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Abstract

This paper demonstrates how machine learning methods can be applied to deal with a real-world decipherment problem where
very little background knowledge is available. The goal is to discover the linear order of a two-dimensional ancient script, Hi-
eroglyphic Luwian. This paper records a complete decipherment process including encoding, modeling, parameter learning,
optimization, and evaluation. The experiment shows that the proposed approach is general enough to recover the linear order
of various manually generated two-dimensional scripts without needing to know in advance what language they represent and how
the two-dimensional scripts were generated. Since the proposed method does not require domain specific knowledge, it can be
applied not only to language problems but also order discovery tasks in other domains such as biology and chemistry.
 2005 Elsevier B.V. All rights reserved.

Keywords: Ancient script; Decipher; Luwian; Hieroglyphic; Unsupervised learning; Estimation-maximization; Linear order; Discovery; Writing
system; Natural language process

1. Introduction

The Hieroglyphic Luwian script is a two-dimensional script discovered in middle Asia, preserved on rock dating
back to 700–1300 BCE [4]. Unlike modern scripts that possess a clear linear order for reading (for example, left-to-
right, top-down for English), the Luwian symbols seem not to be arranged regularly enough to indicate any specific
writing order (e.g., see the upper line in Fig. 1). This paper discusses a general process to discover the writing order
(e.g., see the second line in Fig. 1) for this type of two-dimensional script.

So far, there is no convincing evidence about the precise order of this script. A linguistic authority says “it is a
system which may leave in doubt the correct order of reading” [4]. Up to the present day there has not yet been
much effort focused on applying machine learning methods for decipherment. Knight and Yamada [5] propose a gen-
eral framework to discover the text-to-speech relationships for unknown scripts by applying a finite-state transducer
model together with the EM (Expectation-Maximization) algorithm to learn parameters. Sproat [7] claims that the
orthography of a language represents a consistent level of linguistic representation, and the mapping from this level
to surface spelling is a regular relation. He proposes to use a rule-based system (realized by finite state automata)
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Fig. 1. A snapshot of the two-dimensional Luwian script (upper) and one sample linear order of symbols (lower).

to encode the regularities. Both works aim at finding the relationships among writing symbols and their sounds. We
have not yet seen computational approaches for order discovery in any ancient writing system, including Hieroglyphic
Luwian.

The challenges of discovering the linear order for unknown scripts are threefold:

(1) Modeling: Without any knowledge or examples of linear order, we have to abandon enlisting help from either
supervised training or rule writing. This task is as difficult as asking somebody who knows no English to figure
out the linear order of a set of English characters written in two-dimensional manner. The challenge lies in how
to model this problem as something that can be handled by machine using unsupervised techniques.

(2) Complexity: In general the number of possible orderings increases exponentially with the number of symbols.
Hence we face a huge search space.

(3) Evaluation: As with all kinds of human discovery problems, there is no easily obtained linear data for this script,
which makes it hard to verify the results.

The next section describes how we model the linear-order discovery task as an unsupervised learning problem.
We also provide an intuition indicating how the proposed approach resembles what human beings might do for this
task. In Section 3, we show how the model described in Section 2 can be applied (and refined) to deal with a real-
world problem. Additionally, we will discuss how to reduce the search complexity to polynomial. We describe several
evaluation strategies and results in Section 4 and conclude in the last section.

2. Modeling

Our general strategy is as follows: we model the way the Luwians generated the script with Shannon’s noisy-
channel model [6], which allows us to further translate the problem into a traveling-salesman-like problem. We then
apply the EM algorithm to learn the parameters (i.e., a Luwian language model) within the model. Finally we apply
these parameters to compute the associated probability for each plausible order in order to extract the one with the
highest probability as the result.

2.1. Noisy channel model

We start by exploiting the noisy-channel model as shown in Fig. 2.
We assume that the ancient people have the original linear script in mind before writing, and then they carve the

scripts in a two-dimensional manner on the stone. When time passed (as did the Luwians), the only remains are the
two-dimensional scripts on the rocks as observed. Based on Shannon’s model, the original linear script is the input
X to the noisy channel. The way the Luwians wrote down the script can be treated as a noisy channel that perturbs
the original one-dimensional source text X into a two-dimensional appearance Y . This noisy channel (represented as
P(Y | X) here) is a black box to us since we do not know how those two-dimensional scripts were generated. Once
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Fig. 2. The noisy channel model representing how Luwian people wrote the script.

Fig. 3. (a) The two-dimensional English. (b)–(d) Three arbitrary linear orders.

the problem is modeled as a noisy channel, it is obvious that this order-discovery task can be represented as finding
the X that maximizes P(Y | X).

This formula can further be decomposed into two components, P(X) and P(Y | X), by Bayes’ rule (see Eq. (1)).1

P(X) can be generated by the language model of the script, which essentially stands for how frequently this script
should occur in a large sample of ancient Luwian literature. P(Y | X) can be treated as the noisy channel that represents
how the Luwian people wrote down the script. Shannon’s model together with Bayes’ rule tells us that the desired
linear order X should not only appear frequently in the Luwian literature (i.e., high P(X)), but also possess a high
chance of producing the observed two-dimensional script Y .

2.2. Linear order for known language

We would like to demonstrate the idea described in Section 2.1 with a toy example: we assume that we are asked
to find the linear order of a known two-dimensional language, say the English in Fig. 3(a), without being told how it
was generated.

argmax
X

p(X | Y) = argmax
X

p(X) ∗ P(Y | X) (1)

According to Eq. (1), we need to search for an order X that maximizes P(X)∗ P(Y | X). In this example, we ignore
P(Y | X), since we assume there is no indication of how this script was generated. Therefore we only need to maximize
P(X). In other words, whichever permutation of sequence appears to be valid English is a plausible candidate. People
can scramble the characters mentally, and sooner or later they will find out it probably means “good job!” (Fig. 3(b)),
as this permutation occurs more frequently to English speakers than others (e.g., gdbojoo! in 3(c) and goodj!ob in
3(d)). What happens in the human mind mimics the procedure of maximizing P(X), where meaningful sentences
possess higher P(X) than meaningless ones.

This toy example demonstrates that our model, to some extent, reflects how human beings solve the same puzzle.
A machine can also perform such an analysis, if it knows which English orders are more probable than others. One way
to compute this is to exploit an n-gram English language model, which can be easily obtained by a simple statistical
analysis of a large English corpus. Assuming that English letter-bigram probabilities are given, we can program the
machine to enumerate all possible orders and compute their associated probabilities (e.g., p(X) = p(goodjob!) =
p(g) ∗ p(o | g) ∗ p(o | o) ∗ p(d | o) ∗ p(j | d) ∗ p(b | j) ∗ p(b | o) ∗ p(! | b)). After that, we extract the sequence with
the highest probability as the result. The probability of 3(c) and 3(d) should be much lower than 3(b) since p(d | b)

in 3(c) and p(o |!) in 3(d) do not occur too often in English. In this sense, if the bigram language model is known,
then the linear-order discovering problem is similar to the traveling salesman problem in a graph (where the nodes
represent letters and the weighted links represent the corresponding bigram probability between letters), except that
the salesman does not have to go back to the origin.

1 In fact there should be an extra term P(Y ) in Bayes’ rule deduction. However, P(Y ) can be ignored in the optimization process since it models
the probability of the observed output, which should be identical for all X.
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Fig. 4. Applying EM to refine the language model and P(X) recursively.

2.3. EM for unknown scripts

Section 2.2 shows that it is possible to recover the linear order of a known script from its two-dimensional form.
However, this approach is not applicable to the decipherment of the Luwian script, whose language model is unknown.

On the other hand, when the order probability P(X) is known, it is possible to apply the method of “fractional
counting” to generate the n-gram probabilities by counting relatively how many times each n-gram appears in each
possible ordering. For example, if there are three possible orders with associated probability 20%, 30%, and 50%, and
the bigram P(e | s) occurs once, once, and twice respectively in these three sequences, the fractional count of P(e | s)
will be 1 ∗ 20% + 1 ∗ 30% + 2 ∗ 50%. Finally, the language model can be constructed by normalizing the fractional
count values. Statistically speaking, “learning the language model” and “learning the associated probability for the
ordered sequences P(X)” are dual problems, in the sense that one can provide sufficient information to understand
the other. Unfortunately we know neither for Luwian. In this case we propose to use the idea of EM [2] to learn both
models simultaneously, as shown in Fig. 4.

For the initialization, we assign certain probabilities (e.g., a uniform distribution) to all the n-gram parameters
in the language model. In the M step of EM, we enumerate all the possible linear orders X and use the imperfect
language model learned so far to generate the associated probabilities P(X). In the E step of EM, we count how
frequently each n-gram appears for all possible orders X, weighted by their associated probability P(X), to generate
a refined language model. Then the new language model can be exploited to create a more precise P(X). It has been
proven that if we execute the E step and M step iteratively, EM will ultimately converge on a locally optimal solution
(i.e., the parameter settings for the language model will lead to a locally optimal P(X)). Once the language model is
learned, we can finally apply it to compute the associated probability for each order and extract the most probable one.

2.4. Discussion

In fact, what our program does is similar to asking a human to learn the linear order for some script he or she
has never seen. Why is it intuitively possible at all? In this section, we would like to provide an insight showing that
our proposed method is a generalization of one plausible decipherment process. Thinking of what methods human
beings might use to deal with such an ordering-decipherment task, first we might try to group symbols that co-occur
frequently in the same neighborhood. Based on the co-occurrence frequencies, we might be able to hypothesize some
plausible order in certain less ambiguous areas (e.g., corner areas). Then we could propagate the order information
from those less-ambiguous areas to the remaining areas and refine our belief in the co-occurrence frequencies. These
steps could be applied repeatedly either until one plausible order is determined or until we learn that the current
hypotheses are not applicable to the remaining areas, in which case we would need to backtrack by choosing other
hypotheses.

This decipherment process is a simplified version of what our program does. The process of choosing the most
plausible direction based on current beliefs (e.g., what symbols co-occur with others frequently) corresponds to the
“maximization” step in the expectation-maximization (EM) algorithm. Using the currently plausible order information
to modify the existing beliefs resembles the “estimation” step in EM. The major difference is that human beings can
take only a small amount of highly possible choices into account, but the machine is able to take all situations into
account (and furthermore, weight them by the possibilities of occurrence) to make a better decision.
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Fig. 5. The symbols with faces in adjacent rows always face oppositely.

The power of our approach comes from its ability to capture hidden subtle regularities. Although the program
knows nothing about a language in the beginning, it starts to absorb information and refine its understanding about
the language after more and more perturbed scripts are seen.

3. Deciphering

While Section 2 illustrates the basic idea of applying the noisy-channel model and EM to handle the order-discovery
problem, in this section we address practical issues we have faced while implementing the deciphering program.

3.1. Assumptions

In order to simplify the computation, we make two assumptions. The first assumption is that the Luwians always
write the next symbol in the neighborhood of the current symbol. The definition of neighborhood symbols (say, X

and Y ) is twofold: the straight line between the center of X and Y cannot touch any other symbol, and X and Y

have to be in the same or adjacent columns (e.g., c1, c2, and c3 in Fig. 5 are columns). Under this assumption we
cannot jump across a symbol to connect to the next symbol. This assumption is plausible since it is the case for most
writing systems.2 With this assumption, complexity can be reduced from O(n!) to O(bn), where b is the average
branching factor (average number of neighbors for Luwian Hieroglyphics per symbol), since for each symbol there
are on average b candidates to be its successor.

Furthermore, linguists agree that the big picture (external appearance) follows the so-called “boustrophedon”,
which means that alternate rows progress in opposite directions, as in plowing a field, shown by the dotted line in
Fig. 5. This hypothesis is convincing, since the symbols with human or animal shapes tend to face different directions
in subsequent rows, as circled in Fig. 5. This assumption implies that we cannot move backward horizontally within
one row. In the boustrophedon writing the first row can be either left-to-right or right-to-left. We choose “right-to-left”
in the experiment because in the data we used there seems to be a clear starting point in the upper-right corner of the
script.

With these two assumptions, one can further reduce the total number of plausible orders to O(2k) where k is the
total number of columns. Since the external appearance is known, our program has to determine only the precise
progress direction locally. The first assumption implies that there are only two choices (top-down or bottom-up)
for each column, and thus the plausible number of orders is O(2k). It is still exponential, but as will be shown in
Section 3.4, these two assumptions allow us to apply the forward-backward algorithm for fractional counting, further
reducing the overall complexity down to polynomial.

2 There are only very few writing systems that violate this assumption, for example, the “honorific inversion” for Egyptian writing.
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Fig. 6. Digitizing the Luwian script.

Fig. 7. The graph representation of the of the data in Fig. 6.

3.2. Encoding

Encoding of the Luwian text reproductions into computer friendly format was done manually. There are 9 rows
(separated by rigid horizontal lines) and 753 symbols total (73 distinct) in the page we tested on. As will be shown
in the evaluation section, 753 symbols are essentially enough for determining the order for many languages. For
each symbol, we first recognize it (i.e., assign it a symbol identifier such as “arrow” or “carrot”) and then record its
two-dimensional position (as shown in the middle table in Fig. 6).

Once the positions of the symbols are determined, we can generate the relative direction from one symbol to
the other automatically (we use the clock direction as shown in the upper right part of Fig. 6). The true input to
our discovery program is the table with recognized symbol identifiers and their relative directions to neighboring
symbols, as demonstrated in Fig. 7. The arrows show the plausible directions to proceed. For example, there is a two-
way channel between symbols S1 (arrow) and S2 (underscores). Note that there is no link in between a middle node
and a node in the other column (e.g., no connection between S4 and S1) since such progression will inevitably violate
the assumptions we make. Also, there is no cycle involving nodes from different columns, or one of our assumptions
will again be violated.

3.3. Modeling the weight of the links

Once the information is recorded as in Fig. 6, the next step is to generate the associated weight automatically
for each link such that the sum of the weights in a path reflects the possibility of occurrence for that path. We have



S. de Lin, K. Knight / Artificial Intelligence 170 (2006) 409–421 415
two models for the weights from one symbol Wn to its neighbor Wn+1, borrowed and modified from what we have
described in Section 2.

The first (“model 1”) is to model the weight as the bigram Luwian probability P(Wn+1 | Wn), which is exactly the
same as we used in Section 2.2. The limitation is that we ignore the noisy channel (i.e., how the Luwians generated
the two-dimensional script) and rely completely on how frequently a sequence occurs in the literature.

To compensate for this limitation, in the second model (“model 2”) we choose to use P(Wn+1 | Wn) ∗ P(Dn,n+1)

to represent the weight. P(Dn,n+1) is the direction from the current symbol to the next one. The idea behind this
model is that we assume the ancient Luwian people preferred progressing in some directions more than others, and
that this preference is independent of the symbols themselves. From the decipherment point of view, this model uses
two types of independent information to compensate for the weakness of each. That is, if several symbols are equally
probable as successors, then the model will choose the one in the preferred direction; on the other hand, if several
directions are equally probable for progressing, the model will pick the symbol that is most plausible to follow the
current one. For both models, we have to apply the EM algorithm to learn the associated parameters. For initialization,
we tried uniform distribution for all weights as well as random assignments. The results show that EM converges to
very similar results for various initializations we have tried.

3.4. Complexity

As illustrated in Section 3.1, even under our two assumptions, the complexity of this deciphering task is still
exponential. This is because in the EM phase, we need to generate the probabilities for all 2k different orders before
performing the fractional counting. The script used for the experiment has on average 30 columns per row, and
unfortunately, 230 is computationally intractable.

However, we can benefit from our assumptions and do much more than ease the complexity from a higher order
exponential O(bn) to a lower level exponential O(2k). We have found that with these two assumptions, it is possible
to apply the forward-backward algorithm [1] for fractional counting, without having to list all plausible orders, which
reduces the complexity to polynomial.

The forward-backward algorithm is a dynamic programming algorithm. We propose to use it to store the alpha
and beta values for each link in the graph. The alpha value is the aggregated probability from the starting point to
the source of the link while the beta value is the aggregated probability from the destination of this link to the ending
point. In other words, the alpha value of a link is the sum of all the path probabilities that reach this link from the
starting point, and the beta value is the sum of the probabilities of all paths leaving from the link and terminating at
the ending point. The fractional count of a link is equal to its own weight times its alpha value times its beta value
divided by alpha[end], which is the alpha value of the last node.3

There are two types of links in the graph. One is the link that progresses horizontally (e.g., link S3 → S5 in Fig. 8),
the other is the link that progress vertically (e.g,. link S5 → S1). For the link traverse horizontally, its alpha value
inherits only from the previous vertical link that is in the same column (e.g., Eq. (2a) shows the alpha value for link
S3 → S5). Although there are three incoming links to node S3 (i.e., S1 → S3, S2 → S3, S4 → S3), the other two do
not contribute to the alpha value of link S3 → S5, since coming from S1 or S2 to S3, the next node we have to visit
is S4 instead of S5, under our second assumption. In other words, it is illegal to progress from S3 to S5 unless all the
other nodes (i.e., S4) in the same column are visited, so the alpha value of S3 → S4 can be based on just the alpha
value of S4 → S3. Similarly the beta value of S3 → S5 can be generated from the beta value of S5 → S1 link, but not
the S5 → S6 or S5 → S4 link, because the second assumption tells us that after moving from S3 to S5, the next node
to visit has to be S1 rather than S4 or S6 (see Eq. (2b)). Eqs. (2a) and (2b) tells us that for horizontal links, the alpha
value and beta value are independent of each other, thus the dynamic programming condition holds. Likewise, for the
links that progress vertically, such as S5 → S1, the alpha value is the weighted sum of all the incoming alpha values
from the previous column (Eq. (2c)). The beta value of S5 → S1 can be produced based on the beta value of S1 →
S2 (Eq. (2d)). Eqs. (2c) and (2d) show that for a vertical link, its choice of previous route (i.e., alpha value) cannot
affect its choice of future route (i.e., beta value), thus forward-backward algorithm can be applied.

3 Note that since there is one long sequence in our computation, the alpha[end] value for every fractional count is the same. Since the goal of
fractional count is to calculate the relative occurrence frequency of the links, it is not necessary for us to truly compute alpha[end] during the
computation.
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Fig. 8. How the alpha value propagates in the graph.

Alpha(S3 → S5) = Alpha(S4 → S3) ∗ Pr(S3 | S4) (2a)

Beta(S3 → S5) = Beta(S5 → S1) ∗ Pr(S1 | S5) (2b)

Alpha(S5 → S1) = Alpha(S3 → S5) ∗ P(S5 | S3) + Alpha(S4 → S5) ∗ P(S5 | S4) (2c)

Beta(S5 → S1) = Beta(S1 → S2) ∗ P(S2 | S1) (2d)

The above analysis shows that given our two assumptions, both alpha and beta values can be propagated in a first-
order Markov manner without interfering with each other. Once the alpha-beta values are computed and stored, we
can calculate the amount each specific link contributes to its associated bigram parameter be multiplying its transition
probability with both the alpha and beta values. The ultimate bigram probability is the accumulation of all the identical
bigram link probabilities. Similarly, the fractional count for the P(Dn,n+1) table can be computed by aggregating the
P(Dn,n+1) times alpha and beta.

3.5. Decoding

As shown in the previous section, an alpha value depends only on its neighbor’s alpha values under our assumptions.
Therefore, after the EM converges, we can apply dynamic programming again to extract the path of the highest
probability. The output order generated by model 2 on our experimental page is shown in Fig. 9. In the decoding
phase, we modified the dynamic programming algorithm a bit by recording not only the best probability in each step,
but also the second-best probability. Therefore, once the dynamic programming algorithm finishes walking through
the nodes in the graph, we not only have the order with the highest probability, but also the second-best one, which
we will need for further evaluation.

4. Evaluations

Evaluation is always the trickiest part for any machine discovery problem. The chicken-and-egg paradox arises
in the sense that to evaluate the results, we need to know the precise order; on the other hand it is because that we
were not aware of the precise order therefore it is necessary to pursue such discovery. In this section we will describe
several indirect strategies to evaluate our results.

4.1. Checking the machine’s confidence

One method of verification is to check how much confidence the machine has toward the order it picks. We propose
to measure confidence by comparing the probability between the best and the second-best order returned by the
machine. In view of the fact that the machine makes its decision based on probability, closeness between the best
and second-best probabilities implies that they might be virtually the same from the machine’s point of view. This
situation could indicate lack of data or under-fitting of the model. Table 1 records the best and second-best negative
log-probability for each row in each model.

From this table one can learn that in the first model (bigram only) only 2/9 rows have distinguishable probabilities
while in model 2 (bigram plus independent direction) all the rows have distinguishable probability. This implies
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Fig. 9. The writing order discovered by our second model (9 rows, 753 symbols).

that with only bigram information, the system does not feel comfortable with its choice. It gains more confidence
when the direction factor is considered. Although this evidence does not necessarily show that the second model can
generate accurate results, it does indicate that it provides sufficient information for the machine to make a confident
decision.

4.2. Checking the consistency

One typical way to evaluate a natural language learning program is to check its learning curve over data, i.e., to
examine how much the accuracy can be improved when more data is added to training. In our problem, generating
the learning curve over data is not possible because the gold standard answer is not available. However, we can draw
a similar graph to see how the results change as new data are introduced. Fig. 10 shows how much the result alters as
data are added line by line. For both models, the similarity of the outputs remains steady and reaches 90% after the
7th line is added, which implies a stabilization of the system.
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Table 1
The best and second-best log probabilities (bold pairs are distinguishable ones)

Rows Models

Model 1 Model 2

best 2nd best 2nd
row1 149 150 224 230
row2 193 194 306 315
row3 165 165 277 282
row4 193 193 309 318
row5 160 161 250 257
row6 150 247 240 251
row7 157 260 253 257
row8 178 179 288 293
row9 189 190 284 292

Fig. 10. How the system changes while the data increases.

Fig. 11. Ten different patterns to generate two-dimensional scripts.

4.3. Evaluating the methodology

Instead of verifying the results directly, in this section we propose to verify the methodology by checking whether
it works for known languages and writing systems. The basic idea is to first have someone collect a set of meaningful
sentences for various known languages, secretly overlay them one by one on top of symbols in the two-dimensional
Luwian scripts (without violating the two assumptions), then execute our program again to see if it can recover the
original linear order. This time we do know the true order for verification.

We use 5 natural languages (Chinese, English, Arabic, Latin, Spanish) and one programming language (Java) for
testing. We collected a paragraph of writing for each language. We need only 753 letters (753 characters in Chinese)
since the tested Luwian script has a total of 753 symbols. To generate two-dimensional scripts, we apply ten different
patterns (Fig. 11). Note that the tenth pattern is a random one that does not follow any rules. Then we replace the
symbols on the Luwian page by the letters in the paragraph, as exemplified in Fig. 12.
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Fig. 12. Replacing Luwian symbols with English letters according to pattern 1.

Table 2
The accuracy of 10 different writing patterns in model one and two

Model Pattern

1 2 3 4 5 6 7 8 9 10 Avg

753 letters in Latin 1 83% 87% 85% 84% 84% 85% 86% 84% 85% 85% 85%
2 100% 100% 91% 80% 87% 84% 89% 88% 79% 77% 88%

753 letters in English 1 76% 79% 76% 78% 77% 78% 79% 76% 77% 78% 77%
2 98% 98% 89% 77% 82% 79% 85% 87% 74% 72% 84%

753 letter in Arabic 1 71% 76% 73% 74% 73% 75% 76% 72% 72% 75% 74%
2 95% 97% 84% 72% 78% 78% 79% 77% 68% 66% 79%

753 letters in Spanish 1 75% 77% 76% 76% 76% 76% 77% 75% 76% 76% 76%
2 99% 99% 88% 72% 75% 77% 80% 82% 75% 73% 82%

753 characters in Chinese 1 60% 72% 65% 61% 67% 69% 66% 66% 66% 67% 70%
2 87% 82% 76% 67% 68% 72% 71% 74% 67% 67% 73%

753 letters in Java 1 82% 87% 84% 85% 85% 86% 87% 84% 85% 86% 85%
2 100% 100% 90% 84% 83% 87% 88% 86% 83% 84% 89%

Luwian Scripts 1 60% 49% 52% 55% 56% 52% 52% 56% 56% 50% 54%
2 80% 28% 54% 57% 65% 44% 45% 63% 53% 50% 54%

Baseline Random guess 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%

These newly generated two-dimensional scripts (there are totally 60 different ones since we have 6 different lan-
guages and each has 10 different ways of encoding) can then serve as the input to both models to generate the linear
results. We evaluate the results by counting how many of the columns returned by our system have the correct order.
The results are shown in Table 2. Note that the baseline (randomly guess a direction at each decision point) reaches
50% for all the patterns.

Table 2 shows that both models achieve better performance than the baseline, for all writing patterns. For each
case, it takes less than 1 minute for our program (running on 1 GHz PC) to converge to a stable result. If the script
was written according to pattern 1 or 2 (both have strong tendency for directions), the second model can discover
the order almost perfectly except for Chinese. We believe it is not perfect in Chinese because unlike others, Chinese
script is logographic, and the number of distinct symbols in logographic writing is much higher than in alphabetic
or syllabic systems. The left part of Table 3 describes the P(Dn,n+1) learned by model 2 for pattern 1. This shows
that the program does learn the fact that the system prefers progressing in the 6 o’clock direction much more than
12 o’clock direction. Also, it learns another distinguishable factor for pattern 1, which is that the 10 or 11 o’clock
direction is preferable to 7 or 8 o’clock. The right column in Table 3 indicates that for pattern 3, the model learned
that pr(6) is almost the same as pr(12), while pr(9) has a much higher probability than any other horizontal directions,
which matches the intrinsic characteristic of that pattern. As to the other patterns that have less-strong preference for
the directions, model 2 still reaches 80% accuracy for most of the languages. Table 2 also points out that for model 1
the accuracy ranges from 70% to 85% (except Chinese), depending on the language, but not on the writing pattern.
This is reasonable, since only the language model is used there, and we did not model the noisy channel. It also tells
us that even if the script was written randomly as pattern 10, our approach could still reproduce the linear order with
accuracy higher than 75%.

Next we show some linear English (written in pattern 3) recovered by model 2: “While Section 2 iullartsets the
basic ideas of combining the nosihc-y annel model and EM to handle the order-discovery problem, in this section
we uowl dleki to dadress mose practical issues we have faced while trying to implement thed icephering program.”
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Table 3
P(Dn,n+1) learned by model 2 in Latin

Pattern 1 Pattern 3

pr(6) = 0.620 pr(6) = 0.312
pr(7) = 0.001 pr(7) = 0.020
pr(8) = 0.005 pr(8) = 0.031
pr(9) = 0.030 pr(9) = 0.259
pr(10) = 0.123 pr(10) = 0.048
pr(11) = 0.224 pr(11) = 0.024
pr(12) = 0.001 pr(12) = 0.308

as well as the linear English (written in pattern 10) recovered by our model 1, which is the most difficult challenge
for our program as well as for human beings: “While Section 2 illuartsets the basic edias oc fombining thon esihc-
yennal moled and EM to handle the odrer-dicsove yrorplb, mein this section we uowl dlike to address some practical
isusse we have faced while yrting ti ompleme tnthed icerehping program.” The recovered scripts are not perfect but
understandable.

We perform a similar human study by giving human subjects4 two-dimensional scripts written in some language
they do not know according to the above patterns, and ask them to figure out the linear order of each. The results
show that among ten samples we sent out, ninety percent of subjects perform better than 50%. The average accuracy
is 58% while the highest is 73%, which is far below our program’s 79% average and 97% highest score. The result
demonstrates that although people can learn certain regularity from the data and perform slightly better than the
baseline, to get better results in this task, the use of EM algorithm together with the powerful computational capability
of a machine can be very helpful.

The bottom of Table 2 demonstrates the accuracy of our Luwian result assuming that it was written according to
each of the ten previous patterns.5 For example, if it was written according to pattern 2, then the results our program
generates would reach only 28% accuracy (since pattern 2 is written in bottom-up manner, while our discovery shows
that most of the lines are top-down). It is clear that pattern 1 possesses a much higher accuracy (80% top-down by
model 2) than all the others. This shows that if we trust the validity of our program, then we can conclude that most
of the Luwian scripts are written top-down.

After manually checking the results shown in Fig. 9, we found that most of our bottom-up writings come either
from the blurred area or because the boundaries of columns are unclear. Our theory is that the Luwians might in
general follow a top-down manner during writing. However, every Luwian symbol has a different shape and size, so
there are situations now and then (e.g., a desire to make better use of the space) preventing the writer from following
the general rule. Dr. Hawkins addressed similar issues by saying “signs arranged in one or more vertical columns from
top to bottom. . . . But the signs come in a variety of shapes, long and slender, wide and flat etc. a problem for us is that
it is by no means always clear in what order the signs are to be read” [3]. The major contribution of this paper is not
only to strengthen the hypothesis that the general writing pattern is top-down, but also that our program can provide a
plausible solution for the order in the ambiguous areas. It finds the regularities as well as the exceptions (areas where
the writing pattern was abandoned), while the latter is a very hard task for human beings. Table 4 shows the learned
parameters for P(Dn,n+1) and certain bigram probabilities in Luwian Hieroglyphic.

5. Conclusion

In this paper we describe an unsupervised method for discovering the linear order of the two-dimensional Hiero-
glyphic Luwian script. We represent the problem as Shannon’s noisy-channel model and apply EM to learn the two
different parameter sets within the models. Finally, we apply dynamic programming algorithm to extract the most
probable order.

4 The subjects’ background including computer science, computational linguistics, psychology, and signal processing.
5 Note that the sum of the probabilities for opposite patterns (e.g., pattern 1 and pattern 2) is sometimes more than 100%. It is because that there

are a few columns with only single symbol, and for these columns both top-down and bottom-up direction are regarded as correct.
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Table 4
The P(Dir) and bigram probabilities for the Luwian script

pr(6) = 0.498 p(small | triangle) = 0.25
pr(7) = 0.009 p(four | triangle) = 0.249
pr(8) = 0.004 p(buffalo | triangle) = 0.249
pr(9) = 0.146 p(swan | triangle) = 0.250
pr(10) = 0.086 p(crocodile | three) = 0.250
pr(11) = 0.138 p(deer | three) = 0.249
pr(12) = 0.122 p(three | three) = 0.499

We propose several ways to evaluate this discovery problem: We examine whether the machine has confidence
about the results it produced by comparing the best and second-best results. The results imply that model 2 might
be a better fit. We also generate a consistency curve to examine the sufficiency of the data. Finally, we evaluate our
methodology by applying it to various known languages. The results show that our program, having neither any pre-
requisite knowledge about the language nor how the two-dimensional script was generated, can still recover the linear
script with more than 80% accuracy. As to the Luwian scripts, our experiment shows that in general it was written
top-down, but it also identifies certain exceptional areas.

The lesson we have learned is that with the modern computational power and a proper model, machines are capable
of grasping the hidden regularities and dealing with tasks that might be extremely difficult for human beings.

The contributions of our study are not only about finding the writing order of an unknown ancient script, but
also to demonstrate how a general, unsupervised approach can be designed to deal with a situation where very little
background knowledge is available for learning. Furthermore we propose several indirect but general strategies to
evaluate such a discovery system. Since no prior knowledge is necessary in our approach, it has potential to be applied
not only to natural language problems but also to tasks related to order discovery in areas such as biology, chemistry,
and others.
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