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a b s t r a c t

Concept hierarchies, such as the ACM Computing Classification Scheme and InterPro
Protein Sequence Classification, are widely used in categorization and indexing applica-
tions. In the Internet and Web 2.0 era, new concepts and terms are emerging on an almost
daily basis, so it is essential that such hierarchies maintain up-to-date records of concepts.
This paper proposes a mechanism to identify the most suitable position to insert new
terms into an existing concept hierarchy. The problem is challenging because there are
hundreds or even thousands of candidate positions for insertion. Furthermore, usually
there is no training instance available for an insertion; nor is it practical to assume the
availability of a detailed description of the target concept, except in the hierarchy itself.
To resolve the problem, we exploit the topology, content and social information, and apply
a learning approach to identify the underlying construction criteria of the concept hierar-
chy. We utilize three metrics (namely, accuracy, taxonomic closeness, and ranking) to eval-
uate the proposed learning-based approach on the ACM CCS, the DOAJ and the InterPro
datasets to evaluate the proposed learning-based approach. The results demonstrate that,
in all three metrics, our approach outperforms similarity-based approaches, such as the
Normalized Google Distance, by a significant margin. Finally, we propose a level-based
recommendation scheme as a novel application of our system. The source code, dataset,
and other related resources are available at http://www.csie.ntu.edu.tw/~d97944007/
refinement/.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

A concept hierarchy is a tree-based data structure in which higher level nodes represent more general concepts that are
connected by relationships like ‘‘is-a’’, ‘‘part-of’’, ‘‘include’’ or some other precedence relations. In this paper, we adopt the
conventional definition of a concept hierarchy [7,21] as a taxonomy or tree of concepts (i.e., there is no cycle in it). Generally,
the term concept can be any phrase in any language. Concept hierarchies are utilized in various domains, such as knowledge
classification, library categorization, web content directories, and product catalogues [4]. For example, the ACM Computing
Classification Scheme (CCS) [1] is based on taxonomy of computer science concepts. There are four levels in the 1991 version
of CCS (CCS91), as shown in Fig. 1.

Currently, concept hierarchies are refined manually, which is demanding and time-consuming. The ACM CCS, for exam-
ple, was last updated in 1998 (CCS98), which was seven years after the release of the previous version (CCS91). In fact, since
it was first published in 1964, the ACM CCS has only been updated five times: 1982, 1983, 1987, 1991, and 1998. For rapidly
. All rights reserved.
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G. Mathematics of Computing
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J. Computer Applications

K. Computing Milieux
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H.3 Information Storage and Retrieval

H.4 Information Systems Applications

H.5 Information Interfaces and Presentation

Fig. 1. The components of the CCS91 concept hierarchy. Due to space limitation, only part of the CCS91 is shown.
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changing domains like computer science, infrequent manual updating is not sufficient to keep pace with the rapid
emergence of new terms or satisfy users’ requirements. Therefore, we believe it is essential to design an automatic concept
hierarchy refinement framework that can keep concept hierarchies up-to-date.

In this paper, we focus on the following concept hierarchy refinement problem: given a concept hierarchy and a set of new
concepts, how can we identify the most suitable position to insert a new concept into the original concept hierarchy? Note that we
assume the concept can be inserted as the child node of any node (not just leaf nodes). For example, in Fig. 1, we might want
to insert a new sub-domain of information system under node H, but not on any of the leaf nodes (i.e., H.1, H.2, . . . , H.5).
However, inserting a new concept into a suitable position is not a trivial task, because the number of candidate positions
to be inserted is exactly the same as the total number of nodes in the hierarchy. For instance, in the ACM CCS91 there
are 1101 candidate positions for insertion, which means that a random assignment can only achieve 0.09% in accuracy.

In a hierarchy, the concept node may contain very little information, e.g., only the concept’s name; hence, the conven-
tional document-based hierarchy classification method [4,25] is not very effective in this situation due to the lack of features.
Unsupervised approaches, such as similarity-based methods, may be able to solve the problem of insufficient information by
inserting a new term based on its similarity (e.g., content-based point-wise mutual information) to the other concept terms.
However, the major drawback of similarity-based approaches is that they cannot learn the underlying criteria that were
exploited during the construction of the hierarchy. In fact, similarity is the only criterion they consider; therefore, it is
not easy for them to determine whether a new concept should be inserted as a sibling, a child or even one of the parents
of its closest nodes. Our approach is motivated by the fact that the creators of the hierarchy usually consider some under-
lying construction criteria, and we believe that learning those criteria could improve the accuracy of the refinement process.
For example, a concept hierarchy for animals (Fig. 2) usually assumes there are ‘‘is-a’’ relationships between the concepts,
whereas a component-hierarchy of an automobile (Fig. 3) usually assumes there are ‘‘part-of’’ relationships between the con-
cepts. In Fig. 2, a similarity-based approach might find that Eagle is the most similar concept to Owl, but it would have to
decide whether to insert Eagle as a sibling or a child of Owl. Meanwhile, in Fig. 3, a similarity-based approach might assign
Steering Wheel to Wheel/ Tire or Steering categories because their surface forms are similar; however, it should be inserted in
Control System (under Equipment). Clearly, it is difficult for a similarity-based approach to insert new concepts into concept
hierarchies with ‘‘part-of’’ relationships. These examples demonstrate why it is essential to learn the original classification
criteria when solving concept hierarchy refinement problems.

The above analysis suggests that a learning-based (or supervised) approach might be more suitable for concept hierarchy
refinement. One plausible way would be to treat refinement problems as hierarchical or multi-class classification problems.
In other words, given a sufficient number of training instances, we can train classifiers to determine the positions of newly
acquired terms. However, to realize this goal, we need a certain number of training samples for each class (or node). For
example, given 10 training samples for each of the 1101 candidate positions in the ACM CCS dataset, we would need
Eagle

Vertebrate

MammalReptile Bird

GoatTurtle DuckOwl

Fish

TunaGoldfish

Fig. 2. Using a similarity-based method to insert Eagle into an animal concept hierarchy. The ground truth in this example is Bird. The similarity-based
method is appropriate for such concept hierarchies because they are based on ‘‘is-a’’ relationships.
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Fig. 3. Using a similarity-based method to insert Steering Wheel into an automobile concept hierarchy. The ground truth in this example is Control System.
The similarity-based method might not be appropriate for such concept hierarchies because they are based on ‘‘part-of’’ relationships.
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approximately 11,010 training instances. Of course, the major problem with the above design is that such training concepts
are not usually available. If there were sufficient concepts for training, they would have been included in the original
hierarchy.

To address this issue, we propose a novel learning framework for hierarchy refinement. In the training phase, instead of
training a multi-classifier system, we train a single binary classifier to learn whether two nodes have a parent–child relation-
ship in the hierarchy. Training samples are generated automatically by pairing any two nodes in the existing hierarchy and
assigning a positive or negative label to the pair. In the insertion (or testing) phase, we pair a new term with each node in the
hierarchy and insert it in the position assigned the highest probability by the classifier. We also propose deriving features for
learning by using topology, content and social information acquired internally (e.g., from the hierarchy) and externally (e.g.,
by searching the Web).

The proposed framework includes a hierarchy refinement recommender system that provides level-by-level suggestions
to users during the refinement process. Our experiment results demonstrate the efficacy of the recommendation system.
Compared to manual refinement methods, the system only needs 3/4 to 1/7 of the time to perform the refinement task.

The major contributions of this paper are as follows:

(1) We propose a framework that models the hierarchy-refinement problem as a classification task in which the lack of
the training samples is not a concern. The framework outperforms unsupervised, similarity-based approaches because
it learns a hierarchy’s underlying classification criteria.

(2) To determine the existence of parent-child relationships, we exploit three types of information: (i) topology informa-
tion, which is generated based on the structure of the original concept hierarchy; (ii) content information, most of
which is acquired by searching the Web; and (iii) social information, which is gathered by using certain bipartite rela-
tionships obtained externally.

(3) We evaluate the proposed method on the ACM CCS, the Directory of Open Access Journals (DOAJ) [9], and the InterPro
Protein Sequence Classification (InterPro) [17] dataset. In addition, we compare our method’s performance with that
of several similarity-based approaches. For the evaluation, we utilize two existing metrics, accuracy and taxonomic
closeness, and propose a rank-based area under curve (rank-based AUC) metric to assess the effectiveness of the system.
The results show that, on the above three datasets, our method outperforms the compared methods in terms of all
three metrics.

(4) The proposed framework can be used as an effective and efficient recommender mechanism to help users refine a hier-
archy. Our experiment results show that, compared to manual refinement methods, the proposed framework only
needs 3/4 to 1/7 of the time to perform the refinement task.

The remainder of the paper is organized as follows. In the next section, we describe the proposed concept refinement
method; and in Section 3, we introduce the recommender mechanism. In Section 4, we present the experiment results;
and in Section 5, we discuss the results in detail. Section 6 contains a literature survey. Then, in Section 7, we provide some
concluding remarks.
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2. Related work

Several studies have focused on concept hierarchy generation, where the objective is to create complete concept hierar-
chies from scratch. For example, Attribute-Oriented Induction [15], Conceptual Abstraction Hierarchy [16], and Self-Organiz-
ing Maps [24] derive concept hierarchies for categorical datasets. Some studies utilize clustering techniques, such as
hierarchical clustering [7,19–21] and conceptual clustering [11], to build concept hierarchies. Another well-known approach,
Formal Concept Analysis [13], which generates concept lattices automatically, is used in various application domains
[3,18,29,31]. In this paper, we focus on a different problem where we assume that a manually built concept hierarchy already
exists and cannot be altered.

The hierarchical classification problem [10], on the other hand, involves classifying documents into the leaf nodes of a con-
cept hierarchy. That is, hierarchical classification methods try to classify documents into concept hierarchies. In contrast, our
objective is to insert new concepts into an original hierarchy. From a technical point of view, our approach tries to learn the rela-
tionship between the parent–child nodes, whereas hierarchical classification learns which category a particular document be-
longs to.

Ontology evolution is a related research area that deals with the problem of incorporating new information into an exist-
ing ontology [12]. Some studies focus on the evolution of concept hierarchies (or taxonomies). For example, ReTAX+ [22], a
system for revising taxonomies, uses pre-defined rules to resolve inconsistencies when a new concept is added to a hierar-
chy. The method, which is semi-automatic, requires domain users to specify the dominant attributes and choose a refine-
ment strategy. CleanONTO [27], is a related method is that evaluates and refines taxonomies by using semantic paths
extracted from WordNet. However, WordNet only provides semantic information about ‘‘is-a’’ relationships. It has difficulty
learning other types of relationships such as ‘‘part-of’’ relationships. To the best of our knowledge, our work is the first at-
tempt to model the general ontology evolution problem by using a supervised framework. The proposed system does not
require handcrafted rules or domain users’ help, and it can be applied to all types of ontology.

3. Concept refinement method

We use k to denote a term or phrase that represents a concept, and K to denote a set of concepts. A parent-child pair
[kp, kc] indicates that kp is the parent node of kc. P(K) is a set of parent-child pairs such that for each [kp, kc] 2 P(K), kp, kc 2 K.
A concept hierarchy can be defined as a set of concepts together with their relations: H = {K, P(K)}. We say that a concept
hierarchy Hi subsumes Hj if Kj # Ki and PðKjÞ# PðKiÞ. The concept hierarchy refinement problem is defined as follows: Given
an original concept hierarchy HO = {KO, P(KO)} and a new concept set KN, how can we generate a new concept hierarchy
HN = {KO [ KN, P(KO [ KN)} such that HN subsumes HO?

3.1. Outline of our approach

Our supervised learning framework for the concept hierarchy refinement problem is illustrated in Fig. 4. In the training phase,
we disassemble the original concept hierarchy HO into a set of parent–child pairs, and use them to learn the hierarchy’s underlying
classification criteria. In the insertion phase, we pair each new concept kn 2 KN as a child node with each concept node, and use a
trained classifier to determine the likelihood of each pair. Finally, we insert kn beneath the concept node whose pairing with kn

yields the highest classification score, and generate new concept hierarchy HN. The training and insertion phases are described
in detail in the next two sub-sections, and we explain how the features for classification are generated in Section 2.4.

3.2. Training

The training samples are created automatically from the original concept hierarchy HO. We want to determine the feasi-
bility of inserting a new concept into an existing concept. Therefore, it is reasonable to train the classifier with information
about the insertions that are considered valid and those that are deemed invalid.
Old Concept
Hierarchy HO

w1 = 0.231
w2 = 0.745
w3 = 0.825

Classification
Model

Training
Phase

…

New Concept kn

Insertion
Phase

New Concept
Hierarchy HN

Fig. 4. The framework of the proposed concept hierarchy refinement method.
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If we pair all the n = |KO| nodes in the hierarchy with each other, there could be Permutation (n, 2) = n � (n � 1) possible
combinations of ordered pairs. However, since there are only (n � 1) edges in the network, we can assume there are only
(n � 1) valid pairs (or positive training examples). The remaining n � (n � 1) � (n � 1) = (n � 1)2 pairs are invalid or negative
pairs. Fig. 5 shows an example of the training process. To learn the underlying criteria of HO, which has 5 concepts
{k1, k2, k3, k4, k5}, we use all possible parent–child pairs in HO to compile the training dataset. There are Permutation
(5, 2) = 20 possible pairs. If any one of the possible pairs exists in HO such as [k1, k2], then the class label of that pair is +1
(the gray labels in Fig. 5). Otherwise, the class label is �1 (the white labels in the figure). Since HO is a tree, there are
5 � 1 = 4 positive tuples, and (5 � 4) � 4 = 16 negative tuples. Next, we construct three features, i.e., the topology, content
and social features (which we describe in Section 2.4) for the 20 training data pairs to train a binary classifier.
3.3. Insertion

In this phase, the model tries to determine the most appropriate insertion position in HO for a new concept kn, based on
the classification model learned previously. Note that each insertion creates a parent–child pair, and the number of possible
positions for insertion is equivalent to the total number of concepts in the hierarchy.

First, we create the insertion dataset Pinsertion(kn [ KO) = {[ki, kn] | ki 2 KO} for kn. That is, we generate test pairs by append-
ing kn as child node to all ki 2 KO as possible parent nodes. Therefore, we generate |KO| tuple in the insertion dataset, where
|KO| represents the number of elements in KO. Next, we construct the features for each pair by using the methods described in
the next subsection. Then, we utilize the classification model generated during the training step to estimate the likelihood of
each plausible insertion position of kn. Finally, we select a pair [kmax, kn] with the highest likelihood score, and insert kn into
kmax. Fig. 6 shows the insertion phase when a new concept k6 is inserted into k3 in the concept hierarchy HO in Fig. 5.
3.4. Feature construction

To train a classifier, we need to construct a set of representative features for each training sample, as shown in Table 1.
The training set consists of pairs of parent–child concepts. Note that the child node (i.e., the new concept to be inserted) of
each parent–child pair [kp, kc] is identified in the insertion phase; therefore, we do not have to encode any individual infor-
mation about kc in the training phase. As a result, based on the sources of information, it is possible to exploit two types of
knowledge to construct the features: the information about kp itself (denoted as ‘‘parent’’ in Table 1), and the information
about the relationship between kp and kc (denoted as ‘‘relation’’ in the table). In a Bayesian learning scenario, the parent fea-
tures carry the prior information, while the relation features are useful for learning the likelihood function. Orthogonally, we
can divide the features into three groups (i.e., topology, content and social) based on the information that each feature
possesses. Table 1 shows these two dimensions of feature-categorization. Next, we use the pair [kinfo, kuser] = [information
systems, user machine systems] as an example to demonstrate the features.

First, the topology information of the parent node kp is acquired directly from the structure of HO. There are three topology
features, namely, the level (or depth in the hierarchy) of kp, the number of siblings of kp (including kp itself), and the number
of children of kp.
k1

k2 k3

k4 k5

Old Concept
Hierarchy HO

k1 k3

k1 k4

k1 k5

k2 k3

k2 k4

k2 k5

k3 k4

k3 k5
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k3 k1
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k5 k1

k3 k2
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k5 k2

k4 k3

k5 k3
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k1 k2
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w3 = 0.825
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Classification
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Hierarchy
Disassemble

Classifier
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Feature
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Content
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Features for Each Tuple

k1 k5

…

…

Fig. 5. An example of the training phase: we train a classification model from a concept hierarchy HO = {{k1, k2, k3, k4, k5}, {[k1, k2], [k1, k3], [k2, k4], [k2, k5]}.
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Fig. 6. An example of the insertion phase: we use the trained classification model to insert a new keyword k6 into k3 in the original concept hierarchy HO to
form the new hierarchy HN.

Table 1
Supervised learning features by category.

Group Feature Parent Relation

Topology Level of parent O
Siblings count of parent O
Children count of parent O

Content Frequency of parent O
Partial name matching O
Co-occurrence on Web pages O
Jaccard similarity O
NGD similarity O

Social Number of coauthor O
Number of coauthor sequence O
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Second, to generate the content features, we compare the concept terms directly, or use the concept terms as keywords to
search the Web. There are five types of content features:

� Frequency of parent C(kp). This is the logarithmic value of the web page count returned by a search engine when querying
with the parent concept kp. For example, if the query ‘‘information systems’’ returns 100,000,000 search results, C(kinfo) =
log (100,000,000) = 8. The intuition behind this feature is that a new term is more likely to be inserted into a popular con-
cept than an unpopular one.
� Partial name matching. Let W(kp) be the set of words that constitute kp and W(kc) be the set of words that constitute kc.

Then, we can define the partial name matching feature as jWðkpÞ \WðkcÞj. For example, Partial Name Matching
ðkinfo; kuserÞ ¼ jWðkinfoÞ \WðkuserÞj ¼ 1 (i.e., the word systems is the same).
� Co-occurrence on Web Pages C(kp, kc). This is the logarithmic value of the web page count returned by a search engine while

using ‘‘kp’’ + ‘‘kc’’ as the query. For example, if the query ‘‘information systems’’ + ‘‘user machine systems’’ returns 10,000
page counts, C(kinfo, kuser) = log(10,000) = 4.
� Jaccard similarity. We define the Jaccard similarity feature as C(kp, kc )/(C(kp) � C(kc)),where C(kp), C(kc) and C(kp, kc) are

defined as above. Following the previous example, if C(kinfo) = 8 and C(kuser) = 5, then the Jaccard_Similarity (kinfo, kuser) =
4/(8 � 5) = 0.10.
� NGD Similarity. The Normalized Google Distance (NGD) [5] similarity feature is defined as follows:
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NGD Similarityðkp; kcÞ ¼ 1�maxðCðkpÞ;CðkcÞÞ � Cðkp; kcÞ
N �minðCðkPÞ;CðkcÞÞ

:

N is the logarithmic estimated total number of searchable web pages. The value does not affect the result if it is large en-
ough [5]. In our experiment, we assume that N = 12. For example, NGD_Similarity (kinfo, kuser) = 1 � (max(8, 5) � 4)/
(12 �min(8, 5)) = 0.43.

Finally, the social features are generated based on the relationships between the concept-related objects. In other words,
two concepts are correlated if they are linked through some objects. In our experiment, we select authors as the objects and
authorship as the relationship. There are two types of social features:

� Number of social connections (or number of co-authors in our experiment). Let A(kp) be the set of the top-r relevant objects
(e.g., individuals or web pages) to the parent concept kp, and let A(kc) be the set of the top-r relevant objects to the child
concept kc. Both sets of objects can be generated by searching the Web or a publicly available database, such as Microsoft
Academic Search. Given A(kp) and A(kc), we can construct a concept-object bipartite graph in which the links represent a
relationship, e.g., authorship. Then, we define the Number of Social Connections feature as the number of distinct paths
from one concept to another in the bipartite social graph. For example, if the top-three relevant objects of kinfo are
{a1, a2, a4}, and the top-three relevant objects of kuser are {a1, a3, a5}, we can build the bipartite graph shown in Fig. 7. Then,
the Number_of_Social_Connections (kinfo, kuser) = 1 since there is one path from kinfo to kuser (indicated by the bold lines in
Fig. 7).
� Number of sequential social connections (or number of coauthors sequence in our experiment). We extend the concept of

social connections feature to construct the Number of sequential social connections feature. First, we build the same con-
cept-object bipartite graph using A(kp) and A(kc). Then, for each object in A(kp) and A(kc), we retrieve the related objects
(e.g., the co-authors) to construct an enriched graph. Finally based on the graph, we compute the total number of paths
from kp to kc. An example is shown in Fig. 8, where a6, a7, a8, a9 are co-authors extended from the neighbor authors of
those concepts; and the Number_of_Sequential_Social_Connections (kinfo, kuser) = 2 (represented by the bold lines and
dashed lines in the figure). Note that such relational information is usually available from some public source, such as
Wikipedia. In Section 4, we explain how different features perform to provide some insight into their usefulness.

To summarize, we construct three groups of features: topology (the level of the parent, the sibling count of the parent, and
the children count of the parent); content (frequency of the parent, partial name matching, co-occurrence on web pages, the
Jaccard similarity, and the NGD similarity); and social (the number of social connections and the number of sequential social
connections).
kinfo

kuser

a1

a2

a3

a4

a5

An example of a concept-object bipartite graph used to generate the number of social connections feature. There is one path (kinfo � a1 � kuser) from
kuser; thus, the Number_of_Social_Connections(kinfo, kuser) = 1.
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An example of a graph used to generate the number of sequential social connections feature. There are two paths (kinfo � a1 � kuser and
2 � a7 � a5 � kuser) from kinfo to kuser; thus, the Number_of_Sequencial_Social_Connections(kinfo, kuser) = 2.
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3.5. Feature enrichment using neighboring nodes

In the previous section, we only considered the parent node (i.e., the node to be inserted in the hierarchy) and its rela-
tionship to the new concepts. However, concepts that are close to each other in the hierarchy are deemed to be more rele-
vant. Thus, it is reasonable to assume that the concept to be inserted should also have certain relevance to the nodes in the
neighborhood of the target parent node. Therefore, we enrich the feature set by finding the relationship of a concept kc to its
potential parent kp‘s relatives, namely kp‘s parent (i.e., kc‘s grandparent), kp‘s children (i.e., kc‘s siblings), and kp‘s siblings.
Then, we can create the following features by using the new term kc and kp‘s relatives (for example, if we consider inserting
a new node kc into k2 in Fig. 5):

� Relational features between kc and its grandparent (e.g., [k1, kc]).
� Maximum/minimum/average relational features for kc and its siblings (e.g., [k4, kc] and [k5, kc]).
� Maximum/minimum/average relational features for kc and kp’s sibling (e.g., [k3, kc]).

Note that the numbers of siblings are not fixed. Hence, to maintain a fixed size feature vector for learning, we need to
aggregate their values by taking the maximum, minimum or average scores. In addition, we only enrich the content and so-
cial features because the enrichment process itself is inherently topological.

4. A level-based recommender mechanism for refinement

A concept hierarchy like ACM CCS may contain hundreds or even thousands of possible positions for insertion. Therefore
it might not be practical to expect a system to identify the exact position every time. Our experiment results show that our
system improves the insertion accuracy significantly from 0.09% (random guess) to 34%; however, such accuracy might not
be sufficient for auto-insertion. Nevertheless, in this section we propose an application for our system that enables users to
save time in identifying the correct positions for insertion.

We exploit the proposed framework to develop a level-based ranking system that recommends insertion positions level-
by-level. That is, starting from the top, the system suggests the order that the positions in each level should be utilized. The
rationale for this approach is that when users want to insert new concepts into a hierarchy, they do not need to search the
whole hierarchy node-by-node. Instead, they can identify the correct position level-by-level in a top-down fashion. Given a
new concept kn, in each level v there is a node (in a set of possible candidate positions Kv) that is the most appropriate for kn.
Thus, in each level, the user examines each pair of concepts (kn, kv) to learn whether they should be connected, where kv 2 Kv.
Once a match is found, the user moves to the next (lower) level to identify the child nodes that could be associated with kn.
The process continues until there are no more matches for kn, after which its position can be determined. An example of the
above process is shown in Fig. 9. If a user wants to insert a new concept k into the hierarchy, he/she starts at the root x, and
examines the child concepts of x one by one from y1 to y3, if necessary. In this example, while examining the relationship, the
user realizes that k should be inserted somewhere in concept y3 (Fig. 9(b)). There is no need to examine the remaining nodes
in that level, so the user can go to next (i.e., lower) level to check the children of y3 (z1 and z2 in this case). The process is
repeated (Fig. 9(c)) until the correct position for insertion is confirmed in 9(d).

Given that the nodes in Kv are examined in random order, the total time, T, needed to complete the insertion process can
be estimated as T = t � d � b/2, where t is the average time required to examine one pair, b is the average branching factor, and
d is the depth of kn in the hierarchy. Since the nodes in Kv are ordered randomly, users are expected to examine b/2 nodes in
each level. In this case, the users do not have to examine all nodes in the hierarchy to determine the most appropriate posi-
tion for insertion. They only have to examine d � b nodes at most.

However, in domains like molecular biology, evaluating each parent-child pair usually takes a substantial amount of time
(i.e., t is large) and financial resources. For example, in Gene Ontology [28], it is usually necessary to search a large amount of
literature to confirm a parent–child connection. To construct a transcription network as small as the Genetic Regulatory
y1 y2 y3

z2z1

k

(b) (c) (d)

x

(a)

Fig. 9. Inserting a new concept k into an existing hierarchy without the rank recommender; (a)–(d) represent steps 1–4, respectively.
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Network (GRN) for Embryos (Fig. 10), it usually necessary to perform a series of biological experiments [8,26,30]. The
researchers responsible for creating and maintaining the PRINTS database, which identifies protein families, observed that
‘‘creating and annotating family discriminators is time consuming’’, and ‘‘the database is still small relative to the number
of protein families that exist, largely because the detailed documentation of entries is extremely time-consuming’’ [2].
Because the cost of scrutinizing each pair can be very high, reducing the number of examinations is critical. To solve this
kind of problem, we provide a recommender that can rank the candidates in Kv successfully based on the likelihood that they
have a parent-child connection to kn. In Section 4.7, we show that for InterPro dataset, the recommender ranks the gold
standard in the top 1/7 of the list; therefore, we only need to exam d � b/7 pairs. An ideal recommender would completely
remove b from the equation as T = t � d, and is generally beneficial for tasks with large b (e.g., in the InterPro dataset that we
used for evaluation, the largest branching factor is 74).

To provide ranked recommendations to users, we can simply utilize the insertion probability (or likelihood score)
described in Section 2.3. The probability allows us to recommend the rank for each level easily. Fig. 11 shows the insertion
process with ranked recommendations for the example in Fig. 9. Again, we try to insert k into the hierarchy in a top-down
fashion. Using the recommendations as a guide, we can evaluate each level according to its rank. Therefore, in Fig. 11(b) we
can find the correct position in 2 steps (the rank of the matched concept is 2). Similarly, in Fig. 11(c) we can find the correct
position in the first step. This example demonstrates that the insertion process requires less time if the recommended rank is
reliable. In Section 4.7, we evaluate the effectiveness of the recommender system based on how many nodes have to be
traversed under different algorithms.
Fig. 10. The Genetic Regulatory Network for Embryo transcription networks.
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Fig. 11. Inserting a new concept k into an existing hierarchy with the rank recommender in the proposed system; (a)–(d) represent steps 1–4, respectively.
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5. Evaluations

The objective of the experiments is to verify the following four hypotheses about the concept hierarchy refinement
problem.

(1) Learning-based methods can improve on the results derived by non-learning based methods.
(2) Topology, content and social features make diverse contributions when refining a concept hierarchy.
(3) Enriching features by using information about neighboring nodes can improve the accuracy.
(4) A learning-based concept hierarchy refinement framework can be used as an effective and efficient recommender

mechanism to help users refine a hierarchy.

For hypothesis (1), we compare similarity-based methods with learning-based methods; for (2), we compare the perfor-
mance of learning-based methods using different groups of features; for (3), we compare the results of learning-based meth-
ods with/without feature enrichment; and for (4), we compare the methods to determine which one is the most efficient in
terms of average traversed nodes per insertion.

5.1. Datasets

To evaluate our framework, we used three datasets: ACM CCS, DOAJ, and InterPro. For ACM CCS, we used ACM CCS91 as
the original concept hierarchy HO in the training phase. After data cleaning and preprocessing (e.g., removing duplicate en-
tries), we extracted |KO| = 1101 from CCS91. Thus, the training dataset size = |KO| � (|KO| � 1) = 1,211,100. The height of the
CCS91 tree is 4, and the average branching factor is 4.97. In the insertion phase, we utilized ACM CCS98 as the gold standard
for evaluation. We wanted to observe how well our system could simulate the terms that users worked on in the 1990s in
order to add new concepts to the original CCS91. Thus, concepts in CCS98 that were not in CCS91 were treated as new con-
cepts to be added. As a result, there were |KN| = 244 new concepts to be inserted. Our system had to select an appropriate
position from the 1101 possible positions available for insertion. Of the 244 new concepts, 3.7% had to be inserted into leaf
nodes and the rest were connected below non-leaf nodes.

For the second dataset, DOAJ, we also utilized the ACM CCS91 dataset to build a classification model in the training phase.
However, in the insertion phase, we used keywords listed in the 153 computer science journals in DOAJ. There are 209 key-
words in the journals. We believe the keywords represent important evolving concepts in the computer science field. There-
fore, we tried to add them to CCS91 to evaluate the effectiveness of our system. After removing duplicate concepts and those
that were too general, there were |KN| = 83 new concepts. We asked users to annotate the ideal insertion positions manually.
Of the 83 concepts, 3.6% had to be inserted into the leaf nodes.

For the third dataset, InterPro, we extracted the largest protein hierarchy tree (i.e., ‘‘GPCR, rhodopsin-like superfamily’’).
Of the 254 nodes in the tree, we randomly removed |KN| = 24 concepts for use in the insertion phase; the remaining 230 con-
cepts were used as the original concept hierarchy HO. Thus, the training dataset size = |KO| � (|KO| � 1) = 52,670. The height of
the InterPro tree is 5, and the average branching factor is 4.49. All 24 new concepts had to be inserted into non-leaf nodes.

5.2. Resources and baseline methods

In this experiment, we exploited the Naïve Bayes (NB) classifier. We tried various classifiers, such as Support Vector
Machine, Random Forest, Logistic Regression, AdaBoost, and combinations of them, but none of them performed significantly
better than NB. Hence, we only consider the results of the NB classifier.

We utilized Yahoo! as the standard search engine to derive content features; Google produced similar results. To generate
the coauthors and coauthor sequence graphs, we used Microsoft Academic Search; Google Scholar yielded similar results.
The system code is written in Java, and the system runs on a PC with an AMD Opteron 2350 2.0 GHz Quad-core CPU and
a 32GB RAM.

We used similarity-based methods for comparison. That is, given certain similarity metric (as have been exploited in
Section 2.4) to generate the features (e.g., NGD similarity), we inserted each new concept into the most similar node in
the original concept hierarchy. To integrate all the similarity measures, we applied the 1-Norm average of the features as
one of the methods for comparison. We also tried a 2-Norm average and obtained very similar results.

5.3. Measurements

Since there is no consensus on evaluation metrics for this problem, we use the accuracy, taxonomic closeness, and ranking
metrics to evaluate the performance of our proposed method in the experiments. The accuracy is the most straightforward
metric to calculate. An insertion is considered correct if the predicted parent node is the same as the gold standard or the
user-annotated solution. Thus, the accuracy is defined as follows:
accuracy ¼ number of correct insertions
number of new keywords

:
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The denominator is the total number of new concepts in the experiment. It is equal 244 concepts in the ACM CCS dataset, 83
in the DOAJ dataset, and 24 in the InterPro dataset.

The drawback with the accuracy measure is that it cannot distinguish between missed insertions that are close to the
target and those that differ by a large margin. However, the second metric, taxonomic closeness, resolves the problem.
The reason is that even if an insertion is incorrect, we consider that a closer prediction is better than one that differs signif-
icantly. To evaluate the taxonomic closeness, we apply the concept of taxonomy similarity [6,14,23]: Let top be the root con-
cept, and d(a, b) be the edge distance of the two concepts a and b in a concept hierarchy. The least common super-concept
LCS(a, b) is defined as
Fi
LCSða; bÞ ¼ c such that ðdða; cÞ þ dðb; cÞ þ dðtop; cÞÞ is minimized:
Then, the taxonomy similarity between two nodes a and b is defined as
Tsimða; bÞ ¼
dðtop; cÞ þ 1

dða; cÞ þ dðb; cÞ þ dðtop; cÞ þ 1
:

Let us consider the intuition behind this measurement. For two concepts (a, b) in a concept hierarchy, the shortest taxonomic
distance between them is d(a, c) + d(b, c), where c = LCS(a, b). However, even with the same taxonomic distance, the similar-
ity of two ‘‘more general’’ concepts should be lower than the similarity of two ‘‘more specific’’ concepts. For example, in the
animal concept hierarchy in Fig. 2, the distance of (Fish, Mammal) is 2, which is equal to the distance of (Owl, Duck). However,
intuitively, the similarity of the former pair is lower than that of the latter pair. In this sense, the ‘‘generality’’ is considered by
adding d(top, c) to the formula.

The taxonomic distance, which is a precise number in the range [0–1], represents the similarity of a given concept pair
(a, b). When Tsim = 1, the two concepts (a, b) are exactly the same. Consider the concept hierarchy shown in Fig. 12. Let a be
the actual parent of the new concept and b be its predicted parent; then the taxonomy similarity Tsim (a, b) = (1 + 1)/
(1 + 3 + 1 + 1) = 0.33. We use the average Tsim to evaluate the overall taxonomic closeness of the predicted and actual inser-
tion positions.

Although the taxonomic closeness shows how close the predicted position is to the target position, it does not really re-
veal the system’s ability to identify the ideal solution. If we view our system as a filter, the top p% positions of candidates
ranked by the system are provided to the user for a final check. In other words, if the system can rank the new concepts
in the top 10% of all 1100 possible choices, we can simply provide the user with the top-110 candidates returned by the clas-
sifier. Then, the user can choose the most appropriate candidates. As result, the system can save as much as 90% of the time
required by humans to identify the best insertion position. Therefore, we evaluate the ranking based on the accuracy of the
top-h ranked predictions. That is, we regard a prediction as correct if the actual insertion position is ranked among the top-h
predictions. By moving h, we can draw a ranking-based accuracy curve, with the ranking threshold h as the horizontal axis and
the accuracy as the vertical axis. The idea is similar to an ROC curve, although the ROC curve is not as meaningful in our case
because there is only one positive instance. The area under a ranking-based accuracy curve is defined as the rank-based AUC.
If the rank-based AUC is high, it implies that the actual answer has higher probability of being included in the top ranked
positions. We adopt rank-based AUC because, even if two methods have similar accuracy or average taxonomy similarity,
the method that ranks the actual answer higher is deemed to be better.
5.4. Results for the ACM CCS dataset

In the experiments, we compare the performance of random assignment, similarity-based, and learning-based methods.
Similarity-based methods determine which node in the hierarchy is the most similar to the new concept, and insert the con-
cept as a child of that node. To be fair, we utilize similarity measures based on the topology, content and social information
features because we exploited them in the proposed learning framework. The measures include all the following features,
which are also shown in Table 1: level of the parent (Level), sibling count of the parent (Sibling), children count of the parent
(Children), frequency of the parent (Frequency), partial name matching (Name), co-occurrence on web pages (Page), Jaccard
c

a

b

top Root

Predicted parent

Actual parent

Least common superconcept

g. 12. An example of a concept hierarchy for computing the taxonomy similarity. In this hierarchy, the taxonomy similarity Tsim (a, b) = 0.33.
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similarity (Jaccard), NGD similarity (NGD), number of coauthors (Coauthor), and number of coauthor sequences (Sequence).
We also combine these baseline methods by taking the mean (1-Norm) of the decision values of the compared methods. For
learning-based methods we exploit a different combination of features, namely, topology features only, content features
only, content features with enrichment, social features only, social features with enrichment, all features without enrich-
ment, and all features with enrichment.

The results are shown in Table 2, including the degree of accuracy, average Tsim, and rank-based AUC. The proposed learn-
ing-based method with all features outperforms baseline methods, and the proposed method performs even better with en-
riched features.

For the accuracy metric, the mean combination of baseline methods (1-Norm) (20.08%) outperforms all other baseline
methods. This is reasonable because the measure combines information acquired from different sources. In learning-based
methods, content features generally outperform social and topological features. With all the features and enrichment, our
learning-based methods achieved 34.84% accuracy, which was the best score overall in the experiments. The results indicate
that, in this difficult multiple-choice problem (i.e., the accuracy reaches only 1/1101 = 0.09% based on random guess), our
system can answer one out of three questions correctly. A similar situation holds for the average taxonomy similarity metric,
where a learning-based method with all features and enrichment can achieve 0.51 Tsim on average, which is 0.11 better than
the best baseline method. For rank-based AUC, the learning-based method with all features and enrichment also outper-
forms the other methods with a score of 97.28%, which is 4.58% better than the best baseline method.

Fig. 13 shows the ranking-based accuracy curves for four methods: random assignment, the combined means of the base-
line methods (1-Norm), the learning-based method with all features, and the learning-based method with all features and
enrichment. We select the 1-Norm combination method for comparison with the proposed system because, overall, it out-
performs the other baseline methods (Table 2). As shown in Fig. 13, when we set the ranking threshold h = 100, the 1-Norm
method achieves 73% accuracy; however, with enrichment, the proposed system yields 92% accuracy. In other words, our
system enables users to complete an insertion task much faster (1101/100 = 11 times faster) than the baseline method with
reasonable accuracy (92%) Similarly, when h = 50, users can finish the task 22 times faster with a slightly lower accuracy rate
(87%).

5.5. Results for the DOAJ dataset

The results of the evaluation on the DOAJ dataset are listed in Table 3. Similar to the experiments on ACM CCS, the
proposed learning-based method with all enriched features outperforms the other methods in terms of all three metrics.
Generally, the 1-Norm method outperforms the other baseline methods. In the learning-based methods, ‘‘social features with
enrichment’’ yields better accuracy than the other features. With all features and enrichment, our learning-based methods
can achieve 19.28% accuracy, which is the best score overall. Likewise, for the average taxonomy similarity metric, the
learning-based methods with all features and enrichment can achieve 0.36 Tsim on average. For rank-based AUC, learning-
based methods with all features and enrichment yield the best performance (95.87%).

5.6. Results for the InterPro dataset

The results for the InterPro dataset are shown in Table 4. It is noteworthy that, in learning-based methods, the ‘‘social
features with enrichment’’ feature performs better than the other metrics (accuracy = 54.17%, average Tsim = 0.71, and
Table 2
Experiment results for the ACM CCS dataset.

Method Accuracy (%) Average Tsim Rank-based AUC (%)

Random 0.09 0.13 50.05
Similarity-based (baseline) Topology Level 0.00 0.11 5.06

Siblings 0.01 0.15 62.28
Children 0.00 0.17 86.74

Content Frequency 0.00 0.13 60.73
Name 5.74 0.29 37.63
Page 6.56 0.25 85.30
Jaccard 13.93 0.36 87.40
NGD 9.02 0.36 85.07

Social Coauthor 4.92 0.23 21.55
Sequence 7.79 0.27 28.26

Combined 1-Norm 20.08 0.40 92.70

Learning-based Topology Topology 0.00 0.17 88.31
Content Content 14.04 0.36 88.86

Content-enriched 32.34 0.49 96.57
Social Social 11.06 0.34 47.49

Social-enriched 23.36 0.40 74.09
Combined All 29.51 0.47 96.49

All-enriched 34.84 0.51 97.28



Table 3
Experiment results for the DOAJ dataset.

Method Accuracy (%) Average Tsim Rank-based AUC (%)

Random 0.09 0.13 50.05
Similarity-based (baseline) Topology Level 0.00 0.13 4.42

Siblings 0.00 0.18 61.71
Children 0.05 0.22 87.41

Content Frequency 0.00 0.13 63.87
Name 2.41 0.23 29.82
Page 4.82 0.22 74.75
Jaccard 6.02 0.24 77.33
NGD 4.82 0.23 83.35

Social Coauthor 2.41 0.21 9.95
Sequence 2.41 0.21 14.69

Combined 1-Norm 8.43 0.28 85.49

Learning-based Topology Topology 0.00 0.18 89.15
Content Content 3.61 0.25 78.81

Content-enriched 9.64 0.26 93.92
Social Social 8.43 0.27 35.87

Social-enriched 16.87 0.35 65.05
Combined All 12.05 0.33 95.02

All-enriched 19.28 0.36 95.87
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Fig. 13. Ranking-based accuracy curves for the ACM CCS dataset.
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rank-based AUC = 99.02%). Among the baseline methods, ‘‘children count of parent topology’’ outperforms the other metrics
(accuracy = 12.50%, average Tsim = 0.46, and rank-based AUC = 90.13%).

5.7. Evaluation of the level-based refinement recommender mechanism

To evaluate the level-based recommendation system described in Section 3, we propose an intuitive metric: the traversed
length of an insertion. The traversed length is the total number of nodes that must be traversed during the insertion process.
As mentioned in Section 3, for some tasks, such as biology hierarchy refinement, investigating whether there is a parent–
child relationship between two nodes (usually genes or proteins) takes a great deal of time. Therefore, it is essential that
the total number of pair-wise investigations should be reduced. The traversed length measures the number of investigations
exactly. As shown in Fig. 11, the traversed length given the recommendation (discussed in Section 3) is 1 + 2 + 1 = 4.

Table 5 shows the results of applying the average traversed length on the three datasets. For the ACM CCS and DOAJ data-
sets, the combined feature with enrichment yields the best performance; and for the InterPro dataset, the social feature with



Table 5
Results of the recommendation application using the traversed length on the three datasets.

Method ACM CCS DOAJ InterPro

Random 11.20 10.60 33.54
Similarity-Based (baseline) Topology Level 11.82 11.39 35.13

Siblings 11.82 11.39 35.13
Children 11.12 9.18 17.35

Content Frequency 11.61 11.86 27.98
Name 10.43 10.16 36.56
Page 7.95 9.99 29.96
Jaccard 7.39 9.50 34.67
NGD 7.54 7.98 34.79

Social Coauthor 11.56 10.98 35.19
Sequence 11.45 10.92 35.29

Combined 1-Norm 7.75 8.82 29.75

Learning-based Topology Topology 10.80 10.29 18.85
Content Content 7.63 9.15 31.60

Content-enriched 6.44 8.62 6.33
Social Social 10.22 9.94 34.37

Social-enriched 8.50 8.60 4.75
Combined All 7.35 8.72 19.83

All-enriched 5.84 7.87 5.79

Table 4
Experiment results for the InterPro dataset.

Method Accuracy (%) Average Tsim Rank-based AUC (%)

Random 0.43 0.29 54.40
Similarity-Based (Baseline) Topology Level 0.00 0.24 8.61

Siblings 4.17 0.36 56.20
Children 12.50 0.46 90.13

Content Frequency 0.00 0.30 50.33
Name 0.00 0.34 14.78
Page 0.00 0.44 43.59
Jaccard 0.00 0.43 46.09
NGD 0.00 0.39 51.20

Social Coauthor 0.00 0.26 0.87
Sequence 0.00 0.27 0.87

Combined 1-Norm 0.00 0.38 63.35

Learning-based Topology Topology 12.50 0.46 86.90
Content Content 12.50 0.46 50.36

Content-enriched 25.00 0.54 97.52
Social Social 0.00 0.17 25.16

Social-enriched 54.17 0.71 99.02
Combined All 12.50 0.46 89.82

All-enriched 41.67 0.64 97.97
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enrichment outperforms the other methods. Compared to random guess, the saving in time is 5.84/11.20 = 52.14% on the
ACM CCS dataset. The result indicates that, with the recommender mechanism, the refinement task can be completed in
about half the time. For the DOAJ and InterPro datasets, the time required to complete the same task are reduced to about
3/4 and 1/7, respectively.

We observe that the traversed length is highly dependent on the structure of the concept hierarchy. The structural sta-
tistics of training data for the three datasets are shown in Table 6. The training data for ACM CCS and DOAJ is the same, and
the structure of the datasets is quite balanced. However, the structure of the InterPro dataset is very unbalanced. Because the
Table 6
Structural statistics of the training data for the three datasets.

Training data Total nodes Tree height Average branching factor Node in each level

Level 1 Level 2 Level 3 Level 4 Level 5

ACM CCS/DOAJ 1101 4 4.97 11 58 274 758
InterPro 229 5 4.49 3* 74 142 9 1

* Although the total number of level-1-nodes in InterPro is 3, two of them are single nodes without a child. Therefore the degree of the remaining node is
74.



2526 T.-T. Kuo, S.-D. Lin / Information Sciences 181 (2011) 2512–2528
branching factor of the first node is 74, it takes much longer to identify the right position for insertion in the first level. Our
experiment results demonstrate that for harder tasks, such as those in biology domain, the proposed recommender mech-
anism can improve the performance even more significantly (i.e., it only needs 1/7 of the time) than easier tasks, such as
those in computer science domain.

5.8. Time complexity

The time complexity of the training phase is O(f � |KO|2 + Ctraining), where f is the number of features selected, and Ctraining is
the time required to train the chosen classifier (Ctraining = |KO| in NB classifier); O(f � |KO|2) denotes the time needed to compile
the training dataset. As a result, the training time complexity equals O(|KO|2). In our experiments, the packages we select
(Weka [32] for an NB classifier) are relatively fast, so training the ACM CCS dataset (1,211,100 tuples) takes no more than
an hour.

The time complexity of the insertion phase is O(|KN| � (f � |KO| + Ctesting)), where Ctesting is the time required to obtain the
probability scores for the test instances used by the classifier (Ctesting = |KO| in NB classifier). As a result, the insertion time
complexity equals O(|KN| � |KO|). Insertion is much faster than training in general.

6. Discussion

In this section, we discuss our findings for the four hypotheses detailed in Section 4.

(1) Learning-based methods can improve on the results derived by non-learning based methods. As shown in Tables 2–4,
because learning-based methods use different types of features (topology, content, and social information features,
and a combination of them), they generally perform better than non-learning methods. In Table 7, we compare the
performance of the methods on the ACM CCS, DOAJ and InterPro datasets.

(2) Topology, content and social features make diverse contributions when refining a concept hierarchy. The topology feature
yields low accuracy and average taxonomy similarity scores, but it performs fairly well in terms of the rank-based AUC
(i.e., its performance is comparable to that of the content feature). This implies that, although the topology information
is not sufficient to identify the most appropriate position, it can filter a substantial number of unlikely candidates and
thereby improve the ranking of the correct candidate. Content features seem to be more effective than the other fea-
tures in the ACM CCS and InterPro dataset compared to the DOAJ dataset. We believe this is because the features are
more sensitive to the relationship between the training and testing data. In the experiment, we use ACM CCS91 as
training data for the ACM CCS and DOAJ datasets. For test data from the same source, such as ACM CCS98, content
features achieve better results; however, they are less informative in a different source like DOAJ. We draw the same
conclusion from the results for the InterPro dataset. Finally, in the ACM CCS and DOAJ datasets, social features do not
perform well individually in rank-based AUC, but they achieve relatively good results in terms of accuracy and average
taxonomy similarity. This may be because social features are obtained from external resources like the Web, so it is
reasonable to assume that obtaining information for certain concepts is relatively easy. For concepts that were orig-
inally ranked close to the top, the additional social information allows us to move them slightly closer to the top posi-
tion, which improves the accuracy and taxonomy similarity. However, the ranks of concepts that lack social
information can be lowered, which impacts the overall rank-based AUC score.

(3) Enriching features by using information about neighboring nodes can improve the accuracy. This provides an alternative
way to incorporate topological information into the learning process. In particular, enriching features can provide a
significant improvement for the InterPro dataset. This may be because the hierarchical structure of InterPro dataset
is not well balanced (as mentioned in Section 4.7); therefore, learning the structure and neighbor information
becomes important.
Table 7
Comparison of the performance of the similarity-based and learning-based methods on the three datasets using the topology, content, and social information
features and combined features.

Method Accuracy (%) Average Tsim Rank-based AUC (%)

ACM DOAJ InterPro ACM DOAJ InterPro ACM DOAJ InterPro

Topology Similarity 0.01 0.05 12.50 0.17 0.22 0.46 86.74 87.41 90.13
Learning 0.00 0.00 12.50 0.17 0.18 0.46 88.31 89.15 86.90

Content Similarity 13.93 6.02 0.00 0.36 0.24 0.44 87.40 83.35 51.20
Learning 32.34 9.64 25.00 0.49 0.26 0.54 96.57 93.92 97.52

Social Similarity 7.79 2.41 0.00 0.27 0.21 0.27 28.26 14.69 0.87
Learning 11.06 16.87 54.17 0.34 0.35 0.71 47.49 65.05 99.02

Combined Similarity 20.08 8.43 0.00 0.40 0.28 0.38 92.70 85.49 63.35
Learning 34.84 19.28 41.67 0.51 0.36 0.64 97.28 95.87 97.97
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(4) A learning-based concept hierarchy refinement framework can be used as an effective and efficient recommender mecha-
nism to help users refine a hierarchy. The results show that, compared to a random-ranked system, our recommender
(using a combination of features) can reduce the amount of required time by between 25% and 86%.

Finally, we tried the following operations, but found that they were not feasible:

(1) We tried several post-processing adjustment methods. After computing the probabilities of each possible insertion
position, we assigned each node a new probability based on the probabilities of its neighboring nodes. For example,
we averaged a node’s probability with the probabilities of all its child nodes. The objective is to utilize the information
about neighboring nodes. The results show that adding neighbor information in the post-processing stage is less effec-
tive than incorporating it during training/testing phase for feature enrichment.

(2) We also tried level-wise training, which makes classification decisions level-by-level. That is, we began by classifying a
new concept into one of the first-level nodes, and then classified it into one of the second-level nodes which are
children nodes of the selected first-level node. We found that learning each level independently did not improve
the performance, probably because dividing the training data into smaller portions led to overfitting.

7. Conclusion

Because of the lack of training samples, supervised methods have rarely been proposed for the ontology refinement prob-
lem. The major contribution of this paper is that we explore the idea of decomposing an original hierarchy into a set of train-
ing pairs. The decomposed pairs enable us to train a binary classifier that can be exploited in the insertion phase to
determine the best position for a new concept. As a result, we do not need to acquire manually annotated training samples.
Furthermore, we can explore the topology information with the content and social information features to obtain better
results. We consider that the proposed method is domain and language independent because most of the features can be
generated from the Web; thus, specific knowledge about the query terms is not required. To evaluate the method, we utilize
two existing evaluation metrics and propose a rank-based AUC metric. We also propose a practical application for our system
as a recommender mechanism that interacts with users to refine a concept hierarchy. We believe that recommender is useful
for tasks that require more resources during evaluation, such as ontology refinement tasks in the molecular biology domain.
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