

to improve for this filler generalization problem.

B. Analysis of SER

To further investigate the effect of SER to the models, we

conduct the same analysis as in Section II. We want to verify

that whether the failure of attention mechanism toward unseen
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Task Seen (bAbI) Unseen (UFG-bAbI)
EntNet W-MemNN UT EntNet W-MemNN UT GloVe-UT BERT-UT

1 1.000 1.000 1.000 0.337 (-66%) 0.526 (-47%) 0.557 (-44%) 0.564 (-44%) 0.502 (-50%)
2 0.970 0.998 0.992 0.355 (-63%) 0.478 (-52%) 0.563 (-43%) 0.408 (-59%) 0.482 (-51%)
3 0.966 0.835 0.971 0.531 (-45%) 0.508 (-39%) 0.579 (-40%) 0.516 (-47%) 0.372 (-62%)
6 1.000 1.000 0.998 0.728 (-27%) 0.787 (-21%) 0.844 (-15%) 0.813 (-19%) 0.832 (-17%)
7 1.000 0.979 0.973 0.657 (-34%) 0.702 (-28%) 0.745 (-23%) 0.748 (-23%) 0.772 (-21%)
8 1.000 0.996 0.984 0.427 (-57%) 0.693 (-30%) 0.749 (-24%) 0.699 (-29%) 0.723 (-27%)
9 1.000 0.999 1.000 0.712 (-29%) 0.779 (-22%) 0.894 (-10%) 0.789 (-21%) 0.873 (-13%)
10 1.000 0.995 0.999 0.898 (-10%) 0.667 (-33%) 0.947 (-5%) 0.929 (-7%) 0.901 (-10%)
11 1.000 0.999 1.000 0.549 (-45%) 0.748 (-25%) 0.772 (-2%) 0.779 (-22%) 0.627 (-37%)
12 1.000 0.999 1.000 0.758 (-24%) 0.772 (-23%) 0.772 (-2%) 0.774 (-23%) 0.770 (-23%)
13 1.000 1.000 0.998 0.820 (-18%) 0.880 (-12%) 0.940 (-6%) 0.938 (-6%) 0.927 (-7%)
14 1.000 0.987 0.982 0.803 (-20%) 0.481 (-51%) 0.931 (-5%) 0.826 (-16%) 0.912 (-7%)
20 1.000 1.000 1.000 0.978 (-2%) 0.882 (-12%) 1.000 (0%) 0.999 (0%) 0.999 (0%)

Avg 0.995 0.983 0.992 0.658 (-34%) 0.685 (-30%) 0.792 (-20%) 0.752 (-24%) 0.746 (-25%)

TABLE III: Test accuracy of bAbI and UFG-bAbI are reported when using EntNet, W-MemNN, UT as reasoning models. The left part of
table presents models tested with seen entities while the right part with unseen entities. GloVe-UT and BERT-UT stand for using GloVe and
BERT for pre-trained word embedding with UT as the model. Value inside parentheses indicates the performance degradation of UFG-bAbI
compared to original bAbI tasks.

Task Seen (CLUTRR) Unseen (UFG-CLUTRR)
EntNet W-MemNN UT EntNet W-MemNN UT Glove-UT BERT-UT

k=2,3/k=2 0.962 0.923 1.000 0.399 (-59%) 0.302 (-67%) 0.616 (-38%) 0.491 (-51%) 0.495 (-51%)
k=2,3/k=3 0.868 0.874 0.973 0.422 (-51%) 0.417 (-67%) 0.455 (-53%) 0.408 (-58%) 0.507 (-48%)
k=2,3/k=4 0.757 0.741 0.710 0.363 (-52%) 0.389 (-48%) 0.372 (-48%) 0.382 (-46%) 0.302 (-57%)
Avg 0.862 0.846 0.894 0.395 (-54%) 0.369 (-56%) 0.481 (-46%) 0.427 (-52%) 0.435 (-51%)

TABLE IV: Test accuracy of CLUTRR and UFG-CLUTRR are reported when using EntNet, W-MemNN, UT as reasoning models. The left
part of table presents models tested with seen entities while the right part with unseen entities. Glove-UT and BERT-UT stand for using
GloVe and BERT for pre-trained word embedding and UT as the model. Value inside parentheses indicates the performance degradation of
UFG-CLUTRR compared to the original CLUTRR tasks.

name entities are resolved by SER. Here we conduct the

analysis on UT and EntNet, which gain notable improvement

with SER.

Fig. 7(a) shows the self-attention distribution in UT, of each

group of query to each group of sentence. While in Fig. 2(b)

we observe that UT cannot attend query to the sentence of

same group when facing unseen names, here we show that

by training with SER, UT can attend correctly in the new

test data, and thus gain the capability of UFG. On the other

side, Fig. 7(b) shows that EntNet trained with SER also exhibit

similar pattern we argue in Fig. 6(a), that for each unseen name

entity, one or more memory slots are dynamically allocated

for retrieving and storing information of that name. These

two demonstrations provide an insight that SER indeed causes

substantial influence to model training, and really can make

models into a more generalizable structure.

V. RELATED WORK

A. Machine Reasoning Datasets

Machine Reasoning is a recently emerging research direc-

tion in machine learning community [1]. Several natural lan-

guage reasoning datasets are proposed to address this problem.

bAbI [2] is the first synthetic textual reasoning on relational

reasoning. Some of the variants are introduced such as dialog-

based bAbI [26] and theory of mind [27]. CLUTRR [22],

[23] is a bAbI-like benchmark which evaluates combinational

task SER-EntNet SER-W-
MemNN

SER-UT

1 0.967 (187%) 0.510 (-3%) 1.000 (80%)
2 0.391 (10%) 0.455 (-5%) 0.415 (-26%)
3 0.523 (-2%) 0.505 (-1%) 0.513 (-11%)
6 0.953 (31%) 0.830 (5%) 0.931 (10%)
7 0.941 (43%) 0.798 (14%) 0.790 (6%)
8 0.984 (130%) 0.757 (9%) 0.975 (30%)
9 0.960 (35%) 0.849 (9%) 0.889 (-1%)
10 0.977 (9%) 0.752 (13%) 0.997 (5%)
11 0.706 (29%) 0.726 (-3%) 0.708 (-8%)
12 0.766 (1%) 0.765 (-1%) 0.973 (26%)
13 0.943 (15%) 0.944 (7%) 0.944 (0%)
14 0.869 (8%) 0.607 (26%) 0.971 (4%)
20 0.996 (2%) 0.980 (11%) 0.999 (0%)

Avg 0.844 (28%) 0.729 (6%) 0.854 (8%)

TABLE V: Performance of models training with SER on UFG-bAbI.
Test accuracy of SER-augmented models has well improves. Value
inside the parentheses indicates the difference of accuracy comparing
to performance without SER in Table III.

generalization of relations and model robustness. On the other

hand, for visual question reasoning, CLEVR [28] is proposed

to grounded language and vision. NLVR [29], successor of

CLEVR, presents strong challenge in current state-of-the-art

models. Otherwise, GQA [30] claims to be the first real

world image vision reasoning dataset. Note that, in Machine
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(a) UT with SER and unseen entities (b) EntNet with SER and unseen entities

Fig. 7: Improvement of attention mechanism toward unseen name entities after trained with SER. Fig. 7(a) shows that after UT trained with
SER, query attends well to sentences of the same group. Fig. 7(b) shows that after EntNet trained with SER, memory slots display similar
pattern as discussed in Fig. 6(a)

task SER-EntNet SER-W-
MemNN

SER-UT

k=2,3/k=2 0.785 (97%) 0.761 (152%) 0.846 (37%)
k=2,3/k=3 0.675 (60%) 0.503 (21%) 0.663 (46%)
k=2,3/k=4 0.555 (53%) 0.624 (60%) 0.545 (47%)
Avg 0.672 (70%) 0.629 (70%) 0.685 (42%)

TABLE VI: Performance of models training with SER on UFG-
CLUTRR. Test accuracy of SER-augmented models significantly
improves. Value inside the parentheses indicates the difference of
accuracy comparing to performance without SER in Table IV.

Reasoning community, all NLR datasets are synthetic and

still the prevailing trend [18], [31], [32], since the language

reasoning data need to be generated by handcrafted logic rules.

B. Machine Reasoning Models

Recently, several types of reasoning models are proposed.

One of the main stream is attention-based memory-augmented

neural network (MANN). Memory Networks (MemNNs) [4],

[33], [34] and neuro-inspired Neural Turing Machines (NTMs)

[35], [36] are the two representative categories of MANNs.

Inspired by MemNNs, Entity Network (EntNet) [19] make net-

work itself learn how to read and write the memory. To build

relations between memory hops, Working Memory Network

(W-MemNN) [18] augments relational reasoning module [21]

to separate memory module from reasoning module. Lastly,

by using self-attention layers and recurrent inductive bias of

RNNs, Universal Transformer (UT) [6] is proved to gain

even stronger reasoning capability. In addition to attention-

based memory models, ILP-based [37] model is the promising

knowledge representation and reasoning direction, which com-

bines statistical NLP parser and Inductive Logic Programming

module. The logical-based approach may treat the entities as

variables, and the unseen filler generalization problem seems

to be softened. However, it requires a robust and foreseeing

NLP parser to translate text into AMR (Abstract Meaning

Representation) structure and lacks the capability to train

reasoning model end to end.

C. Generalization in Machine Reasoning

Despite gorgeous performance in field of Machine Rea-

soning, it is often questioned whether the neural model can

predict examples out of training distribution correctly [7],

[8]. Reference [38] proposes SCAN for evaluating systematic

compositional skills of the model. In regard of exploring gen-

eralization ability of models, [39] examines systematic gen-

eralization in VQA domain, and [31] uses TPR-RNN model

to improve generalization among different tasks. However, the

above studies deal with generalization within seen entities, and

our work mainly focuses on discussing and analyzing unseen

filler generalization problem.

VI. CONCLUSIONS

We are the first work that points out the UFG problem

by showing deeper analysis to demonstrate the overfitting

phenomenon in modern attention-based reasoning models.

We show that while models seemingly perform superbly in

reasoning tasks, the attention mechanism in fact memorizes

the name entities in training data, and can not generalize to

new name entities. We expect a reasoning model should learn

the hidden logic rules rather than overfitting to specific name

entities. To evaluate filler generalization capability, we release

two NLR datasets (UFG-bAbI, UFG-CLUTRR), expecting

to facilitate this research direction. Futhermore, a one-shot

training strategy, SER, is also proposed as a simple, general,

yet promising solution to solve this task. Experiments show

that it provides decent improvement as a preliminary strategy.

The deeper insight within SER, and practical combination with

other NLR datasets will be fascinating future work to focus

on.
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