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Abstract 
With the rapid growth of the World Wide Web, there is growing interest in developing 
web agents that interact with online services to acquire information. However, finding 
the online services perfectly suited for a given task is not always feasible. First, the 
agents might not be given sufficient information to fill in the required input fields for 
querying an online service. Second, the online service might generate only partial 
information. Third, the agents might need to know the information about B by some input 
set A, but they can only find the online services that generate A from B. Fourth, most of 
the online services do not tolerate errors in the inputs, thus even a minor typo in the input 
field can hinder them from generating any meaningful results. This paper proposes 
SERGEANT,1 a framework for building flexible web agents that handle these imperfect 
situations. In this framework we exploit an information retrieval (IR) system as a general 
discovery tool to assist finding and pruning information. To demonstrate SERGEANT, we 
implemented two web agents: the Internet inverse geocoder and the address lookup 
module. Our experiments show that these agents are capable of generating high-quality 
results under imperfect situations.  

1. Introduction 
Web agents in general adopt two orthogonal strategies to gather information from the 

Internet. The first is to rely on an information retrieval (IR) system (e.g. a search engine 
as shown in Figure 1.a). Many question answering (QA) [1, 2] systems, for example, 
uncover answers from the search results. The second is by querying appropriate online 
services, e.g. a web agent that gathers geographic data usually queries an online geocoder 
for the latitude/longitude (lat/long) corresponding to a given address (Figure 1.b shows 
the input for a geocoder and Figure 1.c demonstrates the output).  

                                                           

1 The key of our framework is to integrate the search engine into a web agent, and SERGEANT is 
pronounced as the integration of the first syllable of “search engine” with the last syllable of “web agent” 



In this paper, we define an online service as an Internet service that provides an 
interface for the users or agents to interact with its internal program for relevant 
information. The tasks performed inside the internal program can be as simple as 
querying its local database or as complicated as integrating various information from 
different sites. Nonetheless, the web agents tend to view the internal functionality as a 
black box since the process is unknown. In general to query these online services the 
agent has to provide an input set x1…xm and the online services will accordingly generate 
the output set y1…yn. For instance the geocoder site2 is a typical online service in the 
sense that x1…xm represents an input address while y1…yn is the corresponding latitude 
and longitude. 

 

Figure 1: Two strategies for web agents to acquire information. 1.a is the 
inputs/outputs for a search engine. 1.b shows an input to a geocoder service and 1.c 
demonstrates the output. 

These two information-gathering strategies, utilizing the search engine and querying an 
online service, are diverse in many aspects. First, the information found via these two 
strategies is different. Search engines surf through static documents on the Internet but 
are incapable of interacting with online services to acquire specific information from 
them. For example, the web agent that utilizes the search engine usually cannot uncover 
the lat/long given the address. On the other hand, online services, usually designed for 
providing certain types of information, supply only domain-specific data and thus cannot 
be applied as generally as a search engine. 
                                                           

2 http://geocode.com/eagle.html 



Divergence also arises from the characteristics of their inputs as well as outputs. The 
web agent can in general adopt flexible keywords as inputs while utilizing a search 
engine. The inputs required for the agents to interact with online services are, on the 
contrary, quite restricted. The online service accepts only a certain type of data (e.g. the 
zip code can only be a five-digit number) and sometimes there are implicit constraints or 
correlation among different input fields (e.g., for city and state, there is no New York 
City in California). The outputs are also organized differently: a search engine outputs 
arbitrary documents, structured or unstructured. On the other hand the online services 
usually output data in a structured or semi-structured format, which in most cases can be 
extracted easily and precisely by a wrapper [3, 4]. Table 1 summarizes the comparison 
between these two strategies.  

This paper describes the idea of developing a more flexible web agent by integrating 
these two strategies in order to exploit the strengths of each. There are two potential 
prospects of integration. The first is to keep using online services as the core information-
discovering approach in a web agent and apply the search engine as an auxiliary tool to 
handle the limitations of the online sources. The second is to enhance the facility of a 
search engine for interacting with the online service to improve the recall rate of search 
results. In this paper we will focus on the first prospect. 

Table 1 The comparison between online services and search engines 

 Online services Search engines 

Information provided Specific (deep) General (broad) 

Inputs Restricted type of information Flexible keywords 

Outputs Structured or semi-structured Arbitrary documents 

2. Limitations of online services 
In this section we would like to address four potential limitations of online services. 

Ideally an intelligent web agent should have the capability to generate high quality results 
even if these limitations exist. 

The first limitation is the existence of required inputs. Many online services require 
valid information as inputs, but it is not always possible to provide sufficient information 
to fill in all the required fields. For instance, in many sites that provide stock information 
such as Yahoo Finance,3 it is required to use the “ticker symbol” (Figure 2.a) as the input 
instead of the company name, but sometimes the agents are given only the latter.  

The second limitation is the incompleteness of the output. In some cases the online 
services are incapable of returning all the information the agents are looking for. The 
users would like, in the ideal world, an intelligent web agent that can automatically 
produce the missing information. For example, a web agent that utilizes the Yahoo 
Yellowpage site can discover a company’s phone number and address information but 
not the ZIP code given its name (Figure 2.b). This agent, however, will not be able to 
satisfy the agents or users that need the zip code.  
                                                           

3 http://finance.yahoo.com/ 



The third limitation is the lack of reversibility. The majority of online sources provide 
only one-way lookup services. For instance, many online email-finding services return 
people’s email given their names but not vice versa. Resolving inverse queries given only 
the forward lookup service is a challenging non-deterministic task. This is theoretically 
solvable by exhaustive search given a finite input domain, but in practice it is usually 
computational intractable. Nevertheless, users would still prefer to have a web agent that 
performs the inverse task even if only forward services exist. 

The fourth limitation is the lack of ability to tolerate minor errors in the input fields. In 
other words, many online services cannot return meaningful results while there is an error 
in the input fields. For instance, Mapquest4 cannot generate the city map of Los Angeles 
if it is misspelled to “Los Angels” as the input (Figure 2.c). Ideally the users would prefer 
their web agent to tolerate such minor input errors and still produce plausible results. 

 
Figure 2: Some limitations of the online services: 2.a shows that the ticker symbol is 
required for Yahoo Finance. 2.b indicates that Yahoo Yellow page does not return 
the ZIP code. 2.c points out that Mapquest cannot produce the correct map of the 
Los Angeles city while the typo inputs “Los Angels” is used. 

                                                           

4 http://www.mapquest.com/ 



3. The SERGEANT framework for handling the limitations of 
online services 

In this section we describe SERGEANT, a framework to develop flexible web agents 
that are adaptive to the limitations of the online services described in the previous section. 
The key idea lies in exploiting a search engine as an auxiliary tool that generates required 
information. 

3.1 The assumption 
Our approach is appropriate for agents utilizing online services that have inputs and 

outputs satisfying the following assumption: Given E={e1…en} is an input or output set 
of an online service, then ,    ' { }i ie E and E e∀ ∈ ∃ ≠a non - empty  set  E'  as a subset  of  E,  s.t. 
all the elements in the set E’∪ ei appear somewhere in at least one document that can be 
found by a search engine. 

This assumption captures the idea that the elements in the input set are correlated with 
each other in the sense that we can use some of them to index the others through a search 
engine. The same assumption applies to the output set as well. The inputs and outputs of 
a typical online service often satisfy this assumption. For instance, the {title, director, 
cast} as the inputs to a movie site; the {street number, street name, zip code} as the 
outputs to a theater or restaurant lookup services as well as the inputs to a map lookup 
page, and the {title, author, publisher} as the inputs to the electronic library. 

This assumption is similar to the fundamental assumption behind all information 
retrieval systems. It is a reasonable assumption in view of the fact that the inputs 
themselves are used together to query a set of outputs. So these inputs are to some extent 
correlated with each other through the outputs, and in many cases the correlations are 
even stronger. 

However, we do not assume similar correlation to occur between inputs and outputs, 
which would be a much stronger assumption than the one we made and conceivably can 
be satisfied in fewer cases. In other words the assumption does not necessarily hold if the 
set E is the union of input and output sets. Take a geocoder for example: the inputs 
(address) and outputs (latitude and longitude) usually do not appear together in any 
documentation that can be found by a search engine.  

 

 
Figure 3. SERGEANT framework to handle missing but required input X1 



3.2  Handling required input and incomplete output limitations 
To deal with the first two limitations of an online resource, we propose the 

SERGEANT framework (the components circled in Figure 3), which embraces the idea 
of utilizing the search engine along with the known information to generate potential 
candidates for the missing input and output fields. 

Figure 3 displays how the SERGEANT framework can be used as a pre-processor to 
produce missing but required input fields. SERGEANT works in three stages to generate 
the required inputs. The first stage is keyword-generation. In this stage, the agent uses 
incomplete input data to form a set of keywords to the search engine: Given an 
incomplete set of input fields x2…xn (x1 is the missing but required input field), the web 
agent can formulate the strictest keywords by concatenating them (keyword=”x2…xn”). 
Alternatively it is feasible to relax the keyword by quoting each before combining them 
(keyword=”x2”,…,”xn”). It is also feasible to further reduce strictness by dropping some 
inputs (e.g. keyword=”x2”,…,”xi”, i<n; or keyword= “x2”, “x4”…” xn”). Figure 4 gives 
an example showing how the keywords are generated given two known input field: 
“street number”=4676 and “street name”=”Admiralty Way”. Additionally one can apply 
the “keyword spices” [5] approach to perform domain specific searches through a general 
purposed search engine by adding some auxiliary keywords in this stage.  

The second stage of SERGEANT is to query the search engine with one of the 
generated keywords for relevant documents.  

The third stage is to extract potential candidates for missing inputs from the 
documents returned by the search engine. After the candidates are generated, the agent 
can apply them to query the online services. Note that multiple input candidates could be 
generated; therefore the online services could return a set of plausible results instead of 
one. Producing more than one candidate results is reasonable since the user might prefer 
having multiple choices given some key criteria are missing. 

 

Figure 4 Examples of different keyword generating strategies  

Let us look at an example. Consider a movie service that takes “director name”, 
“leading actor”, and “leading actress” as inputs and outputs the movie title. If our agent is 
given only partial inputs “leading actor=P1, leading actress=P2” but not the required 



“director name”, it will formulate different keywords (“P1 P2”, “P1” “P2”, “P1”, or “P2”) 
to the search engine, and then extract all the potential director names Dk in the third stage. 
The resultant sets (P1,P2,D1),…,(P1,P2,Dk) can then be applied to query the movie 
service one by one thus the user could be shown all the associated directors and movie 
titles returned based on P1 and P2.  

The same concept can be applied to find the missing outputs by utilizing SERGEANT 
as the post-processor to the online service (Figure 5). 

 
Figure 5 Using SERGEANT to fulfill the incomplete output fields 

In the last stage of SERGEANT, we need to perform an Information Extraction (IE) 
task. This is the most challenging step in our framework with the goal to extract relevant 
facts from a document [6]. One traditional method for IE is to apply natural language 
processing techniques, which have been studied for decades [7, 8]. Alternatively, we can 
use wrapper technology to automatically wrap structured or semi-structured pages [9, 4]. 
In general supervised learning techniques are applicable for both semi-structured or non-
structured sources [10, 11]. 

Extracting precise information from arbitrary web documents is generally a 
challenging problem. Our system, however, needs only the required inputs or incomplete 
outputs, which themselves usually form some pattern together with the given data (e.g. 
there are patterns for addresses or emails), which can be handled by techniques similar to 
named-entity tagging problems. Methods utilizing Hidden Markov models [12], rule-
based systems [13], or Maximum Entropy models [14] to extract names, time, and 
monetary amounts are applicable approaches for our IE stage. The IE stage is not as 
difficult as a typical IE problem because the precision of our results is not critical. The 
backend online service can be treated as a precise evaluation engine that filters out the 
imprecise or irrelevant input sets generated by the IE engine. 

Due to the facts that the pattern is known and the precision is not as important as recall 
in our IE stage, we present a suitable IE method as formatting the pattern instantiation 
problem into an AI Constraint Satisfaction Problems (CSP) [15] by modeling the pattern 
as a set of constraints. The advantage of formatting an IE problem into a CSP is that the 
recall and precision can be easily controlled by manipulating the constraints. Strict 
constraints imply high precision (and low recall) while sparse and loose constraints raise 
the recall at the cost of precision. For a recall-driven problem like the one we face, it is 



not necessary to explicitly program how to extract each individual field precisely in the 
pattern. Instead we tell the CSP engine what the pattern roughly looks like and the CSP 
engine will look for all the matched instances for us. This approach simplified the 
implementation of our recall-driven IE stage. As will be shown in section 4.2, with a 
backend online service as a verification component, we can find the missing address 
fields without having to know exactly how to extract the street name from a document. 

3.3 Handling inverse queries 
The third limitation of online services is that most of them accept only one-way 

queries. In this section we propose the idea of integrating SERGEANT into the forward 
service to construct a web agent that resolves inverse queries.  

The challenge of constructing a reversible service lies in the fact that the original 
resource (online service) is an unknown one-way function. We first give a working 
definition, borrowed from cryptography, to a one-way function [16]: 

Definition: A function f from a vector space X to a vector space Y is called a one-
way function if f(x) is “easy” to compute for all vectors x X∈ , but for a random vector 

( )y f x∈ it is computationally infeasible to find any x X∈ satisfies  f(x) = y  
In general there is no shortcut to find out the x that satisfies f(x) = y given y if the f(x) 

is a black box. The only way is to try the candidates inside X one by one until a match is 
found. This is also the basic assumption behind information security and key 
encryption/decryption [16]: the non-deterministic inverse function plus an immense input 
domain limit the chance of successful cracking (find x that satisfies f(x) = y) to almost 
zero. 

Not knowing what is inside the black box of an online service, our strategy to improve 
the performance of inverse mapping is to ensure that the plausible candidates can be 
tested earlier. In this scenario the search engine plays a role as a heuristic generator, 
which provides the most plausible input candidates (Figure 6). 

Originally, the “trial and error” method has the input cardinality as large as the 
cardinality of the cross product of all input fields |x1|*|x2|*…*|xn|, where |xi| stands for the 
cardinality of a certain input field. There are two steps we take to trim the search domain 
in our framework: 

1. Check if there exist related online services mapping the output y to some 
individual input field. If there is a service that takes y (or a subset of y) as inputs 
and generates a subset of x, say x1 to xk (k<n), then we need only to try as many 
as |xk+1|*|xk+2|*…*|xn| different candidates.  

2. Utilize the identified input fields x1…xk to indicate the remaining input fields 
xk+1…xn in SERGEANT. 

As an example, assume there is a one-way online movie service that enables the users 
to search for a movie title by its leading actor, actress and director. To perform the 
inverse query, the very naive way is to test all the combination of actors, actresses and 
directors in the world and check which combination generates the given movie title. This 
naive method has the trial-and-error domain as large as |Director|*|Actor|*|Actress|. 
However, in step one we can first check if there are online services that map the movie 
title to some of the individual inputs (director, actor, or actress). Assuming we have 
found a service that maps the movie title to its director, then the cardinality of search 
space can be reduced to |Actor|*|Actress| after the first step is performed. 



According to our fundamental assumption that the inputs are more or less correlated, 
heuristically in the “trial and error” period we would like to assign a higher priority to the 
input set that has elements associated with one another. In our second step, SERGEANT 
plays a role as this heuristic engine in the following manner: First use the identified 
director name as a keyword to the search engine. Then extract all the probable (actor, 
actress) pairs from each document returned by the search engine. Finally a set of 
plausible inputs fields of cardinality |(Actor, Actress) pairs given Director| will be 
generated. The |X given Y| represents the cardinality of X returned by the search engine 
given Y is used as the keyword. Conceivably, the number of “actor and actress” pairs 
associated with a director is much smaller than the total number of actors times the total 
number of actresses in the world. In this scenario SERGEANT acts as a heuristic function 
to guide the “trail and error” testing.  

 
Figure 6 Exploiting SERGEANT to handle reverse query 

3.4 Handling incorrect inputs 
While utilizing an online service, the users or web agents occasionally encounter the 

situation that no output is generated due to the fact that the provided inputs contain errors 
(e.g. a typo). Nevertheless, most of the users would rather see something more or less 
related to their expected results even if there are errors in the inputs. In this section we 
propose a fault-tolerant web agent built on top of SERGEANT that handles minor error in 
the inputs.  

The key concept is simple: If no output is generated given a set of the inputs, the 
system will assume one of the input fields is wrong. Consequently it can pick one input 
field to treat as unknown, use SERGEANT to generate the candidate values of this field 
(given this omitted field is a required input field), and then execute the online services by 
the new input sets. If the omitted input field truly contains error, then chance would be 
great that one of the new input candidates generated by SERGEANT will produce 
meaningful results. In this problem the SERGEANT framework is utilized as a data-
cleaning tool while the online services again act as the evaluation engine (Figure 7). 



 
Figure 7 Integrating a search engine to handle incorrect inputs 

4. Case Studies 
We have implemented two web agents, the inverse geocoder and the address lookup 

module, as the demonstration for SERGEANT. 

4.1 The inverse geocoder 
The inverse geocoder is a web agent realizing the idea of developing inverse service by 

its forward source. We developed it by integrating SERGEANT with the online resource 
(Mapblast5) to transform the geocode into its equivalent address including the closest 
street number. 

The inverse geocoder consists of three parts as shown in Figure 8: The city/state 
locator, the street name locator, and the street number locator, as a typical address in the 
United States can be uniquely identified by these three types of information.  

 
Figure 8 Data flow in the inverse geocoder 

City/State locator: The corresponding zip code of a given geocode can be found using 
Mapblast site. Mapblast_Maps has the feature of displaying the map centered at a 
geocode given by its user. Checking the source code of this map page, we can find a 
hidden field “zip” that contains the zip code (Figure 9.a, 9.b). After using the lat/long pair 
                                                           

5 http://www.mapblast.com 



to query this Map service and wrapping the zip code, our system sends the zip code to 
USPS (United States Postal Service) site for corresponding city and state (Figure 9.c). 
Street name locator: The street name finder discovers the street name of a given 
geocode by manipulating the inputs to the Mapblast_Direction. Mapblast_Direction is a 
service that returns the driving direction (in both text and graph format) from a user-
specified starting point to a specified ending point. In its advanced search it allows users 
to use latitude and longitude to identify the points. The street name finder uses the 
original latitude and longitude as the starting point to the Mapblast_Direction. For the 
ending point, it uses the same latitude but slightly modifies the longitude to longitude 
minus 0.001 (see Figure 10.a).  

 
Figure 9 How the city/state locator works 



By slightly modifying the geocode as the destination point, it essentially asks the 
system to produce the driving direction from the original lat/long to a place that is closely 
adjacent to it. Usually, the street name returned in the driving direction is the street name 
of that lat/long (see Figure 10.b). The system also extracts the street direction since it is 
useful in the next step. 
     The city/state locator and street name locator realizes the idea proposed in step 1 of 
section 3.3 to use related services to acquire partial inputs from the outputs. Though there 
is no online service producing exactly what we want, both locators still manage to find 
out the information indirectly. 

 
Figure 10: (a) demonstrates the inputs for street name locator. Note that the 
destination is very close to the starting point. (b) shows the output of Mapblast, the 
street name returned is the street name belongs to that latitude/longitude 

Street number locator: As shown in Figure 8, the street number locator takes the 
street name and city/state as inputs and outputs the street number of the corresponding 



lat/long. The idea lies in that if we can somehow find two valid street numbers with 
respect to the given street name and city/state, then it is possible to utilize a forward 
geocoder to geocode them as two reference points and apply interpolation (given the 
address is in between the two reference points) or extrapolation  (when the address is not 
in between the two reference points) method to pinpoint the exact street number. For 
example, to locate the street number of the geocode (33.9803, -118.4402) given the 
known street name “Admiralty Way” and zip code “90292”, we can first geocode two 
reference addresses of that street, say “4000 Admiralty Way, 90292” (33.9815, -118.4599) 
and “5000 Admiralty Way, 90292” (33.9791, -118.4522). The interpolation method can 
then be applied on latitude or longitude6 to find the target street number as 4511. Figure 
11 indicates the equation of interpolation. If the street number is not uniformly 
distributed, then it is necessary to repeat the same procedure iteratively until it converges. 

 

 
Figure 11. Interpolation on latitude 

The tricky part of this approach lies in how to find the first two valid reference points. 
Randomly picking street numbers is not efficient due to the variety of the street numbers. 
For example in United States some streets have valid street numbers from 1 to 100 (e.g. 
Mason St, Coventry, CA) while others have valid numbers only between 34000 to 38000 
(e.g. Ridge Rd, Willougby, OH). To resolve this problem we applied SERGEANT as 
proposed in section 3.3 to reduce the cardinality of the trial-and-error domain. The idea 
arises from the fact that the street numbers indexed by the street name and zip code 
through the search engine have high possibility to be valid street numbers for that street 
name and zip. Figure 12 shows the results returned by the Yahoo7 search engine while 
using a street name “Admiralty Way” and zip code “90292” as the keyword. The street 
number locator extracts the street numbers returned by Yahoo (4635 and 4200 in this case) 
as the reference points. 

The street number locator brings SERGEANT into play to prune the size of “trial and 
error” domain of the street number given the street name and zip code. It realizes the idea 
of the second step in section 3.3 by applying the search engine as a heuristic function to 
guide the testing procedure.  

Evaluation: The evaluation is designed in the following manner: 50 restaurant and 50 
residential addresses from 10 different cities in United States are used as the test 
addresses. We first determine the lat/long of these test addresses. These geocodes can 
then be used as the inputs to our reverse geocoder and the results will be verified by 

                                                           

6 Whether using latitude or longitude for interpolation depends on the orientation of the street: the latitude 
is used for a north-south street, and the longitude is applied elsewhere. 
7 http://www.yahoo.com 



comparing them with the original addresses. 90 out of the 100 geocodes are transformed 
back to the exact address to the level of street number. The reason for the incorrect 
transformations comes from the inconsistency between the forward geocoder and driving 
direction in Mapblast. In other words the street name returned by Mapblast_Driving is 
not the actual one.  

 
Figure 12. Extracting the street number by the street name and city/state 

The efficiency of our inverse geocoder depends on the network conditions. Therefore, 
instead of using the elapsed time, we calculated how many times on average each service 
is called before the addresses are generated. The results are listed in Table 2. For most of 
our test cases the search engine does find two valid street numbers, which enables the 
system to perform the forward geocoder as few as three times (two for geocoding the 
reference points and one for verifying the inter/extrapolated result). There are 3 cases that 
SERGEANT could not find two valid street numbers. In those cases the system had to 
randomly pick the street numbers and verify it by the forward geocoder. We had to 
execute the forward geocoder on an average of 10 times in order to get the valid address 
in these 3 cases, compared with an average of 4.5 times for the rest. This fact signifies 
that using SERGEANT can reduce the number of times to query the forward geocoder. 

Table 2 The average number of times each service is performed while performing 
an inverse query 

online services Number of Times called
Mapblast:Map 1 

Mapblast: Direction 1 

Yahoo Search 1 
Mapblast:forward 

geocoder 4.7 

 
Our inverse geocoder does not require a local database nor intensive computation. 

Moreover, it can be implemented in a short time. The zip finder and street name finder 
demonstrate the fact that there is considerable information hidden on the Web, only one 
has to create ways to find it. The street number locator is a demonstration of applying 
SERGEANT as a heuristic function to improve the efficiency. 



4.2 Address lookup module 
In this case study we demonstrate how SERGEANT can be applied to handle the 

limitations related to inputs and outputs. The test platforms used are the WhitePages8 
service and the Yahoo Yellowpages9. The WhitePages site requires complete addresses to 
obtain the corresponding phone numbers. Yahoo Yellowpages is a service that generates 
address information as outputs, but the zip code information is missing in its output.  

We implemented an address lookup module as the preprocessor to the WhitePages to 
fulfill all the required input fields given only partial address information. The same 
module is used as a post-processor to YellowPages for the missing zip codes. 

This module has seven optional input fields: the entity information, street number, 
street name, apartment number, city, state, and zip code. It has seven identical fields as 
outputs (as shown in Figure 13).  

 

Figure 13 Sample inputs (left) and outputs (right) for address lookup module 

The idea is to utilize a search engine with the known fields to identify the missing 
fields. Note that in addition to the address, the user can provide any other necessary 
information in “entity information” field and this auxiliary information will be treated as 
the keyword to the search engine as well.  

The keyword-generating stage takes the inputs to generate the keywords from the 
strictest one to the loosest one, as described in section 3.2. In the search phase the module 
uses the keyword to retrieve relevant pages. It then sends the top 100 ranked documents 
returned by the search engine to the third phase. The third IE phase is designed to extract 
the potential candidates of address from these documents. The addresses of the United 
States form a regular pattern: a street number followed by a street name followed by an 
apartment number, then the city, state, and zip.  

Given this pattern and some intrinsic characteristics of each address field, we can 
format this address extraction problem into an equivalent constraint satisfaction problem 
(CSP). Figure 14 provides an example how an information extraction problem can be 
represented as a CSP problem. In the corresponding CSP problem, the starting positions 
of each field (x1….x7) in a document are variables. The inputs to the CSP engine are the 
constraints (which encode the knowledge about the U.S. address as shown in Figure 14.a) 
and a document returned by the search engine (assuming it begins with “The address of 
                                                           

8 http://www.whitepages.com/address-lookup 
9 http://yp.yahoo.com/ 



the information sciences Institute is 4676 Admiralty Way, #1002, Marian Del Rey, CA, 
90292” as shown in 14.b). The CSP engine will automatically generates all feasible 
bindings on the variables, e.g. (X1,X2,X3,X4,X5,X6,X7)=(9,10,12,13,16,17,18) or 
(X1…X7)=(1,2,3,4,5,6,7). For example, X4=13 and X5=16 reveals that the “city” is in 
between the 13th and 16th word in the document (which is “Marina Del Rey” in this 
example). Therefore the result (X1…X7)= (9,10,12,13,16,17,18) can be mapped to the 
address “4676, Admiralty Way, #1001, Marina Del Rey, CA, 90292” as shown in Figure 
14.c, while the result (X1…X7)= (1,2,3,4,5,6,7) will be mapped to an inferior output “the 
address of the Information Sciences Institute”.  

 
Figure 14: Mapping an IE problem to a CSP problem 

The constraints in CSP come from the order shown in the pattern (e.g. in general the 
city name is followed by Apt#, thus x4-x3>=0) as well as the characteristic of each input 
type (e.g. zip codes are numbers of 5 digits, or state names have at most two words). The 
constraints can be divided into two categories: the precise constraints and the flexible 
constraints (Table 3). The precise constraints represent the certain information. For 
example, “xn≦xn+1” represents the fact that the order of the fields of U.S. address 
cannot be altered while some of the fields can be absent; “W(x1,x2) is a number” 
represents the fact that a street number can only be a number. The flexible constraints 
represent the uncertain information that can be adjusted to control the recall and precision. 
For example, x3-x2 ≦k1 controls the length of a street name and “W(x2,x3) is of type 
K” constraints the content of the apartment number. Assigning larger value to k1 will 



improve the recall at the cost of precision. Similarly “K can be only a number” has lower 
recall than “K can be a number or a number with a character (such as B23)”.  

 By representing this knowledge as a set of constraints, our CSP engine can generate 
all the consistent variable sets of (x1…x7) satisfying these constraints. Each solution 
indicates a position of a potential address pattern in the document. In our system 
determining the precise constraints are not necessary. The major goal of our IE stage is to 
improve the recall. The reason is that we have a backend online service as a precise 
verification tool. The CSP approach is suitable for the IE stage in SERGEANT since it 
provides a simple way to control the recall and precision by manipulating the constraints. 

Table 3: Two different sets of constraints. 

Precise constraints Flexible constraints 
xn≤xn+1 x3-x2 ≤k1 
x4 - x3 ≤1 1≤x5-x4≤k2 
W(x1,x2)10 is a number W(x3,x4) is of type K 

The addresses generated by the CSP engine will then be sent to the evaluation engine 
for ranking. They are ranked according to their similarity to the known input fields. The 
agent can then use the ranked outputs to query online services such as the WhitePages 
and the Yahoo Yellowpages. 

The evaluation procedure is as shown in Figure 15: 
 

 

Figure 15 The experiment designed to evaluate the address lookup module 

First we utilize a set of valid addresses to query the Whitepage site for the 
corresponding phone numbers. Then we manually remove some of the input fields and 
apply these incomplete addresses as the inputs to our address lookup module. The 
address lookup module must discover the missing fields and sent the entire recovered 
address to query the Whitepage site for the phone number. We have a ranking program 
that ranks the outputs of address lookup module simply by checking the similarity of 
them to the inputs of the address lookup module. The module is evaluated by examining 
whether the retuned phone number generated by one of the top 3 ranked outputs match 
                                                           

10 W(x,y) stands for the words between position x and y. 



the true phone number. We have tested our module under two different scenarios for 50 
valid addresses. Half of them missed the street name while the other half lack both the 
city and state information. The results show that in 70% of the cases our module can 
recover the missing street name (in other words, 70% of the correct street names appear 
in the top three ranked outputs). The task is simpler (90% accuracy) when the missing 
fields are city and state. The failure to achieve 100% accuracy is due to the fact that the 
missing information does not occur together with the known one in any online document 
(i.e. the assumption in section 3.1 was violated), thus there is no way for our program to 
discover it. We also apply our module as the post-processor to Yahoo Yellowpages. The 
results show that it can recover all the zip information with 100% accuracy. 

In addition to the above functionality, we also implemented the error-detecting feature 
as described in section 3.4. That is when there is no meaningful output generated by the 
WhitePage, our program will assume that one input field contain error and apply 
SERGEANT to regenerate it. We tested it by manually generating one typo on the street 
or city name of a full address and verifying that whether the system can automatically 
detect and recover the typo. The results demonstrate that the typographical error can be 
detected by our system and 80% of them can be recovered. The failing 20% is again 
because the assumption of section 3.1 is not satisfied. 

This case study indicates that our framework is applicable in designing flexible web 
agents that handles the required-input, incomplete-output, and incorrect-input limitations. 

5. Related Work 
The idea of exploiting the functionality of search engines resembles Etzioni’s 

information food chain [17], in which the search engines are located in the middle of the 
food chain and there are goal-oriented softbots (software robots) built on top of them. 
MetaCrawler [17] is a meta-search engine built on top of several search engines. Citeseer 
[18] is an autonomous web agent that utilizes search engines for retrieving and 
identifying publications. WebSuite [19] has its own search engine that can accept not 
only keywords but also the criteria of the connection between pages (e.g. finding a web 
page that comes from page P via link N). Also most of the question and answering (QA) 
systems utilize the search engine as well [1, 2]. However, they operate the search engine 
as the major tool for querying information and do not usually integrate it with the other 
resources. In our approach the online services are still the major tool for acquiring 
information while the search engine plays a supporting role in providing the extra 
information and reducing the input cardinality for an inverse service.  

On the other hand many platforms have made efforts toward integrating various online 
services to achieve specific tasks, such as ShopBot [20], the Information Manifold [21], 
Ariadne [22, 23] and the Venus and Mars System [24]. These systems are aimed at 
resolving the different issues of integrating data from the web such as information 
resource selection and modeling, view integration from distributed sources, and handling 
the inconsistency among sources. However none of these systems are focused on 
generally fixing the limitations of the resources. The search engine does not play a major 
role in these platforms. 

Section 3.4 demonstrates that SERGEANT can serve as a data cleaning tool. Data 
cleaning research aims at resolving the incorrectness, incompleteness, and inconsistency 
on data. Kimball breaks down the data cleaning into six steps [25]: elementizing, 



standardizing, verifying, matching, householding, and documenting. Our approach of 
handling input errors presented in section 3.4 is essentially the procedure of verifying the 
correctness of the data. Several data cleaning methods were proposed to deal with similar 
problems: N-gram sliding window targets at handling spelling errors [26], and Kimball 
[25] proposed the approaches for name/address cleaning by looking for the associations 
between data as well as comparing different sources. One common characteristic for 
these approaches is that either local databases (e.g. dictionary or city/state mapping) or 
multiple resources for the same data are required. Our approach, by which the search 
engine is applied to find out a clue about which fields might be wrong, differs in a way 
that no local database is required, nor do we need to find and check multiple resources for 
the same data. 

It is also feasible to integrate other online resources instead of SERGEANT to resolve 
the required input or incomplete output limitation. However, the SERGEANT framework 
of integrating a search engine into a web agent is more suitable for this situation because 
it saves the time of finding appropriate sources. Additionally it is more flexible and less 
risky since there any many available search engines and they are usually more stable than 
the online services. 

6. Conclusions 
In this paper we proposed the SERGEANT framework, which has three stages: the 

keyword generation stage, search stage, and information extraction stage. By integrating 
SERGEANT with a web agent, it is feasible to overcome four general limitations: the 
required-input limitation, the incomplete-output limitation, the non-reversibility 
limitation and the lack of fault-tolerance. Within the SERGEANT framework, we also 
present the idea of resolving the information extraction problems by translating them into 
an equivalent CSP, which simplifies the implementation of a recall-driven IE task such as 
the one required in SERGEANT. We implemented two flexible web agents as the 
demonstration for SERGEANT: The inverse geocoder is the first web agent that 
accomplishes the inverse geocoding task without employing any local database. The 
address lookup module demonstrates a flexible and reusable component that can be 
plugged into a variety of web agents using addresses as inputs and outputs.  
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