
12

A Modified Random Walk Framework for Handling Negative Ratings
and Generating Explanations
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University, Taipei

The concept of random walk (RW) has been widely applied in the design of recommendation systems.
RW-based approaches are effective in handling locality problem and taking extra information, such as the
relationships between items or users, into consideration. However, the traditional RW-based approach has a
serious limitation in handling bidirectional opinions. The propagation of positive and negative information
simultaneously in a graph is nontrivial using random walk. To address the problem, this article presents a
novel and efficient RW-based model that can handle both positive and negative comments with the guarantee
of convergence. Furthermore, we argue that a good recommendation system should provide users not only
a list of recommended items but also reasonable explanations for the decisions. Therefore, we propose a
technique that generates explanations by backtracking the influential paths and subgraphs. The results of
experiments on the MovieLens and Netflix datasets show that our model significantly outperforms state-
of-the-art RW-based algorithms, and is capable of improving the overall performance in the ensemble with
other models.
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1. INTRODUCTION

The goal of a recommendation system is to provide a (usually ranked) list of items that
has a good chance of being accepted by the user. The more the users believe the items
are relevant to their interests, the better their perception of the recommendation
system will be. Such systems have been widely applied in different domains, such as
music, books and movies. Even a search engine can be regarded as a recommendation
system for documents.
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A recommendation system must consider the following elements.

(1) Users: U = {u1 ∼ um}.
(2) Items: I = {i1 ∼ in}.
(3) Ratings: R = {r11 ∼ rij}, where rij is the rating of user u for item j. Thus, R is an

m∗n matrix, where m is the size of the user set, and n is the size of the item set.

The goal of a recommendation system is twofold.

(1) Predict ratings. Given a data pair comprised of a user i and an item j, and some
known ratings, the system predicts the unknown rating, the value of rij.

(2) Predict rankings. Sort items based on the inferred preference of the user.

Most recommendation systems are based on the concept of similarity. They exploit
the similarity between users, the similarity between items, or the similarity between
an item and a user.

Content-based recommendation systems try to analyze the characteristics of users
and items to determine their relevance or similarity, and then recommend highly
relevant items to the users. For example, knowing a user’s preferred movie genre,
a content-based recommendation system can recommend another movie of the same
genre. The main problem with this type of recommendation system is that it is not
always easy to infer the user’s preference. Also, understanding the content of a movie
is by no means a trivial task for machines.

Another popular approach is collaborative filtering (CF) [Resnick et al. 1994] [Sarwar
et al. 2001] which exploits the idea that similar users will give similar items similar
ratings. The assumption allows CF methods to obtain the ratings between all items
and users given only a subset of them. CF methods have following potential drawbacks.

(1) Cold start. The prediction becomes unreliable for users with few rated items.
(2) It is not clear how extra relational information or knowledge can be incorporated

into the CF model to improve its performance. For example, it is not clear how to
tell a CF system that “these two movies have similar actors,” but apparently this
kind of information could be important for recommendation.

(3) In a sparse dataset, users with disjoint sets of ratings are not correlated. For
example, user1 rates only item1 and item2, and user2 rates only item3 and item4.
In a traditional CF framework the similarity of these two users would be zero.
However, intuitively, this might not be the case if there is a third user who rated
all four items, as the ratings provided by user3 can be exploited to relate user1 and
user2 indirectly.

Other than CF-based methods, researchers have proposed using graph-based recom-
mendations which transform ratings data into graphs. The graphical model considers
the long-distance relationships between users and items. In practice, users not linked
by common items directly, such as user1 and user2 in the previous example, can now be
connected indirectly through another user on the graph. Another advantage of graph-
based methods is that they naturally facilitate the usage of additional relationship
information among users and items (e.g., the social relationship between users, or the
same-authorship relation between items).

Among graph-based recommendation algorithms, random walk (RW) [Fouss 2007] is
probably the most appealing and the most widely used. The algorithm simulates the
user’s random selection from some source nodes to other nodes. The rationale is that
if an item node can be reached easily from a user node, then it is more likely to be
relevant to the user. The graphs are usually bipartite, containing user nodes and item
nodes. The probability of moving from a user node to an item node (or vice versa) is
proportional to the rating of the item given by the user.
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Fig. 1. A graph constructed by making all the ratings positive. The information flow to the bottom-part of
the graph is smaller than that to the upper part of the graph, which causes the system to rank i5 higher
than i6 and recommend it to u1.

The main drawback of traditional RW-based approaches is that they cannot deal
with negative ratings. Commonly used datasets, like Netflix and MovieLens, contain
both positive and negative opinions (usually using rating scales range from 1 to 5
where 1 stands for ‘dislike’). Generally, a negative rating indicates that the user is
not impressed by an item. For recommendation systems, negative opinions are just
as important as positive ones. Recommending something that users hate could dam-
age the reputation of the system more than recommending something they may not
like. Technically, negative ratings create another problem as traditional RW-based ap-
proaches require positive weights (or transition probabilities) on the graph to guarantee
convergence to the stationary probabilities.

A popular strategy for dealing with negative impressions involves shifting the rating
from negative to positive (e.g., from [−2, −1, 0, 1, 2] to [1,2,3,4,5]), but it can cause
other problems such as limiting the propagation of negative information. For example,
in Figure 1, u1 is similar to u2 because they like the same items, and u1 is also somewhat
similar to u3 because they dislike the same items. Now, item i5 is disliked by u2, but
item i6 is liked by u3. Intuitively, i6 should be a better candidate for recommendation
to u1 than i5, which is disliked by a user similar to u1. However, running a random
walk algorithm on a weight-shifted graph (see the left part of Figure 1) shows that the
upper part of the graph attracts most of the flow, which results in an unwanted higher
stationary probability for i5 than i6. This is a serious problem because the system gives
a higher preference rating to an item (i5) that u1 dislikes.

We attempt to solve the given problem in this article. Our contribution is twofold.
First, we propose a modified random-walk method that can handle both positive and
negative opinions. In our model, each node can store two types of values, one for positive
information and another for negative information. During the random walk process, a
node will propagate the same type of information to its neighbors if there is a positive
weight between them, and the opposite information if there is a negative weight. We
also provide a propagation mechanism to implement the process efficiently with a
mathematical proof of its convergence.

Here we would like to emphasize that the main contribution for this article is to
advance the state of the art in RW-based method, rather than designing a RW-based
model to compete with other recommendation models such as the Matrix-Factorization
(MF) based models or KNN-based models. In the recent years, thanks to several
worldwide competitions such as NetFlix Prize and KDD Cup 2011, researchers have
realized that the best strategy for recommendation requires a blending of diverse
types of models [Toscher and Jahrer 2009; Chen et al. 2011; McKenzie et al. 2011]. The
models that have been shown useful includes MF-based models [Koren et al. 2009].
Probabilistic latent semantic analysis models [Hofmann 2004], KNN-based models
[Piotte and Chabbert 2009], supervised models, models using features created by
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Restricted Boltzmann Machines (RBM) [Ackley et al. 1985], and random-walk-based
models [McKenzie et al. 2011]. The advance of these models will eventually have an
impact on the overall quality of recommendation results. Such “ensemble recommen-
dation” idea changes the mindset of researchers in this area since different kinds of
recommendation systems are not being viewed as “competitors” rather as “collabora-
tors.” The RW-based models are therefore useful due to the diversity they bring in to
blend with other recommendation models, since their underlying mechanism is very
different from that of the MF-based methods, RBM-based method, or even PLSA-based
methods. Therefore, we believe our model, which significantly advances the state of
the art in random-walk-based method, can be very useful for blending-based recom-
mendation system. To verify such claim, we did additional experiments in section 5 to
show that our model plays a critical role in the ensemble of different kinds of models.

Second, we believe that showing explanations of the system’s ranking decisions im-
proves users’ acceptance of recommendations. Research in psychology suggests that
people usually have difficulty accepting recommendations without knowing the rea-
soning behind the selections [Haynes 2001]. Therefore we propose a mechanism that
automatically generates explanations for recommendations made by our RW-based
system by identifying the dominant paths or subgraphs of information flow.

The remainder of this article is organized as follows. Section 2 contains a review
of related works. We present our modified random walk approach in Section 3, and
describe our explanation framework in Section 4. We report the results of experiments
in Section 5, and summarize our conclusions in Section 6.

2. RELATED WORK

First, we define some notations used throughout this section.

2.1. Definitions of Notations

We denote a set of users as U, a set of items as I, and the extra knowledge related to
the items as K, with |U | = m, |I | = n, |K | = o. The rating given by a user u to an item i
is denoted by rui. Some works [Cheng et al. 2007; Zhang 2010] exploit extra knowledge
such as the relatedness of item i to a knowledge item k is cik, 1 if they are related and
0 otherwise.

R = {rui|1 ≤ u ≤ m, 1 ≤ i ≤ n} and, C = {cik|1 ≤ i ≤ n, 1 ≤ k ≤ o}. �ru• and �r•i represent
the vectors comprised of user u’s ratings for all items and ratings of all users for item
i, respectively. In same way, �ci• and �c•k represent, the relations of all knowledge to an
item i and the relations of all items to knowledge k, respectively. Iu is the set of items
rated by user u, and Ui is the set of users who rated item i. Similarly, Ki is the set of
all knowledge related to item i, and Ik is the set of all items related to knowledge k.

2.2. Random Walk

The concept of random walk bases on the PageRank [Brin and Page 1998] algorithm.
The PageRank model computes the scores for web pages by simulating a user’s surfing
behavior. Similarly, random walk simulates the behavior of moving from a node to its
neighbors on a graph by taking random steps. If a node X can be reached easily by a
given source node Y, then X is deemed to be relevant to Y. As will be discussed in details
later, several recommendation systems based on random walk have become popular in
recent years [Craswell and Szummer 2007; Fouss 2007; Gori and Pucci 2007; Yildirim
and Krishnamoorthy 2008; Liu and Yang 2009; Clements et al. 2009].

2.2.1. Random Walk on a Bipartite Graph with Rating Relations. Figure 2(a) shows a graph
constructed based on the ratings that users give to items. G = {V, E} V = {Vuser, Vitem}
E = {eij |i ∈ Vuser, j ∈ Vitem}. Fouss [2007] employs a binary selection relation which
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Fig. 2. (a) A graph constructed with rating information, (b) A tri-partite graph that incorporates extra genre
knowledge [Cheng et al. 2007; Zhang et al. 2010].

assigns either 1 or 0 as the weight of each link. Despite this, in practice, the weights
are usually assigned as integers or real values that better describe the ratings.

Like the PageRank algorithm, prior to processing, the random-walk algorithm with
a certain starting point requires the weights, the transition probability between nodes,
to be updated. The transition probability between node pairs is derived as follows:

P(i j |ui) = rij∑
J

rij
= rij∑

j∈Ii

rij
and P(ui|i j) = rij∑

I
rij

= rij∑
i∈U j

rij
(2.1)

It has been shown that with nonnegative weights, the algorithm is guaranteed to
converge [Athreya et al. 1996].

2.2.2. Random Walk with Extra Information. Cheng et al. [2007] posited that extra informa-
tion about items could be exploited to improve the recommendation performance. The
relationships can be seamlessly incorporated into graphical models by adding edges to
the graph. Figure 2(b) shows an example of a tripartite graph: G = {V, E}, V = {Vuser,
Vitem, Vknowledge}, E = {eij |i ∈ Vuser, j ∈ Vitem, or ei j |i ∈ Vitem, j ∈ Vknowledge}.

Let P(x) be the probability of staying at node x, then the initial probability distribu-
tion is P0(source user) = 1, P0(others) = 0. The transition probability then becomes:

P(i j |ui) = rij∑
j∈Ii

rij
, P(ui|i j) = rij∑

i∈U j

rij + ∑
m∈Kj

c jm

P(i j |km) = c jm∑
j∈Im

c jm
and P(km|i j) = c jm∑

i∈U j

rij + ∑
m∈Kj

c jm
. (2.2)

Then, the update of the probability distribution will be:

Pt+1(i j) =
∑
i∈U j

P(i j |ui)·Pt(ui) +
∑
m∈Ki

P
(
i j |km

) · Pt (km) ,

Pt+1(ui) =
∑
j∈Ii

P(ui|i j) · Pt(i j) and Pt+1(km) =
∑
j∈Im

P(km|i j) · Pt(i j). (2.3)

Let M̃ be the transition matrix corresponding to the transition probability

Pt+1 = M̃Pt. (2.4)

To give a penalty for longer path from the source and to let the process cope with
personalized preferences, the parameter α is introduced.

Pt+1 = αM̃Pt + (1 − α) P0. (2.5)
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The value of αranges from 0.15 to 0.2 will work for most cases [Craswell and Szummer
2007; Yildirim and Krishnamoorthy 2008; Liu and Yang 2009; Clements et al. 2009].

Cheng et al. demonstrated that the accuracy of recommendations improves with
extra information.

2.3. Extensions of Random Walk

Several extensions of the traditional random walk approach have been proposed,
such as Itemrank [Gori and Pucci 2007], similarity random walk [Yildirim and
Krishnamoorthy 2008], Eigenrank [Liu and Yang 2009], and positive/negative rele-
vance random walk [Clements et al. 2009]. We will describe them one by one in this
section and compare them with our approach in Section 5.

2.3.1. Itemrank. Gori and Pucci [2007] propose this model to improve the efficiency
when there are many more users than items. The graph is projected from the {user -
item} space to {item-item} space. The weights of the edges between the items are
proportional to the correlations of the items, while the correlation is modeled as the
number of common users that have rated the items. If an item is highly correlated
to the items that received high ratings from a user, then the item is a good candidate
for recommendation. Given a correlation graph, it is possible to use random walk to
identify items for recommendation. Mathematically, item correlations are decided by
the set of common users of the items.

CUij = |Ui ∩ U j | and the transition probability is P(i j |ik) = CU jk∑
J

CU jk
.

The initial probability distribution for a specific user u is defined as

P0(ik) ∝ ruj and
∑

k

P0(ik) = 1,

and the probability update rule is defined as

Pt+1(ik) = (1 − α)
∑

J

P(ik|i j) · Pt(i j) + αP0(ik).

The major concern with Itemrank is that information can be lost when summarizing
a bipartite graph into a unipartite graph. Furthermore, the user’s rating information
is not exploited, as only the binary information about whether the user rated the item
is used; therefore, Itemrank does not provide a good solution to negative feedbacks
since the ratings will be treated equally as the positive ones. Moreover, the item-item
correlation network is a nearly fully connected graph, which affects the algorithm’s
efficiency.

2.3.2. Similarity Random Walk. Yildirim and Krishnamoorthy [2008] propose a model
similar to Itemrank which constructs a graph based on the similarity of items. If an
item is similar to those rated highly by a specific user, it is considered suitable for
recommendation. The model exploits the random walk method to capture transitive
associations.

Given an adjusted cosine similarity Sij =

∑
u∈Ui∩U j

(rui − r̄u)
(
ruj − r̄u

)
√ ∑

u∈Ui∩U j

(rui − r̄u)2
√ ∑

u∈Ui∩U j

(
ruj − r̄u

)2
,
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the transition probability becomes P(i j |ik) = (1 − β) Sjk∑
J

Sjk
+ β 1

n.

The initial probability distribution for a specific user u is

P0(ik) ∝ ruj and
∑

k

P0(ik) = 1.

The updated rule for the probability is Pt+1(ik) = (1 − α)
∑

J

P(ik|i j) · Pt(i j) + αP0(ik).

Similar to Itemrank, reducing a bipartite graph to a unipartite graph can cause in-
formation loss. Furthermore, the meaning of negative ratings cannot be fully exploited
by this framework since the same problem stated in Figure 1 can still occur.

2.3.3. Eigenrank. Liu and Yang [2009] propose the Eigenrank model to generate the
rankings of all item pairs. The rankings for unknown pairs are obtained from similar
users. If an unseen item is ranked as high as or even higher than those that have already
been given high ratings by a user, it can be a good candidate for recommendation to
that user. To achieve this, a graph of asymmetric ranking order relations is constructed,
with transition probability determined by the rankings, and the random walk approach
is used to aggregate partial and incomplete rankings. The simulation of random walk
algorithm on this graph would favor higher ranking neighbors.

We now list the key equations under this framework:

Nm : The set of similar users to user m
Smn : The similarity between users

ψij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rmj − rmiifrmi, rmjexists∑
n∈Nm∩(Ii∩Ij)

Smn · (
rnj − rni

)
∑

n∈Nm∩(Ii∩Ij)
Smn

(preference of item j compared to item j)

The transition probability : P(i j |ii) = eψi j∑
J

eψi j
.

The initial probability distribution for a specific user u is

P0(ik) ∝ ruj and
∑

k

P0(ik) = 1.

The probability update rule is

Pt+1(ik) = (1 − α)
∑

J

P(ik|i j) · Pt(i j) + αP0(ik).

One potential issue with this model is that the rankings are only obtained from
similar users. The nondirect neighbor information in the graph is not exploited. Also
negative ratings are used for only similarity measures, thus similar issues introduced
in Figure 1 can also happen.

2.3.4. Positive and Negative Relevance Random Walks. Clements et al. [2009] observe that
the traditional random walk method cannot deal with negative relevance assessments.
To handle such problem, they propose to split the original graph into two graphs, one for
positive-preference information and the other for negative-preference information. If a
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Fig. 3. The ranking relation graph for user u1 in Figure 1. The solid line represents a “lower rating” relation;
the dashed line represents a “higher rating” relation; and the dotted line means that a “rating has the same”
relation. The strength of the line is roughly proportional to the exponentiation function value of the rating
relation.

Fig. 4. The components of the graph in Figure 1 become disconnected when the original graph is split into
two graphs.

user can reach an item in the positive graph easily, the item is deemed more relevant to
the user. In contrast, if a user can reach an item in the negative graph easily, the user
may not prefer it. Eventually, they combine the results of the two graphs to provide a
single ranking value for recommendation.

In this model, positive and negative preference information is used separately. There-
fore, nodes on the graph might not be fully connected, which would halt the information
flow. For example, the connected graph shown in Figure 1 would be decomposed into
disconnected components shown in Figure 4.

2.4. Other Models to Handle Negative Opinions

Guha et al. [2004] propose a way to measure the propagation of trust and distrust. They
observe that including negative opinions will not improve the performance unless they
are being propagated through positive relations. Our model mainly emphasizes on the
like/dislike information, which is different from trust/distrust, as our experiment shows
that our model allows dislike information to be propagated through negative links to
enhance the quality of results.

Tong et al. [2008] try to measure proximity with side information. However, their
model cannot handle multiple sets of could-be-conflicting side information, which hap-
pens a lot in a recommendation system.
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Fig. 5. The flowchart of the proposed method.

2.5. Retrieve Subgraph of Information

As will be discussed later, a subgraph is extracted as part of the explanation. Therefore
we include some subgraph extraction algorithms as reference. Faloutsos et al. [2004]
propose a way to quickly find a subgraph containing source vertex and target vertex
with maximum flow from source to target. They later extend the algorithm to multiple
sources and different logic conditions (AND, OR, SOFT-AND) [Tong and Faloutsas
2006].

3. DEALING WITH NEGATIVE OPINONS

In this article, we improve the random walk model in two ways.

(1) As mentioned before, existing RW-based methods do not pay special attention
to negative feedbacks. They are usually treated as mild positive feedbacks. In
contrast, we propose a method that handles bidirectional opinions with care.
Our experiment results show that being able to deal with negative opinions can
improve the recommendation performance.

(2) We propose a graph-based mechanism that generates explanations for the
recommendations.

Figure 5 shows the flowchart of our framework. The center node of the system is
a modified random walk that deals with bidirectional opinions. The input is a graph
constructed based on the ratings that users give to the items. Finally, we trace the
information flow path to produce visualized explanations for the recommended items.

3.1. Modified Random Walk

Without losing of generality, we assume that the ratings are discrete values distributed
over the range {−2,+2}, where +2 means “like it very much,” 0 stands for a neutral
opinion, and −2 represents “strongly dislike.” In the conventional random walk model,
the strength of connections between users and items is proportional to the ratings,
normalized to the positive side (See Figure 6(a)). However, as mentioned previously,
the drawback of this model is that it tends to downplay the importance of negative
ratings. Figure 6(b) shows the original graph in which both positive and negative
ratings are weighted. Unfortunately, negative weights can cause convergence problem
in random walk models. The transition probability P(i/u) = rij/

∑
rij will not remain

bounded from [0,1] if some rij are negative. In the worse case,
∑

rij can be zero which
results in infinite probability.

To deal with this problem, our modified RW model first assumes that each node
stores two kinds of information (or probabilities). The first, denoted as P(X+), is the
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Fig. 6. (a) A graph constructed with rating values in the range [1,5]. The walks from u1 tend to move toward
i5 than i6. (b) A graph constructed with tuned rating values. The flow from u1 will be symmetrical in this
case.

positive information and the second, denoted as P(X−), is the negative information of
the node. The information from P(X+) and P(X−) propagate in different ways. Given a
positive weight, P(X+) will propagate to its neighbors’ P(X+) just like the normal RW
would, while P(X−) will propagate to its neighbors’ P(X−) similar to multiplication,
negative∗positive=negative. Given a negative weight between nodes, P(X−) should
be propagated to its neighbors’ P(X+) (i.e., negative∗negative=positive), while P(X+)
should be propagated to the neighbors’ P(X−). The rationale is that if two people have
similar preferences for items, they like or dislike similar things, their ratings should be
propagated to each other. On the other hand, if two people have very different tastes,
then their ratings should also be propagated to each other, but in a negative manner.

These conditions control the sign and direction of the propagation. Thus, we can
focus on the amount of information being propagated by using the absolute strength
as follows:

P(i j |ui) = |rij ′ |∑
j∈Ii

|r′
i j |

and P(ui|i j) = |r′
i j |∑

i∈U j

|r′
i j |

. (3.1)

To sum up, the model splits a node into two nodes, one containing positive informa-
tion, P(X+), and the other containing negative information, P(X−). Whether there is
a link between the positive or negative node to the neighbors’ positive/negative nodes
will depend on the sign of the weight:

N(Xi) : neighbors of node Xi.

When rik ≥ 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
X+

k |X+
i

) = |rik|∑
j∈N(Xi )

|rij |
P

(
X−

k |X+
i

) = 0

P
(
X−

k |X−
i

) = |rik|∑
j∈N(Xi )

|rij |
P(X+

k |X−
i ) = 0

When rik < 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(X+
k |X+

i ) = 0

P(X−
k |X+

i ) = |rik|∑
j∈N(Xi )

|rij |
P(X−

k |X−
i ) = 0

P(X+
k |X−

i ) = |rik|∑
j∈N(Xi )

|rij | .

(3.2)

Because we are interested in the items that a user likes, we set the initial probability
that P will propagate as P(source user+)=1 and P(others)=0.
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Fig. 7. The propagation of information in the proposed framework.

Fig. 8. The previous example in Figure 1 under our model. Every node is replicated in the negative plane
to contain negative information. And the information can be transferred between positive and negative
containers.

In addition, the updated probability in each iteration of RW is

P
(
X+

k

) =
⎡
⎣ ∑

xi∈N(xk)&rik≥0

P
(
X+

i

)
P (Xk|Xi)

⎤
⎦ −

⎡
⎣ ∑

xi∈N(xk)&rik<0

P
(
X−

i

)
P (Xk|Xi)

⎤
⎦

P
(
X−

k

) =
⎡
⎣ ∑

xi∈N(xk)&rik≥0

P
(
X−

i

)
P (Xk|Xi)

⎤
⎦ −

⎡
⎣ ∑

xi∈N(xk)&rik<0

P
(
X+

i

)
P (Xk|Xi)

⎤
⎦ . (3.3)

In (3.3), the positive value of a node is determined by the positive values of its
neighbor nodes when the weight is poistive, and the negative values of its neighbors
when the weight is negative (see parts (A) and (C) in Figure 7). The negative value of
a node is determined by the negative values of its positive neighbors, and the positive
values of its negative neighbors.

Finally, for each item node, the value R(Xk) = P(X+
k )− P(X−

k ) can be used as the final
score to determine its ranking for recommendation. That is, an item that has more
chance of being liked and less chance of being disliked by a user will be recommended.

In our modified random walk model, all values in the transition matrix are nonneg-
ative; therefore, the model is guaranteed to converge. Figure 8 shows how the example
in Figure 1 can be modeled under the modified random walk framework. Note that
the main difference between our model and Clements et al.’s model is that we do not
separate the positive and negative information. Figure 8 shows that the positive and
negative planes of our model actually interact with each other to exchange information.

3.2. Equivalent Model

One limitation of the proposed model is that the number of nodes and edges in the
graph doubles, which can significantly affect the efficiency. To address this problem, we
propose an equivalent model that has the same complexity as the original RW model.
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In fact, for recommendation systems, eventually we only need to derive the R(X) =
P(X+) − P(X−) values of the nodes. That is, the individual values of P(X+) and P(X−)
are not important as long as we know the difference between them. As result, we
find that, for each node, we only need to store its R values and propagate it based on
a certain strategy. Thus, it is possible to apply the RW model to the original graph
without replicating the nodes and edges. The updated rule for R(X) is formulated in
Equation (3.4), where sign(Wik) denotes the sign of the given weight.

R (Xk)′ =
∑

xi∈N(xk)

sign (wik) R (Xi) P (Xk|Xi) (3.4)

PROOF. R(Xk) = P(X+
k ) − P(X−

k ) = R′(Xk)

R (Xk) = P
(
X+

k

) − P
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(
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)
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=
∑

xi∈N(xk)

sign (wik) R (Xi) P (Xk|Xi) ⇒ R (Xk)′ .

This proof shows that, instead of running RW on a larger graph G(2n,2e), our
equalivent model implemented on R’ can be executed on the original graph G(n,e)
without incurring any additional computational burden.

4. GENERATING EXPLANATIONS

We believe that providing the reasons behind recommendations will improve the prob-
ability of users accepting the recommended items. In this section, we describe our
explanation mechanism on a graph-based RW model.

4.1. Information Tracing

The explanation for RW-based recommendations can be obtained by tracing the infor-
mation flow of the graph. Based on this idea, we try to identify the paths that have the
most influential flows (or the highest probability of being selected) from the source (the
user) to the target (the recommended item) during the random walk process.

In our model, the influence of a node B on its neighbor A can be defined as

InfluenceB→A = P(A|B)P(B).

Starting from the item being recommended, it is possible to apply a greedy method
to trace back and find the neighbor nodes X that contributed the most to the final
score. Then, from X, we can keep tracing to another node Y with the most influence on
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Fig. 9. The pseudocode of the modified random walk algorithm.

X in a greedy manner. The process continues until the original user node is reached.
Figure 10 shows an example of such a path, which can be described as: An item, B, is
recommended to the user who likes item A because another person, who also likes item
A, likes B.

Generally, it is possible to search the top-k influencial paths using the greedy method.
Eventually, we can obtain a set of paths that describe the dominant routes for passing
the information from the source user to the recommended item. The paths can some-
times be merged. For example, Figure 11 shows three dominant paths from the user to
the item. Based on his information, we can assume that because other users who like
movie A also like movie B, the system will recommend movie B.

We also found that with additional knowledge in the network, it is possible to create
more reasonable and inetresting explanations. The dominant paths in Figure 12 reveal
that movie B is recommended to the user because it has similar actors and writers,
and it is of the same genre as movie A, which is one of the user’s favorite movies.

It is sometimes better to use a subgraph instead of a path or a set of paths to explain
the recommendation. Figure 13 exemplifies the method we propose for this purpose.

Simiarily, we first generate the influence scores of each node on its neighbors as
InfluenceB→A = P(A|B)P(B). Again, a greedy method is used for backtracing until the
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Fig. 10. An explanation path under rating information. The number in the bracket indicated the flow of
influence.

Fig. 11. The main cause is for recommending movie B to the user is that movie B is also liked by those users
liked movie A.

Fig. 12. The main cause for recommending movie B to the user is that movie B is highly related to movie A.

starting user node is found. However, this time the greedy method keeps several of
the top nodes that, as a whole, account for more than k% of the influence score on the
node. For example, in Figure 13(c), assuming k=51%, nodes E and F are kept in the
subgraph because they sum up to more than 51% of the contribution to node B. In
the end, given k, it is possible to obtain a subgraph that contributes most significantly
to the recommendation of an item.

5. EXPERIMENT

5.1. Dataset

We use two popular datasets, the MovieLens and the Netflix Prize datasets, for
evaluation. The MovieLens dataset consists of 943 users and 1682 movies, with a
total of 100,000 ratings. We randomly sample data for five-fold cross validation and
repeat the process three times. The reported results are the average of the outcomes
of three trials. Two similar experiments were performed on the sized-down Netflix
prize dataset. We selected the 2,000 DVDs rated by most users and randomly selected
1,000 users who rated those DVDs at least 40 times.

We also tested on a more sparse dataset where we select the same DVDs but a
different set of 1,000 users who rate those DVDs only 20 to 100 times. We did not
make it even sparser because by doing so the graph will not be connected (there will
be several small islands).
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Fig. 13. (a) We want to trace a path from U to A. (b) Starting from the recommended item A, we first calculate
the influence score for each neighbor, as shown above each edge. Then, we leave only the top nodes that
account for 51% of the influence for backtracking. Here, the total absolute influence is 0.02 + 0.01 + 0.005 =
0.035, while the influence from B to A accounts for 0.02/0.035 > 51% of the contribution; therefore, only B
is left in the subgraph for explanation. (c) Similar steps are performed from node B. This time we find that
E does not contribute more than 51% , so only F is kept in the graph. (d) The same steps are performed until
none of the neighbors are active.

5.2. Measurement

Following other random-walk recommendation methods, we use NDCG (Normalized
Discounted Cumulative Gain) to measure the performance since RW-based systems
produce a rank for each item. The NDCG is used because, comparing with other mea-
surements such as RMSE, it is more suitable for ranking-based alrogithm such as RW.
This is also a very common measure that has been widely used by other models such
as CF-based and classifiction-based ones [Abbassi el al. 2009, Parra and Brusilovsky
2009, Zheng et al. 2010, Chapelle and Keerthi 2009].

NDCG measures how close the ranked results are to a perfect ranking.

NDCGp = DCGp

IDCGp
and 0 ≤ NDCGp ≤ 1, where DCGp =

p∑
i=1

2ratei − 1
log2 (1 + i)

,

i is the ranking order, ratei is the corresponding rate of the item ranked at i position,
p stands for the top p ranking items,
and IDCGp is the discounted cumulative gain with a perfectly ranked list.
The closer the NDCG is to 1, the closer the ranking is to the gold standard.

5.3. Competing Methods

We compare our models mainly with other state-of-the-art RW-based models, and we
also include the CF-based model and the supervised model as reference. Note that the
parameters for the competitive models are chosen according to the suggestions in the
corresponding papers.

(1) Collaborative filtering (CF(user), CF(item)). This method predicts ratings based on
user similarity [ RESNICK, P. et al. 1994] or item similarity [ Sarwar et al. 2001].

(2) Original Random walk method (RW). We compare our approach with the original
random walk method, which simply shifts the ranking from [−2, 2] to all positive
scores [1,5] [Cheng et al. 2007] . The transition penaltyαis set to 0.2 and max
iterations is set to 10.
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Table I. Result of Experiments

NDCGs CF(user) CF(item) SVM KW DW-PN IR SR ER MW
Movielen100k 0.7798 0.7479 0.7901 0.7186 0.763 0.6599 0.7151 0.7423 0.7826
Netflix 0.7433 0.7074 0.7569 0.633 0.7273 0.5997 0.6602 0.7211 0.762
Netflixsparse 0.5928 0.6235 0.6140 0.5843 0.6248 0.5608 0.5981 0.6202 0.6253

(3) Positive and negative relevance random walks [Clements et al. 2009]. We also com-
pared the method proposed by Clements, et al., which splits the original graph into
two graphs, one consisting of ratings in the range 3–5 to propagate positive infor-
mation, and the other consisting of ratings in the range 1–2 to propagate negative
information. Eventually, we merge the results from the two graphs to form a rank-
ing denoted as RW-PN. The transition penalty α is set to 0.2 and max iterations is
set to 10.

(4) ItemRank (IR) [Gori and Pucci 2007]. Use random walk model to capture the item
correlation relations with user’s preferred items. It is described in Section 2.3.1.
The transition penaltyαis set to 0.15 and max iterations is set to 10.

(5) Similarity Random Walk (SR) [Yildirim and Krishnamoorthy 2008]. Use random
walk model to capture the item similarity relations with user’s preferred items.
It is described in Section 2.3.2. The transition penalty α is set to 0.15 and max
iterations is set to 20.

(6) EigenRank(ER) [Liu and Yang 2007]. Use random walk to aggregate the ranking
relations of items. It is described in Section 2.3.3. The transition penalty α is set to
0.1, max iterations is set to 20 and the number of similar users is set to 100.

(7) Supervised classifier. Using the ratings of the targets as labels, and the ratings
of other users as features, it is possible to train a classification model for recom-
mendation. Here, we use SVM with an RBF kernel function to train a model for
comparison. [Bomhardt 2004] The SVM parameter c is set to 10.0 and γ is set
to 1/15072 for MovieLens dataset, and for Netflix, c is set to 10.0 and γ is set to
1/40000 .

(8) Modified Random Walk (MW). For our methods, we also set the transition penalty
α = 0.1 and max iterations = 20.

5.4. Results and Discussion

Table I shows the NDCG results of the given algorithms. We show CF-based methods
first, and then supervised methods. The rest are all RW-based methods. The results
reveal the following interesting phenomena.

Being able to handle negative information does improve the results significantly (see
RW vs. MW, we obtain >10% improvement in NDCG for Netflix dataset). It basically
confirms several things. First, treating negative ratings as truly negative (rather than
less-positive) is critical. Second, our hypotheses to treat people who dislike similar
movies as similar, and to use negative opinions of dissimilar persons as positive rein-
forcement are proper. Eventually it confirms that our overall model to handle negative
examples is effective.

Our model also outperforms the state-of-the-art RW-based models by a significant
margin, which confirms our advance of the RW-based methods in recommendation.

We also compare the best RW-model to the other types of methods. The results show
that our model obtains similar quality of results comparing to CF-based method and
supervised based method.

However, we would like to point out that the comparison among different types
of models is only for reference, and we do not regard outperforming different types of
algorithms as a research goal in this article. As it has been shown that in order to build a
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Table II. Results of Weighted Voting of Three Different Algorithms on Movielens Dataset

[SVM=0.4, CF=0.3, [SVM=0.1, CF=0.7,
weights [SVM=0.7, MW=0.3] [SVM=0.5, MW=0.5] MW=0.3] MW=0.2]
improvement 0.82% 0.44% 0.98% 1.05%

Fig. 14. The schema of relations for the movie dataset.

high-quality recommendation system, a blending method that combines different types
of models is required. Therefore, we believe the goal for designing a recommendation
system has to evolve from “outperforming other types of models” to “advancing state of
the art in one type of model,” as an inferior model with diversity might be even more
helpful than a superior model with less diversity in improving the final outcome of
blending [Toscher and Jahrer 2009; Chen P.-L. et al. 2011; McKenzie et al. 2011].

To verify such claim, we did a simple ensemble experiment to combine three diverse
models (CF, SVM, and our MR model) to show the effectiveness of our model. We chose
the MovieLens dataset. in which our model ranks 2nd in performance, better than CF
but worse than the SVM model. Table II shows the results. First, we simply combine
the predictions from the two better models (SVM and MR), and realize that even with
equal weight, we can achieve 0.44% inprovement on performance. With slightly higher
weight for SVM, the improvement can reach 0.82%. After adding the worse model
(CF), the performance can further improve 0.23% to reach 1.05% total. Note that 1%
difference is considered significant as the top teams in Netflix or KDD Cup 2011 are
only seperated by one tenth of such scale. This experiment shows that even a relatively
small portion of our model can contribute significantly to the overall results. Even
better results can be expected with more sophisticated ensemble methods.

5.5. Demonstration of Our Explanation Generation Mechanism

To provide more readable explanations and to demonstrate that our recommendation
framework can easily incorporate external information or knowledge, we provide an
explanation on a heterogeneous graph whose relational schema is shown in Figure 14.

We collect extra information about movies from IMDB, including the directors, writ-
ers, genres, plots and the actors of each movie. Our model treats all of these relations
as positive relations.

An online demomonstration system is available.1 Given the user’s id, the system will
display a list of recommended movies to the user. Users then can check the explanations
and visualization graph by clicking on the names of the movies.

Figures 15 to 17 are snapshots of the system. They are generated using the
“subgraph-based” explanation technique discussed at the end of Section 4.1. The dif-
ferent colored edges and nodes represent different relations and node types. The two
nodes with red outline and text color are the source user and the item to be recom-
mended. Figure 14 displays the meanings of each kind of relation (in different colors).
Figure 15 captures the major information flow from user 1 to the movie Star Wars: VI.

1http://mslab.csie.ntu.edu.tw:8080/recomex/ (userid: 1 ∼ 943 password: lab302).
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Fig. 15. The subgraph of the major information flow from user 1 to “Star Wars: VI” given k = 0.18.

Fig. 16. The observed first reason for recommending Star Wars: VI to user 1 by cut out sub graph related
to high degree node, it can be easily understand that it’s because Star Wars:V.

Focsuing on the high-degree nodes and their neighbors, we can see that the node with
the highest degree is Star Wars: V (isolated in Figure 16). Thus, the user can conclude
that “The system believes that Star Wars: Episode V is worth recommending because
one of the user’s favorite movies, Start Wars VI, is highly correlated with Star Wars:
Episode V (i.e., they have the same director, producer and actor)”. Figure 17 illustrates
another example where Apollo 13 is recommended to user 505. The graph shows that
the system recommends this movie for three reasons. 1) People who like the movies
that are rated favorably by the user also like Apollo 13 (note that CF can also capture
this); 2) Apollo 13’s director, Ron Howard, also directed the movie Ransom, which is
liked by the user; and 3) Several actors in Apollo 13, such as Tom Hanks, Bill Paxton,
and Gray Sinise, also performed in some of the user’s other favorite movies.

5.6. Human Study of Explanation Effectiveness

We conducted a human study to evaluate the effectiveness of our explanation system.
We first identify 100 popular movies (top 50 movies in moviemeter and top 50 movies
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Fig. 17. The subgraph of the major information flow from user 505 to “Apollo 13”.

in US box office) each year from 2005 to 2009 and 10 subjects. Out of these 500 movies,
for each subject, we randomly select 50 movies and ask them to rate (the label “unseen”
shall be given for unseen movies). We then construct a graph of all movies from 2005 to
2009. Then for each subjec t, we connect him/her to the rated movies to perform our RW
model. For evaluation, we first display the top 10 recommended movies by the system
to the subjects and ask them to check whether they want to watch those movies.
The results show an average of 5.7, which means 57% of the recommended movies
are accepted by the subjects. Then we show again the same movies recommended by
our system with explanations to the same set of users, and ask them to mark again
whether they want to watch the movies after viewing the explanations. The accepted
rate then raised to 66%, which means the user changed their mind for one out of the
four recommendations that were not accepted in the first place.

6. CONCLUSION

In this article, we have proposed a modified random walk model that allows the
propagation of both positive and negative information simultaneously. We show that
our model is guaranteed to converge, and there is no additional computation overhead.
Furthermore, we demonstrate the advantages of the RW-based model by presenting a
simple, efficient, yet intuitive explanation framework. We believe the major contribu-
tion of this article does not necessarily lie in the improvement of the recommendation
results; rather, it highlights two issues that have not received much attention thus
far: handling bidirectional opinions and providing explanations for the ranking of
recommendations. Furthermore, we have demonstrated that by combining our system
with other recommendation engines, it is possible to achieve even better performance.

Future work will include the investigation of how to deal with cold start and sparse
data issues, as well as how explanations for other types of recommendation systems
(such as CF and MF) can be produced.
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