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Abstract 
The computational efficiency is usually a concern when dealing with large-scale social network 
mining tasks containing billions of entities. Cloud computing is widely regarded as a feasible solution 
to this problem. In this work, we present an open source graph mining library called the MapReduce 
Graph Mining Framework (MGMF) to be a robust and efficient MapReduce-based graph mining tool. 
We start from dividing graph mining algorithms into several categories and design a MapReduce 
framework for algorithms in each category. The experimental results show that MGMF is 3 to 20 
times more efficient than PEGASUS, a state-of-the-art library for graph mining on MapReduce. 
Moreover, it provides broader coverage of a variety of graph mining algorithms. Furthermore, we 
designed a model to generate large-scale social networks capturing the power-law degree distribution 
property by parallelizing the mechanism of preferential attachment so that it is possible to produce 
billion-sized scale-free network in minutes. Our implemented open-source library can be downloaded 
from http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/  
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1.  INTRODUCTION 
Researchers have spent decades tackling a variety of social network mining tasks [1], such as 

generating graphs that satisfy real properties of social networks (e.g., power law distribution [27]), 
estimating centralities (e.g., PageRank [2], random walk with restart [3], Betweenness Centrality [4]), 
counting triangles, and finding connected components [1]. In recent years, online social network 
services such as Facebook and Twitter are becoming increasingly popular and have created huge 
amount of social network data, and therefore creates urgent need for upgrading the existing mining 
models to handle networks containing billions of vertices or edges. Cloud computing have been 
regarded as a plausible solution for large-scale graph mining for its scalability and efficiency. At 
present, there are three major cloud computing frameworks for graph mining: MPI-based (e.g., Parallel 
BGL [5]), BSP-based (e.g., Pregel [6] and Surfer [7]) and MapReduce-based (e.g., PEGASUS [8]) 
frameworks. MapReduce [9, 10] is a popular cloud computing framework that provides high 
throughput, satisfiable scalability and fault tolerance. Some tools [11,12,13] have been developed 
under MapReduce to solve graph mining problems in large-scaled graphs. Among them PEGASUS [8] 
is a state-of-the-art open source MapReduce-based library that provides several implementations of 
graph mining algorithms. Although PEGASUS has proposed several efficient implementations for 
cloud computing, we found that there is still room for improvements in terms of time and space 
complexity. For example, in our experiment we found that PEGASUS still takes more than 1200 
seconds per iteration to run PageRank on a graph with 2 billion edges and 177 thousand vertices on a 
cluster with 8 nodes while given the same conditions our framework finishes it in only one minute. 
Besides, it only provides solutions for matrix-vector-multiplication (MVM) based algorithms; hence, it 
cannot be used with other important graph mining algorithms, such as the Betweenness/closeness 
Centrality and social network generation, which has been included in our design.  

In this work, we present an open source graph mining library called MapReduce Graph Mining 
Framework (MGMF), which provides scalable and efficient solutions for various graph mining 
algorithms. MGMF comprises primitive functions, distributed algorithms and optimization methods for 
diverse kinds of algorithms. We can divide the graph mining algorithms into the following four 



categories based on how information is collected in a graph: (1) Traverse all, (2) Traverse Partial, (3) 
One-Hop, and (4) Multi-Hop. We discuss them in Section 3. We conduct experiments on real-world 
networks and synthetic networks at the billion scale of vertices/edges to compare the performance of 
the proposed framework with that of PEGASUS. The results show that using the PageRank algorithm, 
our framework can run up to 20 times faster than PEGASUS on the Kronecker synthetic dataset, and 3 
times faster on the real-world Twitter dataset. We also investigate the effects of file input format on 
throughput and efficiency.  

Furthermore, we propose an efficient parallel social network generation algorithm in this 
framework. The goal is to generate billion-sized large-scale synthetic graphs that fit real-world social 
network properties such as short average path length and power-law degree distribution. Among the 
social network generation algorithms, the Erdős-Rényi model  [22],  the Watts–Strogatz  model [26],  
and  the Barabási–Albert model [27] (respectively abbreviated as ER, WS, BA model) are the most 
popular models. All of them can fit the property of short average path length. The WS model further 
provides high clustering coefficient while the BA model generates graph with power-law degree 
distribution. To parallelize the generation algorithms for efficiency and overcome the limit of memory 
on single machine, we divide the generation task of the whole graph into generating subgraphs using 
multiple processors and machines. The ER and WS model can be easily implemented in parallel 
because the generation tasks of vertices are independent of each other. Unfortunately for the case of 
BA model, the preferential attachment (abbreviated as PA) mechanism, which generates the edges 
based on the degree distribution of all vertices, introduces strong dependency between the generation 
processes of vertices. In other words, generating each vertex requires the degree information from all 
other vertices spread in all machines, which dramatically increase the transmission load between 
processors. In order to parallelize a PA model, we propose a method to calculate the expected 
accumulated degree of each node independently, and show that such degree information can be utilized 
to perform PA. With an accurate estimation of the degree change over time for each node, it is possible 
to break the degree dependency among nodes to allow parallelism. We further decompose the degree-
generation function into three components, and propose constant solutions for each of them. Eventually, 
adding a PA edge requires only O(logN) of computation time.  

The major contributions of this paper can be summarized as follows: 

1) We propose an efficient framework, MGMF, which comprises primitive functions, distributed 
algorithms, and optimization methods for various graph mining tasks based on MapReduce. The 
framework is scalable to the number of machines. The experimental results show that the runtime is 
reduced to less than 1/3 that of the state-of-the-art MapReduce package. 

2) We propose a social network generation model to use expected cumulative degree of nodes to 
facilitate the parallelism of PA models when the target size of networks is too large to fit into a single 
processor’s memory. Such idea, to our knowledge, has not yet been mentioned in the area of social 
network generation. We further proposed methods to calculate the ‘expected cumulative degree’ 
in efficient and accurate approximation. 

3) We implemented a high performance open source library for large-scaled graph mining tasks. 
Our framework is available by this URL: http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/  . 

The remainder of the paper is organized as follows. Section 2 provides some essential background 
information. In Section 3, we introduce the proposed MapReduce Graph Mining Framework. In 
Section 4, we describe our social network generation model to parallelize preferential attachment. In 
Section 5, we describe the experiments conducted to evaluate the proposed graph mining framework 
and social network generation model, and analyze the results.  

2. BACKGROUNDS 
In this section, we introduce the fundamentals of MapReduce, Hadoop, and some file input formats 

for graph mining under cloud computing. We review the state-of-the-art graph mining solutions 
provided by PEGASUS, which comprises primitive functions, MapReduce-based algorithms, and 
block input formats (Mblock). We also introduce the background of BA model and existing parallel 
algorithms that generating scale-free network. We list the notations used in the remainder of the paper, 
as shown in Table 1. 

http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/�


TABLE 1.  SYMBOLS 
Symbol Definition 
G = (V,E) 
davg 
douti 
 

a graph consists of vertices V and edges E 
average degree of all vertex in G 
output degree of vertex i 

V 
 
vi∈V 
 
|V| 

vertex vector consists of value (e.g. PageRank)  
for each vertex in G 

element of V, which is vector value (e.g. PageRank), 
identified by unique vertex id i 

number of vertices in G 
E 
ei,j∈E 
 
|E| 

edge set consists of all edges in G 
edge, represented by two vertex id (vi,vj) 
denote the edge direction from i to j 

number of edges in G 
M 
mi,j 
Medge 
Madj 
Mblock 

adjacency matrix, consists of all e ∈ G 
element of M, represents edge ei,j and the weight 
adjacency matrix represented in edge format 
adjacency matrix represented in adjacency list format 
adjacency matrix represented in block format 

Mapper 
Reducer 
 
PM 
 
PR 
 

process run Map(key, value) on each input record 
process run Reduce(key, values) on each key 
output by Map() 

number of maximal concurrent Mapper processes 
(i.e. the Mapper Capacity of Hadoop cluster) 

number of maximal concurrent Reducer processes 
(i.e. the Reducer Capacity of Hadoop cluster) 

wblk 
(rowblk, 
colblk) 

(rowelemi, 
colelemi) 

block width in format Mblock 
row and column identifier of a block 
under the format of Mblock 

row and column identifier of element i 
  inside the block under the format of Mblock 

2.1 MapReduce, Hadoop, and File Input Format 
MapReduce [9, 10] is a distributed computing framework developed by Google. It provides two 

basic user definable functions – Map (key, value) and Reduce (key, values) - for key-value based 
processing. Each MapReduce stage involves the following steps: (1) Input, (2) Map(), (3) Shuffle & 
Sort, (4) Reduce(), and (5) Output. The framework provides several benefits, including fault tolerance, 
load balance, and simple APIs; and it has been shown that the throughput is scalable to the number of 
machines. Hadoop [14] is a mature implementation of MapReduce that allows programmers to define 
the following utilities: Map(), Reduce(), Combiner(), getPartition(), input/output format, and counter. 
For more details, readers may refer to [9, 10, 15, 16]. To handle graph data using MapReduce, we have 
to save the graph in a file. The efficiency of I/O can vary significantly with different file input formats. 
There are two basic file input formats for graphs [16]: the edge input format (Medge) and the adjacent 
list input format (Madj). The edge input format (Medge) represents an edge mij in the form (i, j, mij) per 
line; and the unit record is an edge. The adjacency list input format (Madj) represents M in the form of 
{vj,{m1, m2,…, mn}} where mn is the nth adjacent edge of vj; and the unit record is a vertex. 

2.2 PEGASUS: Matrix-Vector Multiplication on MapReduce 
The Matrix-Vector Multiplication (MVM) operation is a useful and general mathematical 

representation for graph mining. In MVM, each vertex can pass its local information to neighbor 
vertices (i.e., vertices that are one hop away) by multiplying the adjacency matrix by a vertex vector. 
As shown in the PEGASUS paper [8], many graph mining algorithms can be represented in the form of 
MVM, including PageRank and breadth first search. 

PEGASUS [8] is an open source library based on Hadoop for large-scale graph mining problems. It 
provides three primitive functions for MVM:  

V’ = M × V = assign(vi, combineAlli({xj|j=1..n,  and xj = combine2(mi,j, vj)})).      (1) 

1) combine2(mi,j,vj): multiplying mi,j and vj  

2) combineAlli(x1,…,xn): summing n multiplication results for vertex i. 

3) assign(vi,vnew): updating the previous value of vi with new result vnew. 
TABLE 2.  MAPREDUCE-BASED ALGORITHM FOR MVM: TWO-STAGE MVM 

Stage Two Stage MVM 



1st stage 2nd stage 

Map Input (a)mi,j∈M 
(b)vi∈V 

(a) key = j, value = mi,j× vj 
(b) key = i, value = vi 

Map() If input(a) then yield (c). 
If input(b) then yield(d). identity mapper 

Map Output/ 
Reduce Input 

(c) key = j, value = mi,j 
(d) key = i, value = vi 

(c) key = j, value = mi,j× vj 
(d) key = i, value = vi 

Reduce() 

If input(d), then output (f) 
for all (c),(d),  

apply combine2(mi,j,vj),  
and yield(e) 

For all (c), apply vnew = 
combineAlli(x1,…,xn),  
and then apply assign(vi,vnew) 

Reduce Output (e) key = j, value = mi,j× vj 
(f) key = i, value = vi 

(e) key = j, value = vnew 

PEGASUS proposes GIM-V BASE algorithm as a MapReduce-based implementation for MVM. 
The steps of the algorithm are summarized in Table 2. We call the algorithm Two-Stage MVM because 
it must perform MapRedcue twice. In the 1st MapReduce stage, Map() receives input from M and V, 
and Reduce() performs combine2(mi,j,vj) for the same vertex j. The output of Reduce() is the result of 
intermediate multiplication. In the 2nd MapReduce stage, Map() is used as an identity map (the mapper 
simply yields its input as output). In addition, Reduce() performs combineAll() and assign() 
independently to update the new vector value. All MVM-based algorithms (e.g., PageRank and random 
walk with restart) can be cast in the form of these three primitive functions. Then, PEGASUS applies 
the Two-Stage MVM algorithm to perform the MVM operation. PEGASUS also transforms algorithms 
of PageRank, random walk with restart, diameter estimation and connected component search into the 
form of the three primitive functions, and further investigate the scalability of Two-Stage MVM based 
on the implementation of PageRank. Their source codes of PageRank, diameter estimation and 
connected component search have been released by PEGASUS.  

To improve the performance, PEGASUS uses the block file input format (we call it Mblock), which 
divides the matrix M into several small square blocks with a fixed width wblk. Each block is represented 
in the form of (rowblk,colblk,{rowelemi,colelemi}) as a line in the input file. Exploiting Mblock can reduce the 
number of input lines (the default unit record in Hadoop), shrink the input file (with a properly chosen 
wblk), and, reduce the number of records shuffled in MapReduce as a consequence. The results of 
experiments show that Mblock is 2 to 5 times faster than Medge on PageRank. 

2.3 Barabási–Albert model (BA model) 
Social network generation algorithms are designed to satisfy properties held by real world social 

networks such as short average path length, high clustering coefficient, and power-law degree 
distribution.  A network having a property of power-law degree distribution is called a scale-free 
network. The ER model [26], the WS model [27], and the BA model [28] are frequently used social 
network generation algorithm. ER and WS model can be easily implemented in parallel while it is not 
the case for the BA model due to its preferential attachment (PA) mechanism. 

The BA model is a model for generating random scale-free network. If the degree distribution, i.e. 
probability density function of degree corresponds to the form p(x) = Cxα, the graph is said to satisfy 
power-law degree distribution. In the BA model, the α value of degree distribution is proven to be -3. 

The BA model adds vertices into the graph serially with the mechanism of PA. A new vertex is 
added to the graph one at a time till the graph grows to the target size. The probability of a new 
coming vertex forms a link with an existing vertex is proportional to degree of the existing vertex. It 
means new vertices prefer to link with high degree vertices. It is an intuitive criterion because in real 
world these high degree vertices stand for popular people in a social network or hot websites on the 
Internet.  

Here is one simple example of how the BA model generates a graph. In Figure 1, the graph starts 
with m0=3 fully connected vertices. New vertex 4 is added with m=2 edges. Since the degrees of the 
three vertices are the same, probability of selecting vertex1, 2, and 3 to connect the new vertex to are 
equally 1/3. Suppose vertex 2 and 3 are chosen to be attached with the new vertex 4.   



 
Figure 1.  A example of the BA model generation 

Next iteration, a new vertex 5 is added with m = 2 edges. Now the degree of vertex 1, 2, 3, and 4 is 
2, 3, 3, and 2, respectively. The total degree is now 10 and the probability of each vertex being chosen 
are 2/10, 3/10, 3/10, 2/10 respectively. Vertices 2 and 3 have higher probability to be chosen than 
vertex 1 and 4. Here vertex 3 and 4 are chosen to be attached with the new vertex 5 as a result. Since m 
edges are added into the graph each iteration, the total degree increases by 2m each iteration. If we 
define the iteration t=0 as the initial state, the total degree of iteration t is total(t) = 2mt + 2 0

2
mC where 

the notation n
kC  stands for number of k-combinations of n elements. 

One possible strategy to implement PA utilizes the accumulated degree. The accumulated degree of 
the ith vertex is the sum of all degrees of the vertexes that come before it (i.e. the sum of degree from 
v1 to vi-1). In the example above, the accumulated degrees of vertex 1, 2, 3, and 4 are 0, 2, 5, and 8 
respectively, and the total degree is 10. To select a vertex to link to the new vertex, the model generates 
a random real number between 0 and the total degree (10), and establishes a link with the vertex whose 
accumulated degree is closest to but less than the random number. For instance, if the number 
generated is 2.7, then the newly added vertex will establish a link with vertex 2. If the next number 
generated as 7.13, then another edge is attached to vertex 3. 

That says, with the accumulated degree of each vertex, we will be able to perform PA using a linear 
scan algorithm, without having to know the exact degree of each individual vertex. 

2.4 Existing Parallel Algorithms to Generate Scale-free Network 
The parallel version of R-MAT graph algorithm [28] in Parallel BGL [5] and the parallel BA 

algorithm by Yoo et al. [29] share the same goal of generating scale-free network in parallel. Below 
we will introduce these methods and discuss potential issues in their works.  

In Parallel BGL graph generators are implemented including ER model, WS model, and R-MAT 
graph in MPI. R-MAT algorithm generates configurable scale-free networks. To add an edge into an 
R-MAT graph, it recursively divides the adjacency matrix into four areas with user defined 
probability a, b, c, d till the area is left 1, i.e. pointing an element in the adjacency matrix,  the edge is 
added with the corresponding index. This process loops till the target number of edges is satisfied1

Yoo et al. 

. To 
achieve this goal, it first assigns each vertex to one of the processes, and then in each process they add 
an edge if one of the vertex pair is assigned to the process, otherwise, they discard the edge. This 
design keeps the edges from being duplicated in multiple processes but leaves a problem of redundant 
iterations which generating discarded edges. As the number of processes increases, it would be more 
difficult for edges to hit corresponding processes, i.e. the overhead of redundant iterations would be 
more significant. Therefore their implementation is not well scalable.  

[29] designed two parallel graph generation algorithms to generate scale-free networks, 
the parallel BA model and parallel Kronecker model [23]. The parallel Kronecker algorithm has 
higher degree of parallelism than the parallel BA algorithm, but the structure of generated graph is 
heavily dependent on the initial seed graph, thus it is more difficult to configure desired properties. In 
the parallel BA algorithm, each vertex is assigned to a process and each process is assigned to one or 
more factions. A faction contains multiple processes and a process may share multiple factions with 
any other process. This algorithm is composed of two phases. In phase 1, each vertex in a process 
determines which remote processes to connect to, and send requests to the remote processes. The 
more factions a remote process shares with local process, the more edges the local process would link 
with it. Then in phase 2, each process receives the request of establishing edges from remote 
processes and determines which local vertices would be connected based on PA. The number of 

                                                           
1 Note that, the distributed implementation of R-MAT in Parallel BGL is not described in the corresponding 
paper. We obtained knowledge about their parallelization schema by tracing their open source code. 



factions and which processes belong to which factions are left as degrees of freedom for users to 
determine. Since the edges added in phase 1 and 2 are all intra-faction, there is another parameter to 
establish some inter-faction edges with remote processes.  

 The main concern for this paper is that there are complicated parameters to tune in this system, 
including setting the number of factions, the variable size of each faction, the evolved factions for each 
processor, incorporating inter-faction edges. However in their paper they did not provide a suitable 
configuration that can produce graphs with power-law distribution. As will be shown in the experiment 
section, we re-implemented their parallel BA algorithm and tried several configurations, but found that 
power-law degree distribution property cannot be attained in most of the configurations. 

3. MGMF: MAPREDUCE GRAPH MINING FRAMEWORK 
To provide an efficient cloud computing solution for graph mining on MapReduce, we consider the 

essential components of the successful cloud computing solutions. Generally, the framework of a cloud 
computing solution is comprised of three types of components: 

1) Primitive Function: basic functions, such as APIs for programmers to implement different 
algorithms. 

2) Distributed Algorithm: algorithms with a distributed mechanism to execute the primitive 
functions. 

3) Optimization Method: some methods used to speed up the system. 
TABLE 3.  MAPREDUCE GRAPH MINING FRAMEWORK 

Type of 
Algorithm 

Primitive 
function 

MapReduce-
based algorithm 

Optimization method 

Traverse All combine2() 

One-Stage MVM 
Fast MVM Table 

combineAll() 
assign() 

Traverse partial combine2() with 
prunning 

One-Hop None 1 or 2 
MapReduce job Table 

Multi-Hop compute() 
combine() Vertex-Iterator Table 

TABLE 4.  CATEGORIZATION OF GRAPH MINING ALGORITHMS 

Type of 
algorithm Example Algorithms 

Traverse All Pagerank [2], Random Walk with Restart [3] 

Traverse partial 
Diameter Estimation [17], Find Connect Component [1], Eigen 
Vectors, Belief Propagation [18], Bellman-Ford (Single Source 
Shortest Sath) [19], Minimum Spanning Tree [19] 

One-Hop In/Out Degree Distribution [20], Input format translation: Medge, Madj, 
Mblock, Counting |V|,|E|, and graph density [20] 

Multi-Hop Counting triangle [1], Computing Clustering Coefficient [21], 
Closeness Centrality [20], Betweenness centrality [4] 

For example, the PEGASUS framework uses combine2(), combineAll(), and assign() as the 
primitive functions, Two-Stage MVM as the distributed algorithm, and Madj as the optimization method. 
Several other systems adopt this framework, e.g. MapReduce [9], Pregel[6], and Surfer[7]. 

The proposed framework, MGMF, first divides graph mining algorithms into four categories. Then, 
by using the three functions defined above, we propose solutions for algorithms in each category. The 
proposed MGMF framework is shown in Table 3 and Table 4 lists the graph mining algorithms for 
each category. We describe these four categories in the following.  

1) Traverse All: This category covers the algorithms that must traverse all edges in each iteration. 
Algorithms in this category can be handled by iterative matrix-vector multiplication. The computation 



is repeated until some convergence criterion is met. The time complexity of each algorithm is 
O(n(|V|+|E|)), where n is the number of iterations. Note that the number of iterations is usually much 
smaller than |V| or |E|. 

2) Traverse Partial: Only a subset of edges in the graph need to be traversed in each iteration. The 
algorithms in this category can also be solved by iterative matrix-vector multiplication. However, as 
only some edges need to be traversed, a pruning method can be applied to simplify the computation. 
The computation cost is less than that of the Traverse All category. The design of the pruning 
algorithm will determine the computation cost. 

3) One-Hop: Algorithms in this category only require information from nodes that one hop away 
from each vertex; and one or two iterations are sufficient for computation (e.g. computing degree 
distribution). The time complexity is O (|V|+|E|). 

4) Multi-Hop: Algorithms of this category require information from nodes that are several hops 
away for each vertex. The time complexity is much larger than the order of polynomial to |V| or |E|. 
For example, the complexity of Betweenness Centrality is equal to O(|V||E|) 

Most Traverse All and Traverse Partial algorithms can be implemented by multiplying the vertex 
vector using the adjacency matrix (MVM); thus, they can be handled by PEGASUS. To improve the 
efficiency of PEGASUS's MVM, we propose three modifications: 1) using combine2() with the 
pruning technique to improve the primitive functions; 2) employing the Fast MVM framework to 
improve the MapReduce-based algorithm; and 3) exploiting the table structure proposed by Chen et al. 
[7] to speed up the optimization process. Normally, One-Hop and Multi-Hop algorithms are not 
implemented through MVM. Even the modified MVM framework yields little improvement on them. 
We propose a simple and straightforward implementation on MapReduce for One-Hop tasks. For 
Multi-Hop tasks, we propose using compute() and combine() as primitive functions and Vertex-Iterator 
as the MapReduce-based algorithm. We also use the table optimization technique to improve the 
overall performance. In the following subsections, we describe our modifications of MVM, our 
framework for Traverse All and Traverse Partial, the framework for One-Hop, and the framework for 
Multi-Hop. 

3.1 MapReduce-based algorithms for MVM: One-Stage MVM and Fast MVM 
As mentioned earlier, PEGASUS [8] proposes the Two-Stage MVM algorithm, which need to 

perform MapReduce twice; combine2(), combineAll(), and assign() are the primitive functions. Lin et 
al. [16] describes an implementation of BFS and PageRank on MapReduce. Inspiring from their idea, 
we propose a generalized MapReduce-based MVM algorithm called One-Stage MVM, as shown in 
Table 5. As its name indicates, our One-Stage MVM contains only one stage within MapReduce to 
perform an MVM operation, but it could incur some overheads. The input format of One-Stage MVM 
is limited to a customized data structure that combines the adjacent list with the vector value of each 
vertex ({vj,{m1,m2,…,mn}}). In Map() part, combine2() is performed while in Reduce() part, 
combineAll() and assign() are performed.  

TABLE 5.  ONE-STAGE MVM ALGORITHMS ON MAPREDUCE 

Stage One Stage MVM 
Map Input (a) data structure {vj,{m1,m2,…,mn}} 

Map() 
for each vj, mi,j pair,  

apply combine2(mi,j,vj) and then yield (c),  
for(a), yield(d). 

Map Output/ 
Reduce Input 

(c) key = j, value = mi,j× vj 
(d) key = j, value = {vj,{m1,m2,…,mn}} 

Reduce() 

For all (c), apply vnew = combineAlli(x1,…,xn), 
update  
structure by {assign(vi,vnew), {m1,m2,…,mn}}, and 
yield (e) 

Reduce Output (e) key = j, value = {vj,{m1,m2,…,mn}} 

TABLE 6.  FAST MVM ALGORITHMS ON MAPREDUCE 



Fast MVM 
Input: Matrix M = adj list{(j, {i, mi,j})},  Vector V = {(i, vi)} 
Output: Result Vector V= {i, vnew} 

Map(Key k, Value v); 
    if (k, v) is of type V then  

Output (k, (“self”, v))         //(k: i, v: vi) 
    else if (k, v) is of type M then  
       vj = ReadValue(k)                //(k: j) 
       for each (i, mi,j) ∈ v do       //(v:{(i, mi,j)}) 

Output(k, (“others”, combine2(mi,j,vj))); 
Reduce(Key , Value); 
   others_v ← [];                        //initialize 
   self_v ← [];                            //initialize 
   for each v ∈ v[1..m]  do  
       (tag, v′ ) ← v; 
       if  tag == “self” then  

self_v ← v′ 
       else if tag == “others” then  

Add v to others_v;  
Output(k, assign(self_v, combineAllk(others_v))); 

TABLE 7.  TIME AND SPACE COMPLEXITY OF TWO-STAGE MVM, ONE-STAGE MVM, FAST MVM 
ALGORITHM 

Stage Time Complexity 
Two-Stage MVM One-Stage MVM Fast MVM 

Map Input 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM 

Map() 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM + 
O(ReadValue) (|V|/PM) 

Map Output/ 
Reduce Input 2(|E|+|V|)/PR (|E|+2|V|)/PR (|E|+|V|)/PR 

Reduce() 2davg(|V|/PR) 2davg(|V|/PR) davg(|V|/PR) 
Reduce Output (|E|+2|V|)/PR (|E|+|V|)/PR |V|/PR 

Stage Space Complexity 
Two-Stage MVM One-Stage MVM Fast MVM 

Map Input 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM 

Map() O(1) davg davg 
Map Output/ 
Reduce Input 2(|E|+|V|)/PR (|E|+2|V|)/PR (|E|+|V|)/PR 

Reduce() davg davg davg 
Reduce Output (|E|+2|V|)/PR (|E|+|V|)/PR |V|/PR 

 

The time complexity and space complexity of Two-Stage MVM and One-Stage MVM are shown in 
Table 7. A MapReduce stage involves 5 steps: Input, Map(), Shuffle & Sort, Reduce(), and Output. 
Here, we consider the data size and the number of operations performed in each step. We also compare 
the complexity of different MapReduce-based algorithms. The Steps involved in Input, Shuffle & Sort, 
and Output perform I/O via the memory/disk/network, so the computation cost is proportional to the 
size of the required storage. As the steps of Map() and Reduce() execute user defined algorithms, the 
input records are processed one by one. That means the minimal space requirement is the largest 
recorded input. We denote it as the space complexity of Map() and Reduce(). The time complexity is 
estimated by multiplying the time complexity of an operation per record by the total number of records 



processed. The number of records can be distributed in parallel to different mappers PM or reducers PR, 
so the complexity can be reduced accordingly. 

The complexity analysis shows that, in each stage, the computation cost of Two-Stage MVM is 
either greater than or equal to that of One-Stage MVM. For Input and Shuffle & Sort, the computational 
cost of Two-Stage MVM in terms of time complexity is about twice than that of One-Stage MVM. Thus, 
we expect the overall performance of One-Stage MVM is at most twice as good as that of the Two-
Stage MVM. The disadvantage of One-Stage MVM is that the output to yields an adjacent list and a 
vector value in each iteration, which could put some overheads for I/O.  

We propose an efficient Fast MVM algorithm based on One-Stage MVM. Specifically, we use a 
function ReadValue(k) to read the vector value of vertex k from external source when needed. This 
approach eliminates the need to combine the adjacency list and vector value as an input record, at the 
cost of some extra effort in executing the ReadValue() function. The pseudo code of Fast MVM and its 
complexity are shown in Table 6. We implement ReadValue(k) by reading the file of vectors on HDFS 
(Hadoop Distributed File System [14]) via a file stream. We also modify the partition function 
getPartition(key, value, numOfReducer) in Hadoop to ensure that the order of vectors is consistent for 
each output of MapReduce. The partition function is called bin partitioner. It divides all vertex ids into 
several bins of equal size (size=|V|/PR), after which each bin is processed by a specific Reducer. 

The results in Table 7 show that Fast MVM outperforms or is equivalent to One-Stage MVM in 
different stage; therefore, we expect Fast MVM to yield a better performance than One-Stage MVM. 
The experiments described later will follow the analysis in Table 7. 

3.2 MVM algorithms: Traverse All and Traverse Partial 
We divide the MVM algorithms into Traverse All and Traverse Partial categories according to 

whether or all edges need to be traversed during multiplication. For algorithms of Traverse All 
category, to achieve the best performance, we apply the Fast MVM algorithm instead of Two-Stage 
algorithm for implementation. The primitive function of PageRank implementation is the same as 
PEGASUS, and only the MapReduce-based algorithm is refined in our case. For Traverse Partial, we 
propose to modify combine2() with pruning technique. This is possible since only updated vector 
values from the previous MVM iteration are required for multiplication. The combine2() function can 
then be simplified to combine2() with pruning'' as shown in (2). Here, vj,prev denotes the vector value 
in the previous iteration and vj denotes the vector value in the current iteration. 

 Combine2(mi,j, vj) = mi,j × vj if vj,prev≠vj               (2) 

Diameter Estimation, Identification of Connected Components and Breadth First Search (BFS) 
belong to this Traverse Partial category. We take the Breadth First Search (BFS) algorithm as an 
example, which can be applied to solve the single source shortest problem. Initially, the distance value 
of each vertex is set as infinity, except the source vertex (set as zero). For each MVM iteration, every 
vertex calculates its distance value by increasing one unit from its neighbors. The three primitive 
functions are defined in the following: 

1) combine2(mi,j,vj): mi,j × (vj +1)  if vj,prev≠vj 

2) combineAlli(x1,…,xn): MIN(x1,…,xn) 

3) assign(vi,vnew): MIN(vi,vnew) 

The pruning method is applied to improve the efficiency. The MVM operation is repeated until all 
vector values converge. 

3.3 One-Hop Algorithms 
The One-Hop algorithms in Table 5 need only local information (i.e., one-hop) for each vertex. 

Since there is no need to perform iterative computation for One-Hop algorithms, they can be executed 
in one or two stages of MapReduce. We show the implementation of Out Degree Distribution and 
Input Format Transformation from Medge to Madj in Table 8. 

TABLE 8.  EXAMPLES OF ONE-HOP 



Stage Out Degree Distribution Format Transformation 
from Medge to Madj 

Map Input (a){(i,mi,j)}∈Madj (a) mi,j ∈Medge 
Map() yield (b). yield (b). 
Map Output/ 
Reduce Input (b) key = douti, value = 1 (b) key = j, value = mi,j 

Reduce() For all (b), calculate  
d = Σk1, and yield(c) 

For all (b), concatenate  
all mi,j, and yield(c) 

Reduce Output (c) key = i, (out degree) 
value = d (frequency) 

(c) key = j,  
value = {(j,{(i,mi,j)})} 

3.4 Multi-Hop Algorithms 
Graph mining algorithms that require global information during computation (e.g. computing 

Betweenness Centrality) are belonged to this Multi-Hop category. Since for each iteration, a large 
amount of computation is needed to go through all vertices in the graph, the time complexity of these 
algorithms is usually very high. We will show it is inefficient to exploit MVM for Multi-Hop 
algorithms in next paragraph. We propose to use the Vertex-Iterator Algorithm for Multi-Hop 
algorithms. In Map() part, LoadGraph() loads the whole graph into the memory and performs 
Compute(G, i, vi) on each vertex i. In Reduce() part, the partial values are gathered by combine(). 

We take and implement Betweenness Centrality (BC) as an example. Brandes [4] proposed an 
efficient algorithm for calculating BC, as shown in equations (3), (4), (5). The operation involves 
performing a bread-first-search on each vertex (source) and calculating the partial centrality scores for 
other vertices (targets).  
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Where σsv is the number of the shortest path from vertex s to vertex v; Ps(v) is the set of predecessor 
vertexes of v in the BFS tree starting from vertex s; δs • (v) is the partial BC score contributed from 
source vertex s to vertex v; CB(v) is the BC degree of vertex v. The time complexity for this algorithm 
is O(|V||E|). For a large-scale graph, |V| and |E| could be in the order of billions. Thus, under MVM, the 
volume of intermediate information shuffled between machines would be O(|V||E|), which could be 
intractable.  

To apply the Vertex-Iterator algorithm to generate BC, we implement equations (3), (4) and (5) 
using Compute() and combineAll() in MapReduce. First, the Compute() function executes (3) and (4) 
for each vertex in Map(). Second, the combineAll() function performs (5) in Reduce(). Through this 
approach, the volume of intermediate information shuffled between machines would be |E|PM + |V|PM 
= (|E|+|V|) PM, which is more tractable than O(|V||E|). Finally, the time complexity is also reduced 
from O(|V||E|) to O(|V||E|/PM + |V| PM/PR). 

4. PARALLEL PREFERENTIAL ATTACHMENT MODEL 
In this section we introduce our method to parallelize the BA model. We use the same notations as 

in Section 2.3 to describe parameters in the BA model: m0 is the number of initial fully connected 
vertices, and m is the number of edges emerged from a vertex when it first joins the network. We 
define ti as the i-th iteration and vi as the single vertex joining the network in ti..  The total degree of the 
network at ti is denoted as total(ti) = 2mi+2 0

2
mC  

To parallelize a BA model task of generating N vertices with P processes, our goal is to assign N/P 
vertices to each of the processors in sequence. Figure 2 shows an example of generating a graph with 
9 vertices divided into 3 partitions for 3 processors. Process 1, 2, and 3 are responsible of generating 
the first three vertices (v1 to v3), the next three vertices (v4 to v6), and the last three (v7 to v9), 
respectively, while our goal is to enable the parallelism of these three processors so they can create 



edges independently. vxy represents vertex x, vx, at time y, ty. Note that the newly added vertex in each 
iteration is marked on the right-most position of each row. The original BA model relies on the 
concept of PA, which requires the later vertex (e.g. vertex 9) to obtain the degree information of all 
other vertices (e.g. vertex 1~8) before determining which vertices it should attach to (i.e. the higher 
degree the better chance). In general, the PA property conflicts with the parallelism framework. For 
instance, to perform PA for v6 when it first joins the network, we need to know the degree of vertices 
v1 to v5. Unfortunately such information is not available because those vertices themselves are being 
processed in parallel. Even if some vertices finish the generation process earlier, their degree 
information can hardly be passed to the other processors due to high communication cost between 
processors during parallelism. 

4.1 The Parallel BA Approach Overview 
In this section we propose a method that allows independency among link generation of each 

vertex. Our goal is to use only O(m*N/P) of memory and adding an edge with O(logN)of time  

 
Figure 2.  Generating a graph of 9 vertices divided into 3 partitions in the BA model,  

the colored vertices are new vertices 

 
Figure 3.  Explanation of graphic notation in Figure 2. 

As mentioned in Section 2.3, PA depends on knowing the accumulated degree of each vertex is 
known.   Unfortunately, similar to the degree information, the accumulated degree of vertices cannot 
be obtained when PA is conducted in parallel. 

Assuming the accumulated degree is unknown, we propose to generate the “expected accumulated 
degree” for each vertex in each processor. The expected accumulated degree for a vertex vk at 
iteration tj is denoted as ECumDeg(tj, vk).  

In Section 4.2 we will prove that  
EcumDeg(tj, vk) = total(tj)*∏=

j

ki
(1+m/total(ti))  (6) 

With this equation we can calculate the expected accumulated degree of any vertex at any iteration 
in any graph partition, independent of degree information from other partitions.  

In the example shown in Figure 2, to introduce v9 into the network, we can naively apply (6) to 
calculate accumulated degree of v1 to v8 at iteration t9, and then for each new edge, we have to 
generate a random degree and run linear scan to find the vertex to attach it to. Unfortunately, to 
compute EcumDeg(t9, v1), the term (1+m/total(ti)) would have to be multiplied for 8 times (each with 
different ti), and similarly, 7 times for EcumDeg(t9, v2), and so on. That says, in order to add a link, we 



need to calculate the estimated accumulated degree for all N vertices requires the time complexity 
O(N2) and space complexity O(N). It becomes computationally intractable when N becomes larger 

Trying to solve the efficiency problem when identifying the vertex for PA, we found that it is not 
necessary to generate the EcumDeg for every vertex. Instead of applying linear scan to find the vertex 
to attach a new node to, we use binary search. Take the example in Figure 2, suppose the vertex with 
accumulated degree closest to but smaller than a random number R is v2, we can first generate 
EcumDeg(t9, v4) and check whether R is larger or less than it. If R < EcumDeg(t9, v4), we can than 
generate EcumDeg(t9, v2) for comparison, and the process continues until the target vertex is found. 
The target vertex can be found in O(logN) steps. By applying binary search, we can reduce the time 
complexity of PA from O(N2) to O(NlogN). The space complexity is O(1) since we compute 
EcumDeg(tj, vk) on the fly and do not store it.  

Next, we further reduce the complexity of PA by categorizing the multiplications into three types: 
initial product, internal product, and external product, and cache the pre-processed values. Figure 2 
presents a diagram showing how each vertex’s degree changes when new vertices are being added. As 
will be shown in section 3.C, the internal and external products can be generated in constant time 
using cache technique. In section 3.D, we further propose an approximating algorithm that reduces the 
initial product to O(1). Eventually, we can significantly reduce the complexity from O(N2) to O(logN). 
Below we provide detail description and formulae about the proposed methods. 

4.2 Expected Value of Accumulated Degree 
We propose to estimate the accumulated degree of nodes for PA because it can be generated 

without knowing the attachment outcome from other vertices.  
ExpDeg(tj,vk) = ExpDeg(tk,vk) ∏ −

=

1j

ki
(1+m/total(ti))  (7) 

(7) is the recursive formula to express the expected degree for a specific vertex with id vk (i.e. the 
k-th joined vertex) in a specific iteration tj. The total degree of at j-th iteration in the BA model is 
total(tj)= 2mj+2 0

2
mC , since the total degree is 0

22 mC  at the initial state (t = 0) and every new vertex 
comes with degree of m. A vertex’s degree gain on average m multiplies the proportion of the vertex’s 
to the current total degree.  The expected degree of a vertex k at iteration j is notated as ExpDeg(tj, vk), 
and we can construct the recursive equation as: 
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where ExpDeg(tk, vk) = m0 – 1 if k = 0, or m otherwise. 
As we have mentioned previously, PA can be achieved by the accumulated degree of vertices as 

well, and the expected accumulated degree of vertex vk at iteration tj is defined as  
ECumDeg(tj, vk) = ∑=

k

i 1
ExpDeg(tj, vk)   (8) 

The reason we prefer using accumulated degree than the original degree of vertices is that then we 
do not really need to generate the expected degree of each individual vertex. We can use the equation 
we prove in Lemma1 to generate the accumulated degree. 
Lemma1. ECumDeg(tj,vk) = total(tk)*∏ −

=

1j

ki
(1+m/total(ti)) 

Proof. 
From (7), (8),  
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Note that Lemma 1 tells us that the ECumDeg values can be generated using only the total vertex 
information in each iteration. In the extreme case, to generate ECumDeg(tj, v1), we will need to 
execute multiplication j-1 times. That says, when the total number of vertices N grows, the complexity 
of generating the accumulated degree for the 1st vertex approaches O(N). From here on we define a 
query as the computation of the accumulated degree of a node. Therefore, for an iteration i, we need 
to query i-1 times (from v1 to vi-1) in order to perform one PA attachment, while performing binary 
search allows us to reduce the complexity from O(N) to O(logN). That is, overall it takes O(NlogN) 
time to create a link through PA in our parallel framework. In the next section we will further discuss 
how to reduce the complexity to O(logN). 

4.3 Decomposing Expected Accumulated Degree 
To avoid heavy computation from calculating the expected accumulated degree, we exploited two 

ideas. The first idea lies in reusing the result of computation. For example, we may query the 
accumulated degree of the same vertex in different iteration, ECumDeg(tj, vk) and ECumDeg(tj+d, vk). 
Since both requires the value of ∏=

j

i 1
(1+m/total(ti)), we can cache such intermediate values to avoid 

re-calculating every term in every query.  
The second idea is to exploit the parallelism to calculate the product of the term 1+m/total(ti). Here 

we use Figure 2 as an example. Assuming the vertex v9 is just joining the network and we need to 
establish its link. We need to generate ECumDeg(t9,v1), which is represented as v19 in Figure 2. 

We decompose ∏=

k

i 1
(1+m/total(ti)) into three parts: 

1) Initial product: the part of product in the partition where the queried vertex is generated. In this 
example, ∏=

2

1i
(1+m/total(ti)). 

2) Internal product: the part of product of terms within the currently generated partition. In this 
example, ∏=

8

6i
(1+m/total(ti)). 

3) External product: the part of product from other partitions which is multiplied across the whole 
partition. In this example, ∏=

5

3i
(1+m/total(ti)). 

In Figure 2 we marked the three products in the example of querying expected acculumuted degree 
at t9. 

Internal product can be easily calculated and cached while going through generation iterations in 
one partition. Note that the internal product terms to be multiplied in each process is identical (e.g. for 
process 3, ECumDeg(t9,v1)/ECumDeg(t6,v1) = ECumDeg(t9, v2) / ECumDeg(t6, v2)=…= ECumDeg(t9, v7) 
/ ECumDeg(t6, v7)= , therefore we can calculate it once and reuse it using 
cache. Eveutally it takes only O(1) to generate this number. 

The external product represents the multiplications associated with vertices of other partitions. For 
example, for v19, the multiplication of v14 to v16 is considered as an external product. In general, for 
partitions that join later, the external product represents more terms. Take Figure 4 for example, for 
partition 5, its external product equals to E2*E3*E4 and for partition 4 it is E3*E4. Here we have 
realized that there are total of P2/2 such Ek blocks. If we can pre-calculate in parallel and store them in 
the cache of each partition, the external product values can be generated in constant time as well. 
Note for each query, every block except the top one (i.e. initial produce) and bottom one (internal 
block) are considered as part of the external block.  

The time complexity to cache external product is O(P2) while space complexity is O(P). With this 
cache, we can obtain external product in O(1) while being queried. 

Unlike internal and external products, initial product for every vertex being queried in the 
partition has different product value. Neither caching initial product for every vertex, nor calculating 



initial product for every query is tractable. Therefore, we choose to apply approximation to initial 
products which will be shown in the next section.  

Our approximation generates the initial products in O(1) time. In a nutshell, by using caching and 
approximation techniques, we are allowed to reduce the time complexity of each query to O(1). 

 
Figure 4.  Computing external product in process of partition 5 

4.4 Approximation and Partial Caching of Initial Product 
For initial product, every vertex in the partition results in different product value. The first vertex 

of each partition receives N/P products, and N/P-1 for the next vertex, finally the value for the last 
vertex of each partition is one. If we cache initial product of all vertices in the same partition, the 
computation time is only linear of the partition size (number of vertices of the whole graph divides by 
number of partitions). However, to cache the initial product, we have to store the initial product of all 
vertices in each partition, which takes O(N), which is not very realistic as we assume each partition 
has only O(N/P) caching space.  

Therefore we propose a fast approximation for the value of initial product. The product of terms of 
(1+m/total(ti)) starts from tj to tj+d, respectively, representing the start and end iteration of the initial 
product. 
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In (9) we apply the following substitution to make it simple 
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In (10) we multiply the term below which is equal to 1 
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Then in (11) we apply the following equation of Wallis product [30] for π. 
This equation is true if j is infinite, or the error is known to be O(1/j) from Stirling’s approximation. 
[31] 
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The following are detailed induction for Wallis product substitution in (11).  
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Finally we obtained the approximation. 
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To further discuss the error from this approximation, by Stirling’s approximation, result of (12) 
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In this approximation we obtained an error term of (1+O(d/(j2+jd)))1/2. After the second partition, d 
≤ j sustains since maximal value of d is N/P, the size of one partition and from the second partition, j 



is larger than the size of one partition. So the error term can be bounded as (1+O(1/j))1/2 or 
(1+O(P/N))1/2 for partitions after the second partition.  

However, this approximation does not work well in the beginning partitions. So we calculate and 
cache the exact initial product value for beginning partitions. We apply approximation only to the 
later partitions. With this approximation, partitions that we have to cache the initial product value 
reduce from all partitions to only the beginning partitions. We leave the number of partitions to cache 
as a parameter in the system. As a fact, in our experiment the approximation is almost precise enough 
to cache only the first partition so that the power-law degree distribution is reserved. 
Since we can calculate accumulated degree by composing initial product, internal product, and 
external product, performing PA for each new coming vertex can be parallelized. We implement our 
algorithm in MapReduce. 

4.5 MapReduce Algorithm 
Table 9 shows the symbols and functions we use in our algorithm. Table 10 shows the pseudo code 

of our algorithm and table 3 presents the complexity analysis. We design the algorithm into one 
MapReduce job. In both of Map and Reduce phase, we use a single input number as the process id. 
Note that in our example in Figure 2, we didn’t describe the details to handle initial vertices in the BA 
model for simplicity, here we will include them. 

 In Map phase, each processor calculates the external product belonging to its partition and send 
the result as a key-value pair to each process. The key is target process id, and the value contains 
source process id and the partial external product.  

In Reduce phase, each processor generates vertices with id it is responsible for, performing PA by 
calculating expected accumulated degree to build edges. Since in the first partition (pid=0) there are 
m0 initial vertices, we handle it as special cases in line 4, 13, 15-18. At the beginning of Reduce phase, 
in line 1, 2 it receives partial external products from all other processors and calculate external 
products in line 5-8. Then in line 9-13 initial product is cached according to C, the parameter of 
number of partitions set to cache.  In line 19-28, for each iteration t, one new vertex is joined and 
attaches edges with m existing vertices. Note that we use the iteration number to assign id to a vertex 
because only one vertex is added in every iteration. In line 20 the internal product is accumulated 
with the progress of iteration. In line 21-25, for each edge to be added, a random number R is 
generated to perform PA. In line 23-25, binary search is conducted to find which vertex in the known 
partition should be attached. In line 26 we handle the case of choosing initial vertices with equal 
probability. 

In the binarySearch function, from and to are the candidate vertices with minimal and maximal 
vertex id. Line 1 shows the condition of continuing searching when there are at least two candidates. 
Line 5-7 handles the case when internal product overlaps with initial product. We set initial product 
to 1 and remove not used part in the latest internal product. In line 8-9, the queried vertex is in a 
partition whose initial products are cached. In line 10-13 it handles the normal case that we assign 
latest internal product and approximate the initial products with the formula in Section 3.D. In line 14 
we calculate ECumDeg. In line 15-18 we compare ECumDeg with the target accumulated degree and 
decide the interval to search for next loop. Finally we take from as the return value which presents the 
vertex id chosen to be attached with the new generated id. 

4.6 Complexity Analysis 
In Table 11 the complexity is presented in the aspect of one processor (a mapper or a reducer). In 

Map phase, the input size is O(1) since for a mapper it reads in a single number as the process id. The 
time and space complexity in Map is the number of vertices in a partition, O(N/P). The Map output 
size and Reduce input size is O(P) partial external product to send to or to receive from every other 
partition. 

In Reduce phase, in line 5-8, it spends O(P2) time to calculate external products and needs O(P) 
space to cache them. In line 9-13 it spends O(C*(N/P)) time and space to calculate and cache the 
initial products for first C partitions. 

Note that in our analysis in Section 3.D, the error can be bounded (1+O(P/N))1/2 if we set C=1. In 
line 19-28, it computes O(m*N/P) edges, and thus using space of O(m*N/P) to store the output edges. 
For each edge, it spends time of O(P) to determine which partition the target vertex falls in and spend 



time  of O(log(N/P)) to perform binary search in one interval partition. As to the Reduce output size, 
each process output m edges for each of the O(N/P) vertices. 

TABLE 9.  SYMBOL AND FUNCTION  
Symbol Definition 

m 
m0 
C 
 

N 
P 
 

partSize 
pid 

partialExt 
 

partialExt_vec 
internal_vec 
external_vec 

initCache 
external 
internal 
initial 

R 
 

inPart 
from 

to 
t_end 

the number of edges to be added for each iteration 
the number of vertices in initial state 

the number of partitions to cache exact initial 
product 

the number of vertices to be generated 
the number of processes (the number of graph 

partitions) 
N/P, the number of vertices in one graph partition 

the partition id 
the partial external product from single partition 

to compute external product  
vector of partialExt 

vector of internal product 
vector of external product 

vector of exact initial product cache 
external product 
internal product 
initial product 

random() * total(t-1), accumulated degree of the 
vertex to be linked with the new vertex 

the partition where the queried vertex locates in 
the lower bound of search interval 
the upper bound of search interval 

the last iteration in the queried partition 
random() 

sqrt(t) 
total(t) 
local(t) 

 
real(t) 

 

random generate a number within [0, 1] 
square root of value t 

2mt+2C(m0,2), total degree of the graph in time t 
(t-1) mod partSize + 1, the serial number of vertex 

t in the partition. 1 ≤ local(t) ≤ partSize 
t + m0 – 1, the real vertex id of vertex t after take  

initial vertices into consider 

TABLE 10.  THE PARALLEL BA ALGORITHM 

The Parallel BA Algorithm 
Map         Input: single number represents pid  
                Output: (key, value)=(p, [q, partialExt]) 
Reduce    Input: (key, value)=(p, [q, partialExt])   

Output: output graph in edges  
 
Map 
1 pid ← input value 
2 partialExt ← 1.0 
3 for t = pid*partSize+1 to (pid+1)*partSize 
4     partialExt ← partialExt * ( 1+ m/total(t-1) ) 
5 for p = 0 to P-1 
6     output(p, [pid, partialExt]); 
 
Reduce 
1 For each values pair [q, partialExt] gathered by key p 
2     partialExt_vec[q] ←partialExt 
3     pid ← p 
4 if( pid = 0) output initial edges  // initial vertices 
5 for i = pid to 0  // calculate external product 
6    external[i] ← 1.0 



7    for j = pid to i+1  
8        external_vec[i] ← external_vec[i] * partialExt_vec[j] ; 
9 for p = 0 to C   // caching initial product 
10     initCache[(p+1)*partSize] = 1.0 
11     for t = (p+1)*partSize -1 to p*partSize +1 
12         initCache[t] = initCache[t+1] *( 1+ m/total(t) ) 
13     if(p = 0) initCache[0] ← initCache[1] * (1 + m / total(0))  
14  
15 if(pid = 0)  
16     internal_vec[local(1)] ← 1 + m / total(0) 
17 else  
18     internal_vec[local(1)] ← 1.0 
19 for t = pid*partSize+1 to (pid+1)*partSize // generate vertices 
20     internal_vec[local(t)] ← internal_vec[local(t-1)] * (1 + m/total(t-1))                                                                     

//update internal product 
21         for i = 0 to m-1 
22             R = random() * total(t-1)    //Get random R accumulated degree 
23             from ← 1 
24            to ← t-1 
25            v ← binarySearch(R, from, to, external_vec, internal_vec, initialCache,  t) 
26           if(v=0) v ← randomly assign a value from 0 to m-1 
27           else v ← real(v) 
28           output([real(t), v] ); 

 
binarySearch(R, from, to, external_vec[P], internal_vec[partSize], initialCache[partSize*C], t)   
1 while(to – from  ≥ 1) 
2     mid ← (from+to)/2 
3     inPart  ← mid mod partSize 
4     external  ←external_vec[inPart] 
5     if(inPart = pid)  
6         internal ← internal_vec[local(t)]/internal_vec[local(mid)]; 
7         initial ← 1.0; 
8     else if(inPart < C)  
9         initial ← initialCache[mid]      // assign cached  initial product 
10     else  
11         internal ← internal_vec[local(t)] 
12         t_end ← (inPart+1) * partSize 
13         initial ← sqrt( 1+ (t_end – mid)/(t+C(m0, 2)/m)  ) 
14     ECumDeg ← total(mid)*initial*external*internal 
15     if(ECumDeg ≥ R )  
16         from ← mid 
17     else  
18         to ← mid - 1 
19 end while 
20 return from 

TABLE 11.  TIME AND SPACE COMPLEXITY  

Stage Time Complexity Space complexity 
Map Input O(1) O(1) 
Map() O(N/P) O(N/P) 



Stage Time Complexity Space complexity 
Map Output/ 
Reduce Input O(P) O(P) 

Reduce() O((N/P)*(m*log(N)+C) + P2 )  O((N/P) *(C+m) + P) 
Reduce Output O(m*N/P) O(m*N/P) 

 

5. EXPERIMENTS 
 In this section, we present our experiments in two parts. In Section 5.1, we evaluate the efficiency 
and scalability of our MapReduce Graph Mining Framework on the four algorithm categories. In 
Section 5.2, we evaluate our parallelized preferential attachment model on the property of power-law 
degree distribution and also the efficiency and scalability. 

5.1 Evaluating MapReduce Graph Mining Framework 
We conduct a series of experiments to answer the following questions: 

1) Traverse All. Which of the following algorithms can achieve the best performance given the 
same conditions: Two-Stage MVM, One-Stage MVM or Fast MVM? Which one would yield the best 
performance if we further exploit the proposed optimization method (i.e., table or combiner) 

2) Traverse Partial. How much improvement can the pruning method achieve? 

3) One-Hop. Are One-Hop algorithms scalable to the number of available machines? 

4) Multi-Hop. How much improvement does the Vertex-Iterator algorithm yield in terms of 
efficiency? 

We implement one algorithm for each question. Besides, we use speedup and time efficiency 
criteria to evaluate the scalability of the algorithms. Both criteria are widely used to measure the 
performance of parallel systems. Speedup Sp is defined as Sp = T1/TP, where T1 is the running time 
using only one process and TP is the runtime using P processes. The efficiency EP is defined as EP = 
SP/P. 

TABLE 12.  ORDER AND SIZE OF NETWORKS 

Dataset Nodes Edges Description 
Twitter1 75,792,429 1,468,365,182 person-person in 2009 
Erdős-Rényi2 177,147 1,977,149,596 synthetic 
Kronecker3 177,147 1,977,149,596 synthetic 
Wikipedia4 68,869,555 406,914,840 doc-doc in 2010/01 
DBLP5 1,380,123 2,194,624 person-doc in 2010/03 

 
Table 12 lists the statistics of the datasets used in our experiments, including two real-world and 

two synthetic networks. For the synthetic networks, we generate graphs using two random graph 
models: Erdős-Rényi [22] and Kronecker [23]. The Erdős-Rényi model is a very simple graph 
generation process producing random graphs. With carefully-designed of the parameter (i.e., the link 
probability p), we generate graphs following a certain real-world property (i.e., the existence of a giant 
component). On the other hand, the Kronecker graph is a sophisticated one. It has been proven that the 
graph obeys many real-world network properties, such as a power-law distribution and the small-world 
property. For real-world networks, we use Twitter [24] and Wikipedia, two of the most popular web 
and social network services. Each network, except Wikipedia, contains over 1 billion edges. We 
evaluate the performance on a cluster system with eight computing nodes, each node is equipped with 
two Intel E5550 2.67GHz CPUs, 32G DDR3-1333 RAM, 1Gb Ethernet network and 1TB hard disk. In 
addition, we use Hadoop 0.20.2 with Mapper capacity = 8 and Reducer capacity = 3 per node. All 
runtimes are averaged over 5 runs. The input format of Madj with Gzip binary compression is exploited 
for all of our algorithms and the compared approaches. It is because the experiment results indicate that 
Madj with Gzip outperforms than other setups, which are combination of Medge and Mblock (discussed in 
the succeeding section). 



5.1.1 Evaluating Traverse All Algorithms: Exemplifying by PageRank 
We implement PageRank on Two-Stage MVM, One-Stage MVM and Fast MVM. All algorithms 

are executed on the four datasets. The average runtime per iteration of PageRank is shown in Figure 5. 
We can observe that: (1) Both One-Stage MVM and Fast MVM significantly outperform Two-Stage 
MVM (they are roughly twice as fast). Compared to Two-Stage MVM, the Fast MVM reduces the 
runtime to 51% on real-world networks and 40-45% on synthetic networks. One-Stage MVM reduces 
the runtime only by 48-69% on real-world networks and by 64-76% on synthetic networks. Their 
variation is quite large. (2) Generally, for low density dataset (i.e., the average degree is low), such as 
Wikipedia, One-Stage MVM performs slightly better than Fast MVM. For high-density graphs, Fast 
MVM yields a better performance. The reason is that Fast MVM has to do external access (HDFS, in 
our implementation) to fetch the vector values, but One-Stage MVM performs internal access (from 
HDFS, refer to [9] for the details), which has less overheads. Thus, the overhead is more for Fast 
MVM in sparse graphs since the ratio of access and processing (which is equal to the inverse of the 
graph's density) is larger. Figure 5 also shows that, for networks whose density is less than 5% such as 
Wikipedia, One-Stage MVM is a more suitable choice. (3) By integrating the proposed Fast MVM 
with the Table method (a buffer in the mapper to cache the intermediate data) proposed by Chen et al. 
[7], the performance becomes even better. Compared to Two-Stage MVM, the runtime is reduced to 
about 1/4 on real-world networks and 1/20 on synthetic networks. Similarly, the performance 
improves on dense networks. (4) The Table method outperforms Combiner in terms of runtime on 
both One-Stage MVM and Fast MVM. We believe this is because the Table method simplifies the 
output before the sorting step, and the Combiner simplifies the output after the sorting step. Note that 
sorting tasks in MapReduce procedures spend undeniable amount of time. Interestingly, the 
experiment results show that using both Combiner and Table do not achieve the best performance. We 
believe this is because Table is a cache mechanism inside the Mapper with fewer costs, whereas 
Combiner is a process outside the Mapper. 

We examine the scalability of the proposed framework by exploiting Fast MVM and the Table 
method on PageRank. The runtime, speedup, and efficiency on the Kronecker network are shown in 
Figure 6. The results demonstrate that on a cluster machine containing up to eight nodes. When the 
computation of a job is simple enough, the runtime would be dominated by overheads of MapReduce. 
That is the reason why the performance for more than 5 nodes does not improve significantly in 
Figure 6 and Figure 8. Nevertheless, our implementation is able to finish the computation of 
PageRank of the Kronecker network with 2 billion edges in 45 seconds. 

5.1.2 Evaluating Traverse Partial Algorithms: Exemplifying by Breadth First Search  
We implement Breadth First Search described in Section 3.B with Fast MVM and run on it on the 

Twitter dataset. In addition, we implement the primitive function combine2() with and without 
pruning. From the results in Figure 7, we can observe that the BFS takes 15 iterations to converge. 
However, by applying pruning, the run time can be further reduced to roughly 40%.  

5.1.3 Evaluating One-Hop Algorithms: Exemplifying by Calculating the Out-degree Distribution 
We implement the Out-degree Distribution described in in Table 8 on the Kronecker dataset. The 

results using different numbers of computing nodes are shown in Figure 8. The reason for low 
efficiency when using more computing nodes is similar to the case we discussed in Section 5.1.1.  

5.1.4 Evaluating Multi-Hop Algorithms: Exemplifying by Calculating the Betweenness Centrality 
We realize Brandes' Betweenness Centrality (BC) algorithm as the example of the Multi-Hop 

category in the proposed framework. We implement the Mapper program in C++ and use Hadoop 
Streaming to run MapReduce. The input file of each Mapper is copied to each machine. The scalability 
is shown in Figure 9. Our BC implementation algorithm has good linear scalability. Since the 
complexity of the BC algorithm is O(|V||E|), it is computationally intractable to run it on a network 
containing billions of entities. Therefore, we perform the experiment on the DBLP dataset, which 

1Twitter: available at http://an.kaist.ac.kr/traces/WWW2010.html 
2Erdős-Rényi: available at http://www.cs.cmu.edu/~ukang/HADI/ 
3Kronecker: available at http://www.cs.cmu.edu/~ukang/HADI/ 
4Wikipedia: available at http://mslab.csie.ntu.edu.tw/~noahsark/ 
5DBLP: available at  http://mslab.csie.ntu.edu.tw/~noahsark/ 



comprises 1.3 million vertices and 2.1 million edges. It still takes 6 hours to finish the experiment on a 
cluster system with eight computing nodes. 

 
Figure 5.  The efficiency of PageRank on Two-Stage MVM, One-Stage MVM and  

Fast MVM algorithms as well as optimization methods 

  
(a) Runtime    (b) Speedup    (c) Efficiency 

Figure 6.  Experiments for Traverse All: Implementation of PageRank by exploiting  
Fast MVM and Table method on Kronecker Network 

 
Figure 7.  Experimental result for Traverse Partial: time efficiency of primitive functions with and without 

pruning 



  
(a) Runtime        (b) Speedup     (c) Efficiency 

Figure 8.  Experiments for One-Hop: Implementation of Out Degree Distribution on Kronecker Network  

   
(a) Runtime         (b) Speedup    (c) Efficiency  

Figure 9.  Experiments for Multi-Hop: Calculating Betweenness Centrality by Vertex-Iterator on DBLP 
Network 

5.2 Evaluating Parallelized Preferentail Attachment Model  
The goal of this experiment is to examine whether our model satisfies the power-law distribution. 

We evaluate the scalability and efficiency on our model. Our experiment runs on a cluster composed 
of 16 machines of total storage 4.7 TB and each machine has 8 processors of Intel(R) Xeon(R) CPU 
X5550 @ 2.67GHzs and 32 GB of memory. Each computing vertex executes 8 map/reduce tasks for 8 
partitions and each task using 2GB of memory. In the following experiments, we set the number of 
initial vertices, m0 = 3, the number of edges to add for each iteration, m = 5, and the number of 
partition to cache for initial product as 1. 

5.2.1 Property of Power-Law Degree Distribution 
We check the power law property of the generated graph with 32 million vertices which is 

separated into 128 partitions. 
We use the maximum likelihood estimation to fit the curve of degree distribution of the generated 

graph, where degree distribution is expected to correspond the form of p(x) = Cxα with α being close 
to -3. As to test the closeness of fit, we choose symmetric KL-divergence, which indicates better fit 
with lower value. In Figure 6, the curve fit is observed corresponding to the power-law distribution 
form of p(x) = Cxα with α value -3.072330 which is close to -3 with symmetric KL-divergence 
0.096542. We generated 10 graphs by our algorithm and the mean and variance of α are -3.072382 
and 2.5867*10-7 and the mean and variance of symmetric KL-divergence are 0.095940 and 
1.2997*10-8. This results shows that graph generated by our BA model algorithm consistently reserves 
the property of power-law degree distribution in the BA model.   

We also evaluate the power-law degree distribution property of graphs generated with Yoo’s 
parallel BA algorithm [9] using the same graph size and number of partitions. Our experiment 
confirms the conjecture mentioned in Section 2 that due to large set of parameters in their model, the 
power-law property can be very sensitive to those parameters and not very stable. Unfortunately the 
paper did not mention an ideal setup for the parameters, so we have tried several. 



 
Figure 10.  The degree distribution of the graph generated by our algorithm 

We tried combinations of three kinds of parameters: 
1) Faction distribution: the frequency distribution of processes in factions. We tried linear 

distribution, normal distribution, and exponential distribution. 
2) Number of Factions  
3) Inter-faction probability: the probability of establishing an inter-faction edge. 
The parameter sets we tried along with the result α value and symmetric KL-divergence are listed 

in Table 13. The best fit configuration we tried is to set the number of factions as 32, probability of 
inter-faction edges as 0.2, and the frequency distribution of processes in factions as exponential 
distribution. The degree distribution of the generated graph is shown in Figure 11. It has α value -
3.169821 and symmetric KL-divergence 0.162165. In comparison, our algorithm still fits better. 
Furthermore, in their framework the higher-frequency process would receive more messages which 
cause more memory space usage and imbalanced computation load. 

TABLE 13.  THE PARAMETERS WE TRIED FOR YOO’S ALGORITHM AND EVALUATION 

Faction  
distribution 

Numb
er of  

Factio
ns  

Inter-
faction  

probability 
α value 

Symmetri
c KL  

Divergenc
e 

Linear 12 0.2 2.595655 0.862763 
Linear 12 0.4 2.597332 0.851255 
Linear 32 0.2 2.640092 0.543105 
Linear 32 0.4 2.658891 0.509376 
Normal 12 0.2 2.904816 0.744332 
Normal 12 0.4 2.858247 0.740452 
Normal 32 0.2 3.695472 0.329612 
Normal 32 0.4 5.011678 0.426804 
Exponential 12 0.2 3.012600 0.401900 
Exponential 12 0.4 2.993955 0.385739 
Exponential 32 0.2 3.169821 0.162166 
Exponential 32 0.4 3.456464 0.183178 

 

 
Figure 11.  The degree distribution of the graph generated by Yoo’s algorithm 

The parameter setup in our algorithm is very straightforward. Besides the original parameters of 
the BA model, we only have to determine the number of partitions to cache the exact value of initial 



product. Moreover, our algorithm has better load balance because every partition generates the same 
number of vertices and edges 

5.2.2 Testing Scalability of The Parallel BA Model  
To test the scalability and efficiency of our parallel algorithm for the BA model, we experiment on 

how it scales up with the graph size and number of computing nodes.  
In the experiment of scaling up graph size, we fix the number of computing nodes at 16 and scale 

up the size of the graph to be generated to observe variation of execution time. As shown in Figure 12, 
the execution time has linear relationship with the graph size. The maximum graph was generated in 
only 1149 seconds has 1,792,000,000 vertices and 8,960,000,000 edges with data size 177GB. 

In the experiment of scaling up computing nodes, we fix the graph size to generate at 128 million 
vertices and increase computing nodes to test speedup and efficiency of our algorithm. Speedup using 
P processes is SP=T1/TP, where T1 is runtime using single process and TP is runtime using P processes. 
Efficiency using P processes is defined as EP= SP/P, where EP =1 is the ideal efficiency that there is 
no overhead during parallelization. Figure 13 shows the experiment result of runtime, speedup, and 
efficiency when we using 16 computing nodes, the speedup is about 9.6 and efficiency is about 0.6. 
The results show that our algorithm has good scalability and efficiency. 

There is no big difference between runtime of our algorithm and Yoo’s algorithm since in both 
algorithms writing output data into the distributed file system dominates the runtime.  

 
Figure 12.  Experiment for runtime with 16 computing nodes when increasing graph size 

 
(a) Runtime    (b) Speedup    (c) Efficiency 

Figure 13.  Experiment on generating 128 million vertices  

6. CONCLUSION 
We have proposed the MapReduce Graph Mining Framework (MGMF) for graph mining 

algorithms and a parallel social network generation algorithm based on MapReduce.  
MGMF divides the graph mining algorithms into four categories based on what kind of graph 

information is needed when performing algorithms. Our designed framework consists of three 
components, including primitive functions, a MapReduce-based algorithm, and an optimization 
method. We demonstrate that the proposed algorithms are more scalable and efficient than the state-
of-the-art MapReduce-based graph mining package (i.e., PEGASUS). Specifically, we propose a 
comprehensive, end-to-end system design for graph mining in a cloud environment. Our framework 
contains a File Input Format, Primitive Functions, MapReduce-based Algorithm, and Cache with 
Compression methods for optimization. We compile our MGMF as an open source, ready-for-use 
library available at http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/. The data sets used in the 
experiments are also available online. We also demonstrate the usage of MGMF in diverse scenarios. 
Cohen [25] noted that map-reduce-reduce is a common operation for graph mining on MapReduce. 
That says carefully design of chained MapReduce operation could further reduce the overhead 
between iterations, which becomes one of our future work.  



Besides graph mining algorithms, we also proposed an idea of ‘expected accumulated degree’ to 
parallelize the preferential attachment mechanism in BA model. We exploit several novel ideas to 
further reduce the complexity. We can then parallelize the process in MapReduce and create billion-
size networks that satisfy power-law distribution in minutes. We believe some of our proposed ideas 
such as approximating the expected degree values can be applied to other parallelism tasks in social 
network. 
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