
Mining and Generating Large-Scaled Social
Networks via MapReduce

Yi-Chen Lo*1, Hung-Che Lai*2, Cheng-Te Li#3, Shou-De Lin*#4

* Department of Computer Science and Information Engineering,
Graduate Institute of Networking and Multimedia,

National Taiwan University, Taipei 106, Taiwan
{1d00922006, 3d98944005, 4sdlin}@csie.ntu.edu.tw, 2jimmy.lai@oi-sys.com

Abstract
The computational efficiency is usually a concern when dealing with large-scale social network
mining tasks containing billions of entities. Cloud computing is widely regarded as a feasible solution
to this problem. In this work, we present an open source graph mining library called the MapReduce
Graph Mining Framework (MGMF) to be a robust and efficient MapReduce-based graph mining tool.
We start from dividing graph mining algorithms into several categories and design a MapReduce
framework for algorithms in each category. The experimental results show that MGMF is 3 to 20
times more efficient than PEGASUS, a state-of-the-art library for graph mining on MapReduce.
Moreover, it provides broader coverage of a variety of graph mining algorithms. Furthermore, we
designed a model to generate large-scale social networks capturing the power-law degree distribution
property by parallelizing the mechanism of preferential attachment so that it is possible to produce
billion-sized scale-free network in minutes. Our implemented open-source library can be downloaded
from http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/

Keywords: Graph mining, large-scaled social networks, MapReduce.

1. INTRODUCTION
Researchers have spent decades tackling a variety of social network mining tasks [1], such as

generating graphs that satisfy real properties of social networks (e.g., power law distribution [27]),
estimating centralities (e.g., PageRank [2], random walk with restart [3], Betweenness Centrality [4]),
counting triangles, and finding connected components [1]. In recent years, online social network
services such as Facebook and Twitter are becoming increasingly popular and have created huge
amount of social network data, and therefore creates urgent need for upgrading the existing mining
models to handle networks containing billions of vertices or edges. Cloud computing have been
regarded as a plausible solution for large-scale graph mining for its scalability and efficiency. At
present, there are three major cloud computing frameworks for graph mining: MPI-based (e.g., Parallel
BGL [5]), BSP-based (e.g., Pregel [6] and Surfer [7]) and MapReduce-based (e.g., PEGASUS [8])
frameworks. MapReduce [9, 10] is a popular cloud computing framework that provides high
throughput, satisfiable scalability and fault tolerance. Some tools [11,12,13] have been developed
under MapReduce to solve graph mining problems in large-scaled graphs. Among them PEGASUS [8]
is a state-of-the-art open source MapReduce-based library that provides several implementations of
graph mining algorithms. Although PEGASUS has proposed several efficient implementations for
cloud computing, we found that there is still room for improvements in terms of time and space
complexity. For example, in our experiment we found that PEGASUS still takes more than 1200
seconds per iteration to run PageRank on a graph with 2 billion edges and 177 thousand vertices on a
cluster with 8 nodes while given the same conditions our framework finishes it in only one minute.
Besides, it only provides solutions for matrix-vector-multiplication (MVM) based algorithms; hence, it
cannot be used with other important graph mining algorithms, such as the Betweenness/closeness
Centrality and social network generation, which has been included in our design.

In this work, we present an open source graph mining library called MapReduce Graph Mining
Framework (MGMF), which provides scalable and efficient solutions for various graph mining
algorithms. MGMF comprises primitive functions, distributed algorithms and optimization methods for
diverse kinds of algorithms. We can divide the graph mining algorithms into the following four

categories based on how information is collected in a graph: (1) Traverse all, (2) Traverse Partial, (3)
One-Hop, and (4) Multi-Hop. We discuss them in Section 3. We conduct experiments on real-world
networks and synthetic networks at the billion scale of vertices/edges to compare the performance of
the proposed framework with that of PEGASUS. The results show that using the PageRank algorithm,
our framework can run up to 20 times faster than PEGASUS on the Kronecker synthetic dataset, and 3
times faster on the real-world Twitter dataset. We also investigate the effects of file input format on
throughput and efficiency.

Furthermore, we propose an efficient parallel social network generation algorithm in this
framework. The goal is to generate billion-sized large-scale synthetic graphs that fit real-world social
network properties such as short average path length and power-law degree distribution. Among the
social network generation algorithms, the Erdős-Rényi model [22], the Watts–Strogatz model [26],
and the Barabási–Albert model [27] (respectively abbreviated as ER, WS, BA model) are the most
popular models. All of them can fit the property of short average path length. The WS model further
provides high clustering coefficient while the BA model generates graph with power-law degree
distribution. To parallelize the generation algorithms for efficiency and overcome the limit of memory
on single machine, we divide the generation task of the whole graph into generating subgraphs using
multiple processors and machines. The ER and WS model can be easily implemented in parallel
because the generation tasks of vertices are independent of each other. Unfortunately for the case of
BA model, the preferential attachment (abbreviated as PA) mechanism, which generates the edges
based on the degree distribution of all vertices, introduces strong dependency between the generation
processes of vertices. In other words, generating each vertex requires the degree information from all
other vertices spread in all machines, which dramatically increase the transmission load between
processors. In order to parallelize a PA model, we propose a method to calculate the expected
accumulated degree of each node independently, and show that such degree information can be utilized
to perform PA. With an accurate estimation of the degree change over time for each node, it is possible
to break the degree dependency among nodes to allow parallelism. We further decompose the degree-
generation function into three components, and propose constant solutions for each of them. Eventually,
adding a PA edge requires only O(logN) of computation time.

The major contributions of this paper can be summarized as follows:

1) We propose an efficient framework, MGMF, which comprises primitive functions, distributed
algorithms, and optimization methods for various graph mining tasks based on MapReduce. The
framework is scalable to the number of machines. The experimental results show that the runtime is
reduced to less than 1/3 that of the state-of-the-art MapReduce package.

2) We propose a social network generation model to use expected cumulative degree of nodes to
facilitate the parallelism of PA models when the target size of networks is too large to fit into a single
processor’s memory. Such idea, to our knowledge, has not yet been mentioned in the area of social
network generation. We further proposed methods to calculate the ‘expected cumulative degree’
in efficient and accurate approximation.

3) We implemented a high performance open source library for large-scaled graph mining tasks.
Our framework is available by this URL: http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/ .

The remainder of the paper is organized as follows. Section 2 provides some essential background
information. In Section 3, we introduce the proposed MapReduce Graph Mining Framework. In
Section 4, we describe our social network generation model to parallelize preferential attachment. In
Section 5, we describe the experiments conducted to evaluate the proposed graph mining framework
and social network generation model, and analyze the results.

2. BACKGROUNDS
In this section, we introduce the fundamentals of MapReduce, Hadoop, and some file input formats

for graph mining under cloud computing. We review the state-of-the-art graph mining solutions
provided by PEGASUS, which comprises primitive functions, MapReduce-based algorithms, and
block input formats (Mblock). We also introduce the background of BA model and existing parallel
algorithms that generating scale-free network. We list the notations used in the remainder of the paper,
as shown in Table 1.

http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/�

TABLE 1. SYMBOLS
Symbol Definition
G = (V,E)
davg
douti

a graph consists of vertices V and edges E
average degree of all vertex in G
output degree of vertex i

V

vi∈V

|V|

vertex vector consists of value (e.g. PageRank)
for each vertex in G

element of V, which is vector value (e.g. PageRank),
identified by unique vertex id i

number of vertices in G
E
ei,j∈E

|E|

edge set consists of all edges in G
edge, represented by two vertex id (vi,vj)
denote the edge direction from i to j

number of edges in G
M
mi,j
Medge
Madj
Mblock

adjacency matrix, consists of all e ∈ G
element of M, represents edge ei,j and the weight
adjacency matrix represented in edge format
adjacency matrix represented in adjacency list format
adjacency matrix represented in block format

Mapper
Reducer

PM

PR

process run Map(key, value) on each input record
process run Reduce(key, values) on each key
output by Map()

number of maximal concurrent Mapper processes
(i.e. the Mapper Capacity of Hadoop cluster)

number of maximal concurrent Reducer processes
(i.e. the Reducer Capacity of Hadoop cluster)

wblk
(rowblk,
colblk)

(rowelemi,
colelemi)

block width in format Mblock
row and column identifier of a block
under the format of Mblock

row and column identifier of element i
 inside the block under the format of Mblock

2.1 MapReduce, Hadoop, and File Input Format
MapReduce [9, 10] is a distributed computing framework developed by Google. It provides two

basic user definable functions – Map (key, value) and Reduce (key, values) - for key-value based
processing. Each MapReduce stage involves the following steps: (1) Input, (2) Map(), (3) Shuffle &
Sort, (4) Reduce(), and (5) Output. The framework provides several benefits, including fault tolerance,
load balance, and simple APIs; and it has been shown that the throughput is scalable to the number of
machines. Hadoop [14] is a mature implementation of MapReduce that allows programmers to define
the following utilities: Map(), Reduce(), Combiner(), getPartition(), input/output format, and counter.
For more details, readers may refer to [9, 10, 15, 16]. To handle graph data using MapReduce, we have
to save the graph in a file. The efficiency of I/O can vary significantly with different file input formats.
There are two basic file input formats for graphs [16]: the edge input format (Medge) and the adjacent
list input format (Madj). The edge input format (Medge) represents an edge mij in the form (i, j, mij) per
line; and the unit record is an edge. The adjacency list input format (Madj) represents M in the form of
{vj,{m1, m2,…, mn}} where mn is the nth adjacent edge of vj; and the unit record is a vertex.

2.2 PEGASUS: Matrix-Vector Multiplication on MapReduce
The Matrix-Vector Multiplication (MVM) operation is a useful and general mathematical

representation for graph mining. In MVM, each vertex can pass its local information to neighbor
vertices (i.e., vertices that are one hop away) by multiplying the adjacency matrix by a vertex vector.
As shown in the PEGASUS paper [8], many graph mining algorithms can be represented in the form of
MVM, including PageRank and breadth first search.

PEGASUS [8] is an open source library based on Hadoop for large-scale graph mining problems. It
provides three primitive functions for MVM:

V’ = M × V = assign(vi, combineAlli({xj|j=1..n, and xj = combine2(mi,j, vj)})). (1)

1) combine2(mi,j,vj): multiplying mi,j and vj

2) combineAlli(x1,…,xn): summing n multiplication results for vertex i.

3) assign(vi,vnew): updating the previous value of vi with new result vnew.
TABLE 2. MAPREDUCE-BASED ALGORITHM FOR MVM: TWO-STAGE MVM

Stage Two Stage MVM

1st stage 2nd stage

Map Input (a)mi,j∈M
(b)vi∈V

(a) key = j, value = mi,j× vj
(b) key = i, value = vi

Map() If input(a) then yield (c).
If input(b) then yield(d). identity mapper

Map Output/
Reduce Input

(c) key = j, value = mi,j
(d) key = i, value = vi

(c) key = j, value = mi,j× vj
(d) key = i, value = vi

Reduce()

If input(d), then output (f)
for all (c),(d),

apply combine2(mi,j,vj),
and yield(e)

For all (c), apply vnew =
combineAlli(x1,…,xn),
and then apply assign(vi,vnew)

Reduce Output (e) key = j, value = mi,j× vj
(f) key = i, value = vi

(e) key = j, value = vnew

PEGASUS proposes GIM-V BASE algorithm as a MapReduce-based implementation for MVM.
The steps of the algorithm are summarized in Table 2. We call the algorithm Two-Stage MVM because
it must perform MapRedcue twice. In the 1st MapReduce stage, Map() receives input from M and V,
and Reduce() performs combine2(mi,j,vj) for the same vertex j. The output of Reduce() is the result of
intermediate multiplication. In the 2nd MapReduce stage, Map() is used as an identity map (the mapper
simply yields its input as output). In addition, Reduce() performs combineAll() and assign()
independently to update the new vector value. All MVM-based algorithms (e.g., PageRank and random
walk with restart) can be cast in the form of these three primitive functions. Then, PEGASUS applies
the Two-Stage MVM algorithm to perform the MVM operation. PEGASUS also transforms algorithms
of PageRank, random walk with restart, diameter estimation and connected component search into the
form of the three primitive functions, and further investigate the scalability of Two-Stage MVM based
on the implementation of PageRank. Their source codes of PageRank, diameter estimation and
connected component search have been released by PEGASUS.

To improve the performance, PEGASUS uses the block file input format (we call it Mblock), which
divides the matrix M into several small square blocks with a fixed width wblk. Each block is represented
in the form of (rowblk,colblk,{rowelemi,colelemi}) as a line in the input file. Exploiting Mblock can reduce the
number of input lines (the default unit record in Hadoop), shrink the input file (with a properly chosen
wblk), and, reduce the number of records shuffled in MapReduce as a consequence. The results of
experiments show that Mblock is 2 to 5 times faster than Medge on PageRank.

2.3 Barabási–Albert model (BA model)
Social network generation algorithms are designed to satisfy properties held by real world social

networks such as short average path length, high clustering coefficient, and power-law degree
distribution. A network having a property of power-law degree distribution is called a scale-free
network. The ER model [26], the WS model [27], and the BA model [28] are frequently used social
network generation algorithm. ER and WS model can be easily implemented in parallel while it is not
the case for the BA model due to its preferential attachment (PA) mechanism.

The BA model is a model for generating random scale-free network. If the degree distribution, i.e.
probability density function of degree corresponds to the form p(x) = Cxα, the graph is said to satisfy
power-law degree distribution. In the BA model, the α value of degree distribution is proven to be -3.

The BA model adds vertices into the graph serially with the mechanism of PA. A new vertex is
added to the graph one at a time till the graph grows to the target size. The probability of a new
coming vertex forms a link with an existing vertex is proportional to degree of the existing vertex. It
means new vertices prefer to link with high degree vertices. It is an intuitive criterion because in real
world these high degree vertices stand for popular people in a social network or hot websites on the
Internet.

Here is one simple example of how the BA model generates a graph. In Figure 1, the graph starts
with m0=3 fully connected vertices. New vertex 4 is added with m=2 edges. Since the degrees of the
three vertices are the same, probability of selecting vertex1, 2, and 3 to connect the new vertex to are
equally 1/3. Suppose vertex 2 and 3 are chosen to be attached with the new vertex 4.

Figure 1. A example of the BA model generation

Next iteration, a new vertex 5 is added with m = 2 edges. Now the degree of vertex 1, 2, 3, and 4 is
2, 3, 3, and 2, respectively. The total degree is now 10 and the probability of each vertex being chosen
are 2/10, 3/10, 3/10, 2/10 respectively. Vertices 2 and 3 have higher probability to be chosen than
vertex 1 and 4. Here vertex 3 and 4 are chosen to be attached with the new vertex 5 as a result. Since m
edges are added into the graph each iteration, the total degree increases by 2m each iteration. If we
define the iteration t=0 as the initial state, the total degree of iteration t is total(t) = 2mt + 2 0

2
mC where

the notation n
kC stands for number of k-combinations of n elements.

One possible strategy to implement PA utilizes the accumulated degree. The accumulated degree of
the ith vertex is the sum of all degrees of the vertexes that come before it (i.e. the sum of degree from
v1 to vi-1). In the example above, the accumulated degrees of vertex 1, 2, 3, and 4 are 0, 2, 5, and 8
respectively, and the total degree is 10. To select a vertex to link to the new vertex, the model generates
a random real number between 0 and the total degree (10), and establishes a link with the vertex whose
accumulated degree is closest to but less than the random number. For instance, if the number
generated is 2.7, then the newly added vertex will establish a link with vertex 2. If the next number
generated as 7.13, then another edge is attached to vertex 3.

That says, with the accumulated degree of each vertex, we will be able to perform PA using a linear
scan algorithm, without having to know the exact degree of each individual vertex.

2.4 Existing Parallel Algorithms to Generate Scale-free Network
The parallel version of R-MAT graph algorithm [28] in Parallel BGL [5] and the parallel BA

algorithm by Yoo et al. [29] share the same goal of generating scale-free network in parallel. Below
we will introduce these methods and discuss potential issues in their works.

In Parallel BGL graph generators are implemented including ER model, WS model, and R-MAT
graph in MPI. R-MAT algorithm generates configurable scale-free networks. To add an edge into an
R-MAT graph, it recursively divides the adjacency matrix into four areas with user defined
probability a, b, c, d till the area is left 1, i.e. pointing an element in the adjacency matrix, the edge is
added with the corresponding index. This process loops till the target number of edges is satisfied1

Yoo et al.

. To
achieve this goal, it first assigns each vertex to one of the processes, and then in each process they add
an edge if one of the vertex pair is assigned to the process, otherwise, they discard the edge. This
design keeps the edges from being duplicated in multiple processes but leaves a problem of redundant
iterations which generating discarded edges. As the number of processes increases, it would be more
difficult for edges to hit corresponding processes, i.e. the overhead of redundant iterations would be
more significant. Therefore their implementation is not well scalable.

[29] designed two parallel graph generation algorithms to generate scale-free networks,
the parallel BA model and parallel Kronecker model [23]. The parallel Kronecker algorithm has
higher degree of parallelism than the parallel BA algorithm, but the structure of generated graph is
heavily dependent on the initial seed graph, thus it is more difficult to configure desired properties. In
the parallel BA algorithm, each vertex is assigned to a process and each process is assigned to one or
more factions. A faction contains multiple processes and a process may share multiple factions with
any other process. This algorithm is composed of two phases. In phase 1, each vertex in a process
determines which remote processes to connect to, and send requests to the remote processes. The
more factions a remote process shares with local process, the more edges the local process would link
with it. Then in phase 2, each process receives the request of establishing edges from remote
processes and determines which local vertices would be connected based on PA. The number of

1 Note that, the distributed implementation of R-MAT in Parallel BGL is not described in the corresponding
paper. We obtained knowledge about their parallelization schema by tracing their open source code.

factions and which processes belong to which factions are left as degrees of freedom for users to
determine. Since the edges added in phase 1 and 2 are all intra-faction, there is another parameter to
establish some inter-faction edges with remote processes.

 The main concern for this paper is that there are complicated parameters to tune in this system,
including setting the number of factions, the variable size of each faction, the evolved factions for each
processor, incorporating inter-faction edges. However in their paper they did not provide a suitable
configuration that can produce graphs with power-law distribution. As will be shown in the experiment
section, we re-implemented their parallel BA algorithm and tried several configurations, but found that
power-law degree distribution property cannot be attained in most of the configurations.

3. MGMF: MAPREDUCE GRAPH MINING FRAMEWORK
To provide an efficient cloud computing solution for graph mining on MapReduce, we consider the

essential components of the successful cloud computing solutions. Generally, the framework of a cloud
computing solution is comprised of three types of components:

1) Primitive Function: basic functions, such as APIs for programmers to implement different
algorithms.

2) Distributed Algorithm: algorithms with a distributed mechanism to execute the primitive
functions.

3) Optimization Method: some methods used to speed up the system.
TABLE 3. MAPREDUCE GRAPH MINING FRAMEWORK

Type of
Algorithm

Primitive
function

MapReduce-
based algorithm

Optimization method

Traverse All combine2()

One-Stage MVM
Fast MVM Table

combineAll()
assign()

Traverse partial combine2() with
prunning

One-Hop None 1 or 2
MapReduce job Table

Multi-Hop compute()
combine() Vertex-Iterator Table

TABLE 4. CATEGORIZATION OF GRAPH MINING ALGORITHMS

Type of
algorithm Example Algorithms

Traverse All Pagerank [2], Random Walk with Restart [3]

Traverse partial
Diameter Estimation [17], Find Connect Component [1], Eigen
Vectors, Belief Propagation [18], Bellman-Ford (Single Source
Shortest Sath) [19], Minimum Spanning Tree [19]

One-Hop In/Out Degree Distribution [20], Input format translation: Medge, Madj,
Mblock, Counting |V|,|E|, and graph density [20]

Multi-Hop Counting triangle [1], Computing Clustering Coefficient [21],
Closeness Centrality [20], Betweenness centrality [4]

For example, the PEGASUS framework uses combine2(), combineAll(), and assign() as the
primitive functions, Two-Stage MVM as the distributed algorithm, and Madj as the optimization method.
Several other systems adopt this framework, e.g. MapReduce [9], Pregel[6], and Surfer[7].

The proposed framework, MGMF, first divides graph mining algorithms into four categories. Then,
by using the three functions defined above, we propose solutions for algorithms in each category. The
proposed MGMF framework is shown in Table 3 and Table 4 lists the graph mining algorithms for
each category. We describe these four categories in the following.

1) Traverse All: This category covers the algorithms that must traverse all edges in each iteration.
Algorithms in this category can be handled by iterative matrix-vector multiplication. The computation

is repeated until some convergence criterion is met. The time complexity of each algorithm is
O(n(|V|+|E|)), where n is the number of iterations. Note that the number of iterations is usually much
smaller than |V| or |E|.

2) Traverse Partial: Only a subset of edges in the graph need to be traversed in each iteration. The
algorithms in this category can also be solved by iterative matrix-vector multiplication. However, as
only some edges need to be traversed, a pruning method can be applied to simplify the computation.
The computation cost is less than that of the Traverse All category. The design of the pruning
algorithm will determine the computation cost.

3) One-Hop: Algorithms in this category only require information from nodes that one hop away
from each vertex; and one or two iterations are sufficient for computation (e.g. computing degree
distribution). The time complexity is O (|V|+|E|).

4) Multi-Hop: Algorithms of this category require information from nodes that are several hops
away for each vertex. The time complexity is much larger than the order of polynomial to |V| or |E|.
For example, the complexity of Betweenness Centrality is equal to O(|V||E|)

Most Traverse All and Traverse Partial algorithms can be implemented by multiplying the vertex
vector using the adjacency matrix (MVM); thus, they can be handled by PEGASUS. To improve the
efficiency of PEGASUS's MVM, we propose three modifications: 1) using combine2() with the
pruning technique to improve the primitive functions; 2) employing the Fast MVM framework to
improve the MapReduce-based algorithm; and 3) exploiting the table structure proposed by Chen et al.
[7] to speed up the optimization process. Normally, One-Hop and Multi-Hop algorithms are not
implemented through MVM. Even the modified MVM framework yields little improvement on them.
We propose a simple and straightforward implementation on MapReduce for One-Hop tasks. For
Multi-Hop tasks, we propose using compute() and combine() as primitive functions and Vertex-Iterator
as the MapReduce-based algorithm. We also use the table optimization technique to improve the
overall performance. In the following subsections, we describe our modifications of MVM, our
framework for Traverse All and Traverse Partial, the framework for One-Hop, and the framework for
Multi-Hop.

3.1 MapReduce-based algorithms for MVM: One-Stage MVM and Fast MVM
As mentioned earlier, PEGASUS [8] proposes the Two-Stage MVM algorithm, which need to

perform MapReduce twice; combine2(), combineAll(), and assign() are the primitive functions. Lin et
al. [16] describes an implementation of BFS and PageRank on MapReduce. Inspiring from their idea,
we propose a generalized MapReduce-based MVM algorithm called One-Stage MVM, as shown in
Table 5. As its name indicates, our One-Stage MVM contains only one stage within MapReduce to
perform an MVM operation, but it could incur some overheads. The input format of One-Stage MVM
is limited to a customized data structure that combines the adjacent list with the vector value of each
vertex ({vj,{m1,m2,…,mn}}). In Map() part, combine2() is performed while in Reduce() part,
combineAll() and assign() are performed.

TABLE 5. ONE-STAGE MVM ALGORITHMS ON MAPREDUCE

Stage One Stage MVM
Map Input (a) data structure {vj,{m1,m2,…,mn}}

Map()
for each vj, mi,j pair,

apply combine2(mi,j,vj) and then yield (c),
for(a), yield(d).

Map Output/
Reduce Input

(c) key = j, value = mi,j× vj
(d) key = j, value = {vj,{m1,m2,…,mn}}

Reduce()

For all (c), apply vnew = combineAlli(x1,…,xn),
update
structure by {assign(vi,vnew), {m1,m2,…,mn}}, and
yield (e)

Reduce Output (e) key = j, value = {vj,{m1,m2,…,mn}}

TABLE 6. FAST MVM ALGORITHMS ON MAPREDUCE

Fast MVM
Input: Matrix M = adj list{(j, {i, mi,j})}, Vector V = {(i, vi)}
Output: Result Vector V= {i, vnew}

Map(Key k, Value v);
 if (k, v) is of type V then

Output (k, (“self”, v)) //(k: i, v: vi)
 else if (k, v) is of type M then
 vj = ReadValue(k) //(k: j)
 for each (i, mi,j) ∈ v do //(v:{(i, mi,j)})

Output(k, (“others”, combine2(mi,j,vj)));
Reduce(Key , Value);
 others_v ← []; //initialize
 self_v ← []; //initialize
 for each v ∈ v[1..m] do
 (tag, v′) ← v;
 if tag == “self” then

self_v ← v′
 else if tag == “others” then

Add v to others_v;
Output(k, assign(self_v, combineAllk(others_v)));

TABLE 7. TIME AND SPACE COMPLEXITY OF TWO-STAGE MVM, ONE-STAGE MVM, FAST MVM
ALGORITHM

Stage Time Complexity
Two-Stage MVM One-Stage MVM Fast MVM

Map Input 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM

Map() 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM +
O(ReadValue) (|V|/PM)

Map Output/
Reduce Input 2(|E|+|V|)/PR (|E|+2|V|)/PR (|E|+|V|)/PR

Reduce() 2davg(|V|/PR) 2davg(|V|/PR) davg(|V|/PR)
Reduce Output (|E|+2|V|)/PR (|E|+|V|)/PR |V|/PR

Stage Space Complexity
Two-Stage MVM One-Stage MVM Fast MVM

Map Input 2(|E|+|V|)/PM (|E|+|V|)/PM (|E|+|V|)/PM

Map() O(1) davg davg
Map Output/
Reduce Input 2(|E|+|V|)/PR (|E|+2|V|)/PR (|E|+|V|)/PR

Reduce() davg davg davg
Reduce Output (|E|+2|V|)/PR (|E|+|V|)/PR |V|/PR

The time complexity and space complexity of Two-Stage MVM and One-Stage MVM are shown in
Table 7. A MapReduce stage involves 5 steps: Input, Map(), Shuffle & Sort, Reduce(), and Output.
Here, we consider the data size and the number of operations performed in each step. We also compare
the complexity of different MapReduce-based algorithms. The Steps involved in Input, Shuffle & Sort,
and Output perform I/O via the memory/disk/network, so the computation cost is proportional to the
size of the required storage. As the steps of Map() and Reduce() execute user defined algorithms, the
input records are processed one by one. That means the minimal space requirement is the largest
recorded input. We denote it as the space complexity of Map() and Reduce(). The time complexity is
estimated by multiplying the time complexity of an operation per record by the total number of records

processed. The number of records can be distributed in parallel to different mappers PM or reducers PR,
so the complexity can be reduced accordingly.

The complexity analysis shows that, in each stage, the computation cost of Two-Stage MVM is
either greater than or equal to that of One-Stage MVM. For Input and Shuffle & Sort, the computational
cost of Two-Stage MVM in terms of time complexity is about twice than that of One-Stage MVM. Thus,
we expect the overall performance of One-Stage MVM is at most twice as good as that of the Two-
Stage MVM. The disadvantage of One-Stage MVM is that the output to yields an adjacent list and a
vector value in each iteration, which could put some overheads for I/O.

We propose an efficient Fast MVM algorithm based on One-Stage MVM. Specifically, we use a
function ReadValue(k) to read the vector value of vertex k from external source when needed. This
approach eliminates the need to combine the adjacency list and vector value as an input record, at the
cost of some extra effort in executing the ReadValue() function. The pseudo code of Fast MVM and its
complexity are shown in Table 6. We implement ReadValue(k) by reading the file of vectors on HDFS
(Hadoop Distributed File System [14]) via a file stream. We also modify the partition function
getPartition(key, value, numOfReducer) in Hadoop to ensure that the order of vectors is consistent for
each output of MapReduce. The partition function is called bin partitioner. It divides all vertex ids into
several bins of equal size (size=|V|/PR), after which each bin is processed by a specific Reducer.

The results in Table 7 show that Fast MVM outperforms or is equivalent to One-Stage MVM in
different stage; therefore, we expect Fast MVM to yield a better performance than One-Stage MVM.
The experiments described later will follow the analysis in Table 7.

3.2 MVM algorithms: Traverse All and Traverse Partial
We divide the MVM algorithms into Traverse All and Traverse Partial categories according to

whether or all edges need to be traversed during multiplication. For algorithms of Traverse All
category, to achieve the best performance, we apply the Fast MVM algorithm instead of Two-Stage
algorithm for implementation. The primitive function of PageRank implementation is the same as
PEGASUS, and only the MapReduce-based algorithm is refined in our case. For Traverse Partial, we
propose to modify combine2() with pruning technique. This is possible since only updated vector
values from the previous MVM iteration are required for multiplication. The combine2() function can
then be simplified to combine2() with pruning'' as shown in (2). Here, vj,prev denotes the vector value
in the previous iteration and vj denotes the vector value in the current iteration.

 Combine2(mi,j, vj) = mi,j × vj if vj,prev≠vj (2)

Diameter Estimation, Identification of Connected Components and Breadth First Search (BFS)
belong to this Traverse Partial category. We take the Breadth First Search (BFS) algorithm as an
example, which can be applied to solve the single source shortest problem. Initially, the distance value
of each vertex is set as infinity, except the source vertex (set as zero). For each MVM iteration, every
vertex calculates its distance value by increasing one unit from its neighbors. The three primitive
functions are defined in the following:

1) combine2(mi,j,vj): mi,j × (vj +1) if vj,prev≠vj

2) combineAlli(x1,…,xn): MIN(x1,…,xn)

3) assign(vi,vnew): MIN(vi,vnew)

The pruning method is applied to improve the efficiency. The MVM operation is repeated until all
vector values converge.

3.3 One-Hop Algorithms
The One-Hop algorithms in Table 5 need only local information (i.e., one-hop) for each vertex.

Since there is no need to perform iterative computation for One-Hop algorithms, they can be executed
in one or two stages of MapReduce. We show the implementation of Out Degree Distribution and
Input Format Transformation from Medge to Madj in Table 8.

TABLE 8. EXAMPLES OF ONE-HOP

Stage Out Degree Distribution Format Transformation
from Medge to Madj

Map Input (a){(i,mi,j)}∈Madj (a) mi,j ∈Medge
Map() yield (b). yield (b).
Map Output/
Reduce Input (b) key = douti, value = 1 (b) key = j, value = mi,j

Reduce() For all (b), calculate
d = Σk1, and yield(c)

For all (b), concatenate
all mi,j, and yield(c)

Reduce Output (c) key = i, (out degree)
value = d (frequency)

(c) key = j,
value = {(j,{(i,mi,j)})}

3.4 Multi-Hop Algorithms
Graph mining algorithms that require global information during computation (e.g. computing

Betweenness Centrality) are belonged to this Multi-Hop category. Since for each iteration, a large
amount of computation is needed to go through all vertices in the graph, the time complexity of these
algorithms is usually very high. We will show it is inefficient to exploit MVM for Multi-Hop
algorithms in next paragraph. We propose to use the Vertex-Iterator Algorithm for Multi-Hop
algorithms. In Map() part, LoadGraph() loads the whole graph into the memory and performs
Compute(G, i, vi) on each vertex i. In Reduce() part, the partial values are gathered by combine().

We take and implement Betweenness Centrality (BC) as an example. Brandes [4] proposed an
efficient algorithm for calculating BC, as shown in equations (3), (4), (5). The operation involves
performing a bread-first-search on each vertex (source) and calculating the partial centrality scores for
other vertices (targets).

∑ ∈
=

)(susv vPu s
σσ (3)

∑ ∈ •• +⋅=
)(: sswsvs))(1()()(

wPvw s
wv δσσδ (4)

)()(st vvC
VtvsB ∑ ∈≠≠

= δ (5)

Where σsv is the number of the shortest path from vertex s to vertex v; Ps(v) is the set of predecessor
vertexes of v in the BFS tree starting from vertex s; δs • (v) is the partial BC score contributed from
source vertex s to vertex v; CB(v) is the BC degree of vertex v. The time complexity for this algorithm
is O(|V||E|). For a large-scale graph, |V| and |E| could be in the order of billions. Thus, under MVM, the
volume of intermediate information shuffled between machines would be O(|V||E|), which could be
intractable.

To apply the Vertex-Iterator algorithm to generate BC, we implement equations (3), (4) and (5)
using Compute() and combineAll() in MapReduce. First, the Compute() function executes (3) and (4)
for each vertex in Map(). Second, the combineAll() function performs (5) in Reduce(). Through this
approach, the volume of intermediate information shuffled between machines would be |E|PM + |V|PM
= (|E|+|V|) PM, which is more tractable than O(|V||E|). Finally, the time complexity is also reduced
from O(|V||E|) to O(|V||E|/PM + |V| PM/PR).

4. PARALLEL PREFERENTIAL ATTACHMENT MODEL
In this section we introduce our method to parallelize the BA model. We use the same notations as

in Section 2.3 to describe parameters in the BA model: m0 is the number of initial fully connected
vertices, and m is the number of edges emerged from a vertex when it first joins the network. We
define ti as the i-th iteration and vi as the single vertex joining the network in ti.. The total degree of the
network at ti is denoted as total(ti) = 2mi+2 0

2
mC

To parallelize a BA model task of generating N vertices with P processes, our goal is to assign N/P
vertices to each of the processors in sequence. Figure 2 shows an example of generating a graph with
9 vertices divided into 3 partitions for 3 processors. Process 1, 2, and 3 are responsible of generating
the first three vertices (v1 to v3), the next three vertices (v4 to v6), and the last three (v7 to v9),
respectively, while our goal is to enable the parallelism of these three processors so they can create

edges independently. vxy represents vertex x, vx, at time y, ty. Note that the newly added vertex in each
iteration is marked on the right-most position of each row. The original BA model relies on the
concept of PA, which requires the later vertex (e.g. vertex 9) to obtain the degree information of all
other vertices (e.g. vertex 1~8) before determining which vertices it should attach to (i.e. the higher
degree the better chance). In general, the PA property conflicts with the parallelism framework. For
instance, to perform PA for v6 when it first joins the network, we need to know the degree of vertices
v1 to v5. Unfortunately such information is not available because those vertices themselves are being
processed in parallel. Even if some vertices finish the generation process earlier, their degree
information can hardly be passed to the other processors due to high communication cost between
processors during parallelism.

4.1 The Parallel BA Approach Overview
In this section we propose a method that allows independency among link generation of each

vertex. Our goal is to use only O(m*N/P) of memory and adding an edge with O(logN)of time

Figure 2. Generating a graph of 9 vertices divided into 3 partitions in the BA model,

the colored vertices are new vertices

Figure 3. Explanation of graphic notation in Figure 2.

As mentioned in Section 2.3, PA depends on knowing the accumulated degree of each vertex is
known. Unfortunately, similar to the degree information, the accumulated degree of vertices cannot
be obtained when PA is conducted in parallel.

Assuming the accumulated degree is unknown, we propose to generate the “expected accumulated
degree” for each vertex in each processor. The expected accumulated degree for a vertex vk at
iteration tj is denoted as ECumDeg(tj, vk).

In Section 4.2 we will prove that
EcumDeg(tj, vk) = total(tj)*∏=

j

ki
(1+m/total(ti)) (6)

With this equation we can calculate the expected accumulated degree of any vertex at any iteration
in any graph partition, independent of degree information from other partitions.

In the example shown in Figure 2, to introduce v9 into the network, we can naively apply (6) to
calculate accumulated degree of v1 to v8 at iteration t9, and then for each new edge, we have to
generate a random degree and run linear scan to find the vertex to attach it to. Unfortunately, to
compute EcumDeg(t9, v1), the term (1+m/total(ti)) would have to be multiplied for 8 times (each with
different ti), and similarly, 7 times for EcumDeg(t9, v2), and so on. That says, in order to add a link, we

need to calculate the estimated accumulated degree for all N vertices requires the time complexity
O(N2) and space complexity O(N). It becomes computationally intractable when N becomes larger

Trying to solve the efficiency problem when identifying the vertex for PA, we found that it is not
necessary to generate the EcumDeg for every vertex. Instead of applying linear scan to find the vertex
to attach a new node to, we use binary search. Take the example in Figure 2, suppose the vertex with
accumulated degree closest to but smaller than a random number R is v2, we can first generate
EcumDeg(t9, v4) and check whether R is larger or less than it. If R < EcumDeg(t9, v4), we can than
generate EcumDeg(t9, v2) for comparison, and the process continues until the target vertex is found.
The target vertex can be found in O(logN) steps. By applying binary search, we can reduce the time
complexity of PA from O(N2) to O(NlogN). The space complexity is O(1) since we compute
EcumDeg(tj, vk) on the fly and do not store it.

Next, we further reduce the complexity of PA by categorizing the multiplications into three types:
initial product, internal product, and external product, and cache the pre-processed values. Figure 2
presents a diagram showing how each vertex’s degree changes when new vertices are being added. As
will be shown in section 3.C, the internal and external products can be generated in constant time
using cache technique. In section 3.D, we further propose an approximating algorithm that reduces the
initial product to O(1). Eventually, we can significantly reduce the complexity from O(N2) to O(logN).
Below we provide detail description and formulae about the proposed methods.

4.2 Expected Value of Accumulated Degree
We propose to estimate the accumulated degree of nodes for PA because it can be generated

without knowing the attachment outcome from other vertices.
ExpDeg(tj,vk) = ExpDeg(tk,vk) ∏ −

=

1j

ki
(1+m/total(ti)) (7)

(7) is the recursive formula to express the expected degree for a specific vertex with id vk (i.e. the
k-th joined vertex) in a specific iteration tj. The total degree of at j-th iteration in the BA model is
total(tj)= 2mj+2 0

2
mC , since the total degree is 0

22 mC at the initial state (t = 0) and every new vertex
comes with degree of m. A vertex’s degree gain on average m multiplies the proportion of the vertex’s
to the current total degree. The expected degree of a vertex k at iteration j is notated as ExpDeg(tj, vk),
and we can construct the recursive equation as:

()
()∏ −

=

−−

−

−
−

+=

+=

+=

1

11

1

1
1

)(/1),(

)(/1),(

)(
),(*

),(

),(

j

ki ikk

jkj

j

kj
kj

kj

ttotalmvtExpDeg

ttotalmvtExpDeg
ttotal

vtExpDegm
vtExpDeg

vtExpDeg

where ExpDeg(tk, vk) = m0 – 1 if k = 0, or m otherwise.
As we have mentioned previously, PA can be achieved by the accumulated degree of vertices as

well, and the expected accumulated degree of vertex vk at iteration tj is defined as
ECumDeg(tj, vk) = ∑=

k

i 1
ExpDeg(tj, vk) (8)

The reason we prefer using accumulated degree than the original degree of vertices is that then we
do not really need to generate the expected degree of each individual vertex. We can use the equation
we prove in Lemma1 to generate the accumulated degree.
Lemma1. ECumDeg(tj,vk) = total(tk)*∏ −

=

1j

ki
(1+m/total(ti))

Proof.
From (7), (8),

()
()∏
∏∑

∑

−

=

−

==

=

+=

+=

=

1

1

1

1

)(/1*)(

)(/1),(

),(

),(

j

ki ik

j

ki i
k

i ik

k

i ij

kj

ttotalmttotal

ttotalmvtExpDeg

vtExpDeg

vtECumDeg

Note that Lemma 1 tells us that the ECumDeg values can be generated using only the total vertex
information in each iteration. In the extreme case, to generate ECumDeg(tj, v1), we will need to
execute multiplication j-1 times. That says, when the total number of vertices N grows, the complexity
of generating the accumulated degree for the 1st vertex approaches O(N). From here on we define a
query as the computation of the accumulated degree of a node. Therefore, for an iteration i, we need
to query i-1 times (from v1 to vi-1) in order to perform one PA attachment, while performing binary
search allows us to reduce the complexity from O(N) to O(logN). That is, overall it takes O(NlogN)
time to create a link through PA in our parallel framework. In the next section we will further discuss
how to reduce the complexity to O(logN).

4.3 Decomposing Expected Accumulated Degree
To avoid heavy computation from calculating the expected accumulated degree, we exploited two

ideas. The first idea lies in reusing the result of computation. For example, we may query the
accumulated degree of the same vertex in different iteration, ECumDeg(tj, vk) and ECumDeg(tj+d, vk).
Since both requires the value of ∏=

j

i 1
(1+m/total(ti)), we can cache such intermediate values to avoid

re-calculating every term in every query.
The second idea is to exploit the parallelism to calculate the product of the term 1+m/total(ti). Here

we use Figure 2 as an example. Assuming the vertex v9 is just joining the network and we need to
establish its link. We need to generate ECumDeg(t9,v1), which is represented as v19 in Figure 2.

We decompose ∏=

k

i 1
(1+m/total(ti)) into three parts:

1) Initial product: the part of product in the partition where the queried vertex is generated. In this
example, ∏=

2

1i
(1+m/total(ti)).

2) Internal product: the part of product of terms within the currently generated partition. In this
example, ∏=

8

6i
(1+m/total(ti)).

3) External product: the part of product from other partitions which is multiplied across the whole
partition. In this example, ∏=

5

3i
(1+m/total(ti)).

In Figure 2 we marked the three products in the example of querying expected acculumuted degree
at t9.

Internal product can be easily calculated and cached while going through generation iterations in
one partition. Note that the internal product terms to be multiplied in each process is identical (e.g. for
process 3, ECumDeg(t9,v1)/ECumDeg(t6,v1) = ECumDeg(t9, v2) / ECumDeg(t6, v2)=…= ECumDeg(t9, v7)
/ ECumDeg(t6, v7)= , therefore we can calculate it once and reuse it using
cache. Eveutally it takes only O(1) to generate this number.

The external product represents the multiplications associated with vertices of other partitions. For
example, for v19, the multiplication of v14 to v16 is considered as an external product. In general, for
partitions that join later, the external product represents more terms. Take Figure 4 for example, for
partition 5, its external product equals to E2*E3*E4 and for partition 4 it is E3*E4. Here we have
realized that there are total of P2/2 such Ek blocks. If we can pre-calculate in parallel and store them in
the cache of each partition, the external product values can be generated in constant time as well.
Note for each query, every block except the top one (i.e. initial produce) and bottom one (internal
block) are considered as part of the external block.

The time complexity to cache external product is O(P2) while space complexity is O(P). With this
cache, we can obtain external product in O(1) while being queried.

Unlike internal and external products, initial product for every vertex being queried in the
partition has different product value. Neither caching initial product for every vertex, nor calculating

initial product for every query is tractable. Therefore, we choose to apply approximation to initial
products which will be shown in the next section.

Our approximation generates the initial products in O(1) time. In a nutshell, by using caching and
approximation techniques, we are allowed to reduce the time complexity of each query to O(1).

Figure 4. Computing external product in process of partition 5

4.4 Approximation and Partial Caching of Initial Product
For initial product, every vertex in the partition results in different product value. The first vertex

of each partition receives N/P products, and N/P-1 for the next vertex, finally the value for the last
vertex of each partition is one. If we cache initial product of all vertices in the same partition, the
computation time is only linear of the partition size (number of vertices of the whole graph divides by
number of partitions). However, to cache the initial product, we have to store the initial product of all
vertices in each partition, which takes O(N), which is not very realistic as we assume each partition
has only O(N/P) caching space.

Therefore we propose a fast approximation for the value of initial product. The product of terms of
(1+m/total(ti)) starts from tj to tj+d, respectively, representing the start and end iteration of the initial
product.

())//(1)(/1 0
2 mCtdttotalm m

i
dj

ji i ++≈+∏ +

=

The following is the process we obtain such approximation:
() ()

)//(1/

)11(
2/2
2/2

)10(
)12/(2*...*6/7*4/5*2/3

2/)12(*...*6/7*4/5*2/3

)9(
2

12*...*
2

12
)/(2

1)/(2*...*
)/(2

1)/(2

)22/(1)(/1

0

0

0

0

0

0

2

2

2

2

2

2

mCjdtt

t
t

tt
tt

t
t

t
t

mCdj
mCdj

mCj
mCj

Cmimttotalm

m
startend

start

end

startstart

endend

end

end

start

start

m

m

m

m

dj

ji
mdj

ji i

++==

≈

−
+

=

++
=

++
+++

+
++

=

++=+ ∏∏ +

=

+

=

π
π

In (9) we apply the following substitution to make it simple

mCdjt

mCjt
m

end

m
start

/

/
0

0

2

2

++=

+=

In (10) we multiply the term below which is equal to 1

)12/(2*...*6/7*4/5*2/3
)12/(2*...*6/7*4/5*2/3

−
−

startstart

startstart

tt
tt

Then in (11) we apply the following equation of Wallis product [30] for π.
This equation is true if j is infinite, or the error is known to be O(1/j) from Stirling’s approximation.
[31]

29
8

7
8

7
6

5
6

5
4

3
4

3
2

1
2)

12
2

12
2(

1

π
==

+
⋅

−∏=

j

i i
i

i
i

The following are detailed induction for Wallis product substitution in (11).

)12(2/2

)12()
12

2
12

2(/1

2
)12(*

2
)12(...*

6
7

6
5

4
5

4
3

2
3

2
1

2
)12(*...*

6
7

4
5

2
3

1

end

end
t

k

end

end

end

end

end

end

t

t
k

k
k

k

t
t

t
t

t
t

end

π≈

+
+

⋅
−

=

+−
=

+

∏ =

Similarly,

)13(2/2
)12(

2*...*
6
7

4
5

2
3

start
start

start t
t

t π≈
−

Finally we obtained the approximation.

())//(1)(/1 0
2 mCtdttotalm m

i
dj

ji i ++≈+∏ +

=

To further discuss the error from this approximation, by Stirling’s approximation, result of (12)
becomes

endtdjO 2)))/(1(1/1)(/2(++π
and (13) becomes

starttjO 2))/1(1/1)(/2(+π
So we consider the error in (11)

()
()() 2/12)/(11/

)1)/(/(1/

1
/)(

)/(11
/11

2))/(1(1)(/2(
2))/1(1)(/2(

jdjdOtt

djjdOtt

dj
jdjdjO

t
t

dj
jO

t
t

tdjO
tjO

startend

startend

start

end

start

end

start

end

+++=

+++=

++
+++

=

++

+
=

++

+

π
π

In this approximation we obtained an error term of (1+O(d/(j2+jd)))1/2. After the second partition, d
≤ j sustains since maximal value of d is N/P, the size of one partition and from the second partition, j

is larger than the size of one partition. So the error term can be bounded as (1+O(1/j))1/2 or
(1+O(P/N))1/2 for partitions after the second partition.

However, this approximation does not work well in the beginning partitions. So we calculate and
cache the exact initial product value for beginning partitions. We apply approximation only to the
later partitions. With this approximation, partitions that we have to cache the initial product value
reduce from all partitions to only the beginning partitions. We leave the number of partitions to cache
as a parameter in the system. As a fact, in our experiment the approximation is almost precise enough
to cache only the first partition so that the power-law degree distribution is reserved.
Since we can calculate accumulated degree by composing initial product, internal product, and
external product, performing PA for each new coming vertex can be parallelized. We implement our
algorithm in MapReduce.

4.5 MapReduce Algorithm
Table 9 shows the symbols and functions we use in our algorithm. Table 10 shows the pseudo code

of our algorithm and table 3 presents the complexity analysis. We design the algorithm into one
MapReduce job. In both of Map and Reduce phase, we use a single input number as the process id.
Note that in our example in Figure 2, we didn’t describe the details to handle initial vertices in the BA
model for simplicity, here we will include them.

 In Map phase, each processor calculates the external product belonging to its partition and send
the result as a key-value pair to each process. The key is target process id, and the value contains
source process id and the partial external product.

In Reduce phase, each processor generates vertices with id it is responsible for, performing PA by
calculating expected accumulated degree to build edges. Since in the first partition (pid=0) there are
m0 initial vertices, we handle it as special cases in line 4, 13, 15-18. At the beginning of Reduce phase,
in line 1, 2 it receives partial external products from all other processors and calculate external
products in line 5-8. Then in line 9-13 initial product is cached according to C, the parameter of
number of partitions set to cache. In line 19-28, for each iteration t, one new vertex is joined and
attaches edges with m existing vertices. Note that we use the iteration number to assign id to a vertex
because only one vertex is added in every iteration. In line 20 the internal product is accumulated
with the progress of iteration. In line 21-25, for each edge to be added, a random number R is
generated to perform PA. In line 23-25, binary search is conducted to find which vertex in the known
partition should be attached. In line 26 we handle the case of choosing initial vertices with equal
probability.

In the binarySearch function, from and to are the candidate vertices with minimal and maximal
vertex id. Line 1 shows the condition of continuing searching when there are at least two candidates.
Line 5-7 handles the case when internal product overlaps with initial product. We set initial product
to 1 and remove not used part in the latest internal product. In line 8-9, the queried vertex is in a
partition whose initial products are cached. In line 10-13 it handles the normal case that we assign
latest internal product and approximate the initial products with the formula in Section 3.D. In line 14
we calculate ECumDeg. In line 15-18 we compare ECumDeg with the target accumulated degree and
decide the interval to search for next loop. Finally we take from as the return value which presents the
vertex id chosen to be attached with the new generated id.

4.6 Complexity Analysis
In Table 11 the complexity is presented in the aspect of one processor (a mapper or a reducer). In

Map phase, the input size is O(1) since for a mapper it reads in a single number as the process id. The
time and space complexity in Map is the number of vertices in a partition, O(N/P). The Map output
size and Reduce input size is O(P) partial external product to send to or to receive from every other
partition.

In Reduce phase, in line 5-8, it spends O(P2) time to calculate external products and needs O(P)
space to cache them. In line 9-13 it spends O(C*(N/P)) time and space to calculate and cache the
initial products for first C partitions.

Note that in our analysis in Section 3.D, the error can be bounded (1+O(P/N))1/2 if we set C=1. In
line 19-28, it computes O(m*N/P) edges, and thus using space of O(m*N/P) to store the output edges.
For each edge, it spends time of O(P) to determine which partition the target vertex falls in and spend

time of O(log(N/P)) to perform binary search in one interval partition. As to the Reduce output size,
each process output m edges for each of the O(N/P) vertices.

TABLE 9. SYMBOL AND FUNCTION
Symbol Definition

m
m0
C

N
P

partSize
pid

partialExt

partialExt_vec
internal_vec
external_vec

initCache
external
internal
initial

R

inPart
from

to
t_end

the number of edges to be added for each iteration
the number of vertices in initial state

the number of partitions to cache exact initial
product

the number of vertices to be generated
the number of processes (the number of graph

partitions)
N/P, the number of vertices in one graph partition

the partition id
the partial external product from single partition

to compute external product
vector of partialExt

vector of internal product
vector of external product

vector of exact initial product cache
external product
internal product
initial product

random() * total(t-1), accumulated degree of the
vertex to be linked with the new vertex

the partition where the queried vertex locates in
the lower bound of search interval
the upper bound of search interval

the last iteration in the queried partition
random()

sqrt(t)
total(t)
local(t)

real(t)

random generate a number within [0, 1]
square root of value t

2mt+2C(m0,2), total degree of the graph in time t
(t-1) mod partSize + 1, the serial number of vertex

t in the partition. 1 ≤ local(t) ≤ partSize
t + m0 – 1, the real vertex id of vertex t after take

initial vertices into consider

TABLE 10. THE PARALLEL BA ALGORITHM

The Parallel BA Algorithm
Map Input: single number represents pid
 Output: (key, value)=(p, [q, partialExt])
Reduce Input: (key, value)=(p, [q, partialExt])

Output: output graph in edges

Map
1 pid ← input value
2 partialExt ← 1.0
3 for t = pid*partSize+1 to (pid+1)*partSize
4 partialExt ← partialExt * (1+ m/total(t-1))
5 for p = 0 to P-1
6 output(p, [pid, partialExt]);

Reduce
1 For each values pair [q, partialExt] gathered by key p
2 partialExt_vec[q] ←partialExt
3 pid ← p
4 if(pid = 0) output initial edges // initial vertices
5 for i = pid to 0 // calculate external product
6 external[i] ← 1.0

7 for j = pid to i+1
8 external_vec[i] ← external_vec[i] * partialExt_vec[j] ;
9 for p = 0 to C // caching initial product
10 initCache[(p+1)*partSize] = 1.0
11 for t = (p+1)*partSize -1 to p*partSize +1
12 initCache[t] = initCache[t+1] *(1+ m/total(t))
13 if(p = 0) initCache[0] ← initCache[1] * (1 + m / total(0))
14
15 if(pid = 0)
16 internal_vec[local(1)] ← 1 + m / total(0)
17 else
18 internal_vec[local(1)] ← 1.0
19 for t = pid*partSize+1 to (pid+1)*partSize // generate vertices
20 internal_vec[local(t)] ← internal_vec[local(t-1)] * (1 + m/total(t-1))

//update internal product
21 for i = 0 to m-1
22 R = random() * total(t-1) //Get random R accumulated degree
23 from ← 1
24 to ← t-1
25 v ← binarySearch(R, from, to, external_vec, internal_vec, initialCache, t)
26 if(v=0) v ← randomly assign a value from 0 to m-1
27 else v ← real(v)
28 output([real(t), v]);

binarySearch(R, from, to, external_vec[P], internal_vec[partSize], initialCache[partSize*C], t)
1 while(to – from ≥ 1)
2 mid ← (from+to)/2
3 inPart ← mid mod partSize
4 external ←external_vec[inPart]
5 if(inPart = pid)
6 internal ← internal_vec[local(t)]/internal_vec[local(mid)];
7 initial ← 1.0;
8 else if(inPart < C)
9 initial ← initialCache[mid] // assign cached initial product
10 else
11 internal ← internal_vec[local(t)]
12 t_end ← (inPart+1) * partSize
13 initial ← sqrt(1+ (t_end – mid)/(t+C(m0, 2)/m))
14 ECumDeg ← total(mid)*initial*external*internal
15 if(ECumDeg ≥ R)
16 from ← mid
17 else
18 to ← mid - 1
19 end while
20 return from

TABLE 11. TIME AND SPACE COMPLEXITY

Stage Time Complexity Space complexity
Map Input O(1) O(1)
Map() O(N/P) O(N/P)

Stage Time Complexity Space complexity
Map Output/
Reduce Input O(P) O(P)

Reduce() O((N/P)*(m*log(N)+C) + P2) O((N/P) *(C+m) + P)
Reduce Output O(m*N/P) O(m*N/P)

5. EXPERIMENTS
 In this section, we present our experiments in two parts. In Section 5.1, we evaluate the efficiency
and scalability of our MapReduce Graph Mining Framework on the four algorithm categories. In
Section 5.2, we evaluate our parallelized preferential attachment model on the property of power-law
degree distribution and also the efficiency and scalability.

5.1 Evaluating MapReduce Graph Mining Framework
We conduct a series of experiments to answer the following questions:

1) Traverse All. Which of the following algorithms can achieve the best performance given the
same conditions: Two-Stage MVM, One-Stage MVM or Fast MVM? Which one would yield the best
performance if we further exploit the proposed optimization method (i.e., table or combiner)

2) Traverse Partial. How much improvement can the pruning method achieve?

3) One-Hop. Are One-Hop algorithms scalable to the number of available machines?

4) Multi-Hop. How much improvement does the Vertex-Iterator algorithm yield in terms of
efficiency?

We implement one algorithm for each question. Besides, we use speedup and time efficiency
criteria to evaluate the scalability of the algorithms. Both criteria are widely used to measure the
performance of parallel systems. Speedup Sp is defined as Sp = T1/TP, where T1 is the running time
using only one process and TP is the runtime using P processes. The efficiency EP is defined as EP =
SP/P.

TABLE 12. ORDER AND SIZE OF NETWORKS

Dataset Nodes Edges Description
Twitter1 75,792,429 1,468,365,182 person-person in 2009
Erdős-Rényi2 177,147 1,977,149,596 synthetic
Kronecker3 177,147 1,977,149,596 synthetic
Wikipedia4 68,869,555 406,914,840 doc-doc in 2010/01
DBLP5 1,380,123 2,194,624 person-doc in 2010/03

Table 12 lists the statistics of the datasets used in our experiments, including two real-world and

two synthetic networks. For the synthetic networks, we generate graphs using two random graph
models: Erdős-Rényi [22] and Kronecker [23]. The Erdős-Rényi model is a very simple graph
generation process producing random graphs. With carefully-designed of the parameter (i.e., the link
probability p), we generate graphs following a certain real-world property (i.e., the existence of a giant
component). On the other hand, the Kronecker graph is a sophisticated one. It has been proven that the
graph obeys many real-world network properties, such as a power-law distribution and the small-world
property. For real-world networks, we use Twitter [24] and Wikipedia, two of the most popular web
and social network services. Each network, except Wikipedia, contains over 1 billion edges. We
evaluate the performance on a cluster system with eight computing nodes, each node is equipped with
two Intel E5550 2.67GHz CPUs, 32G DDR3-1333 RAM, 1Gb Ethernet network and 1TB hard disk. In
addition, we use Hadoop 0.20.2 with Mapper capacity = 8 and Reducer capacity = 3 per node. All
runtimes are averaged over 5 runs. The input format of Madj with Gzip binary compression is exploited
for all of our algorithms and the compared approaches. It is because the experiment results indicate that
Madj with Gzip outperforms than other setups, which are combination of Medge and Mblock (discussed in
the succeeding section).

5.1.1 Evaluating Traverse All Algorithms: Exemplifying by PageRank
We implement PageRank on Two-Stage MVM, One-Stage MVM and Fast MVM. All algorithms

are executed on the four datasets. The average runtime per iteration of PageRank is shown in Figure 5.
We can observe that: (1) Both One-Stage MVM and Fast MVM significantly outperform Two-Stage
MVM (they are roughly twice as fast). Compared to Two-Stage MVM, the Fast MVM reduces the
runtime to 51% on real-world networks and 40-45% on synthetic networks. One-Stage MVM reduces
the runtime only by 48-69% on real-world networks and by 64-76% on synthetic networks. Their
variation is quite large. (2) Generally, for low density dataset (i.e., the average degree is low), such as
Wikipedia, One-Stage MVM performs slightly better than Fast MVM. For high-density graphs, Fast
MVM yields a better performance. The reason is that Fast MVM has to do external access (HDFS, in
our implementation) to fetch the vector values, but One-Stage MVM performs internal access (from
HDFS, refer to [9] for the details), which has less overheads. Thus, the overhead is more for Fast
MVM in sparse graphs since the ratio of access and processing (which is equal to the inverse of the
graph's density) is larger. Figure 5 also shows that, for networks whose density is less than 5% such as
Wikipedia, One-Stage MVM is a more suitable choice. (3) By integrating the proposed Fast MVM
with the Table method (a buffer in the mapper to cache the intermediate data) proposed by Chen et al.
[7], the performance becomes even better. Compared to Two-Stage MVM, the runtime is reduced to
about 1/4 on real-world networks and 1/20 on synthetic networks. Similarly, the performance
improves on dense networks. (4) The Table method outperforms Combiner in terms of runtime on
both One-Stage MVM and Fast MVM. We believe this is because the Table method simplifies the
output before the sorting step, and the Combiner simplifies the output after the sorting step. Note that
sorting tasks in MapReduce procedures spend undeniable amount of time. Interestingly, the
experiment results show that using both Combiner and Table do not achieve the best performance. We
believe this is because Table is a cache mechanism inside the Mapper with fewer costs, whereas
Combiner is a process outside the Mapper.

We examine the scalability of the proposed framework by exploiting Fast MVM and the Table
method on PageRank. The runtime, speedup, and efficiency on the Kronecker network are shown in
Figure 6. The results demonstrate that on a cluster machine containing up to eight nodes. When the
computation of a job is simple enough, the runtime would be dominated by overheads of MapReduce.
That is the reason why the performance for more than 5 nodes does not improve significantly in
Figure 6 and Figure 8. Nevertheless, our implementation is able to finish the computation of
PageRank of the Kronecker network with 2 billion edges in 45 seconds.

5.1.2 Evaluating Traverse Partial Algorithms: Exemplifying by Breadth First Search
We implement Breadth First Search described in Section 3.B with Fast MVM and run on it on the

Twitter dataset. In addition, we implement the primitive function combine2() with and without
pruning. From the results in Figure 7, we can observe that the BFS takes 15 iterations to converge.
However, by applying pruning, the run time can be further reduced to roughly 40%.

5.1.3 Evaluating One-Hop Algorithms: Exemplifying by Calculating the Out-degree Distribution
We implement the Out-degree Distribution described in in Table 8 on the Kronecker dataset. The

results using different numbers of computing nodes are shown in Figure 8. The reason for low
efficiency when using more computing nodes is similar to the case we discussed in Section 5.1.1.

5.1.4 Evaluating Multi-Hop Algorithms: Exemplifying by Calculating the Betweenness Centrality
We realize Brandes' Betweenness Centrality (BC) algorithm as the example of the Multi-Hop

category in the proposed framework. We implement the Mapper program in C++ and use Hadoop
Streaming to run MapReduce. The input file of each Mapper is copied to each machine. The scalability
is shown in Figure 9. Our BC implementation algorithm has good linear scalability. Since the
complexity of the BC algorithm is O(|V||E|), it is computationally intractable to run it on a network
containing billions of entities. Therefore, we perform the experiment on the DBLP dataset, which

1Twitter: available at http://an.kaist.ac.kr/traces/WWW2010.html
2Erdős-Rényi: available at http://www.cs.cmu.edu/~ukang/HADI/
3Kronecker: available at http://www.cs.cmu.edu/~ukang/HADI/
4Wikipedia: available at http://mslab.csie.ntu.edu.tw/~noahsark/
5DBLP: available at http://mslab.csie.ntu.edu.tw/~noahsark/

comprises 1.3 million vertices and 2.1 million edges. It still takes 6 hours to finish the experiment on a
cluster system with eight computing nodes.

Figure 5. The efficiency of PageRank on Two-Stage MVM, One-Stage MVM and

Fast MVM algorithms as well as optimization methods

(a) Runtime (b) Speedup (c) Efficiency

Figure 6. Experiments for Traverse All: Implementation of PageRank by exploiting
Fast MVM and Table method on Kronecker Network

Figure 7. Experimental result for Traverse Partial: time efficiency of primitive functions with and without

pruning

(a) Runtime (b) Speedup (c) Efficiency

Figure 8. Experiments for One-Hop: Implementation of Out Degree Distribution on Kronecker Network

(a) Runtime (b) Speedup (c) Efficiency

Figure 9. Experiments for Multi-Hop: Calculating Betweenness Centrality by Vertex-Iterator on DBLP
Network

5.2 Evaluating Parallelized Preferentail Attachment Model
The goal of this experiment is to examine whether our model satisfies the power-law distribution.

We evaluate the scalability and efficiency on our model. Our experiment runs on a cluster composed
of 16 machines of total storage 4.7 TB and each machine has 8 processors of Intel(R) Xeon(R) CPU
X5550 @ 2.67GHzs and 32 GB of memory. Each computing vertex executes 8 map/reduce tasks for 8
partitions and each task using 2GB of memory. In the following experiments, we set the number of
initial vertices, m0 = 3, the number of edges to add for each iteration, m = 5, and the number of
partition to cache for initial product as 1.

5.2.1 Property of Power-Law Degree Distribution
We check the power law property of the generated graph with 32 million vertices which is

separated into 128 partitions.
We use the maximum likelihood estimation to fit the curve of degree distribution of the generated

graph, where degree distribution is expected to correspond the form of p(x) = Cxα with α being close
to -3. As to test the closeness of fit, we choose symmetric KL-divergence, which indicates better fit
with lower value. In Figure 6, the curve fit is observed corresponding to the power-law distribution
form of p(x) = Cxα with α value -3.072330 which is close to -3 with symmetric KL-divergence
0.096542. We generated 10 graphs by our algorithm and the mean and variance of α are -3.072382
and 2.5867*10-7 and the mean and variance of symmetric KL-divergence are 0.095940 and
1.2997*10-8. This results shows that graph generated by our BA model algorithm consistently reserves
the property of power-law degree distribution in the BA model.

We also evaluate the power-law degree distribution property of graphs generated with Yoo’s
parallel BA algorithm [9] using the same graph size and number of partitions. Our experiment
confirms the conjecture mentioned in Section 2 that due to large set of parameters in their model, the
power-law property can be very sensitive to those parameters and not very stable. Unfortunately the
paper did not mention an ideal setup for the parameters, so we have tried several.

Figure 10. The degree distribution of the graph generated by our algorithm

We tried combinations of three kinds of parameters:
1) Faction distribution: the frequency distribution of processes in factions. We tried linear

distribution, normal distribution, and exponential distribution.
2) Number of Factions
3) Inter-faction probability: the probability of establishing an inter-faction edge.
The parameter sets we tried along with the result α value and symmetric KL-divergence are listed

in Table 13. The best fit configuration we tried is to set the number of factions as 32, probability of
inter-faction edges as 0.2, and the frequency distribution of processes in factions as exponential
distribution. The degree distribution of the generated graph is shown in Figure 11. It has α value -
3.169821 and symmetric KL-divergence 0.162165. In comparison, our algorithm still fits better.
Furthermore, in their framework the higher-frequency process would receive more messages which
cause more memory space usage and imbalanced computation load.

TABLE 13. THE PARAMETERS WE TRIED FOR YOO’S ALGORITHM AND EVALUATION

Faction
distribution

Numb
er of

Factio
ns

Inter-
faction

probability
α value

Symmetri
c KL

Divergenc
e

Linear 12 0.2 2.595655 0.862763
Linear 12 0.4 2.597332 0.851255
Linear 32 0.2 2.640092 0.543105
Linear 32 0.4 2.658891 0.509376
Normal 12 0.2 2.904816 0.744332
Normal 12 0.4 2.858247 0.740452
Normal 32 0.2 3.695472 0.329612
Normal 32 0.4 5.011678 0.426804
Exponential 12 0.2 3.012600 0.401900
Exponential 12 0.4 2.993955 0.385739
Exponential 32 0.2 3.169821 0.162166
Exponential 32 0.4 3.456464 0.183178

Figure 11. The degree distribution of the graph generated by Yoo’s algorithm

The parameter setup in our algorithm is very straightforward. Besides the original parameters of
the BA model, we only have to determine the number of partitions to cache the exact value of initial

product. Moreover, our algorithm has better load balance because every partition generates the same
number of vertices and edges

5.2.2 Testing Scalability of The Parallel BA Model
To test the scalability and efficiency of our parallel algorithm for the BA model, we experiment on

how it scales up with the graph size and number of computing nodes.
In the experiment of scaling up graph size, we fix the number of computing nodes at 16 and scale

up the size of the graph to be generated to observe variation of execution time. As shown in Figure 12,
the execution time has linear relationship with the graph size. The maximum graph was generated in
only 1149 seconds has 1,792,000,000 vertices and 8,960,000,000 edges with data size 177GB.

In the experiment of scaling up computing nodes, we fix the graph size to generate at 128 million
vertices and increase computing nodes to test speedup and efficiency of our algorithm. Speedup using
P processes is SP=T1/TP, where T1 is runtime using single process and TP is runtime using P processes.
Efficiency using P processes is defined as EP= SP/P, where EP =1 is the ideal efficiency that there is
no overhead during parallelization. Figure 13 shows the experiment result of runtime, speedup, and
efficiency when we using 16 computing nodes, the speedup is about 9.6 and efficiency is about 0.6.
The results show that our algorithm has good scalability and efficiency.

There is no big difference between runtime of our algorithm and Yoo’s algorithm since in both
algorithms writing output data into the distributed file system dominates the runtime.

Figure 12. Experiment for runtime with 16 computing nodes when increasing graph size

(a) Runtime (b) Speedup (c) Efficiency

Figure 13. Experiment on generating 128 million vertices

6. CONCLUSION
We have proposed the MapReduce Graph Mining Framework (MGMF) for graph mining

algorithms and a parallel social network generation algorithm based on MapReduce.
MGMF divides the graph mining algorithms into four categories based on what kind of graph

information is needed when performing algorithms. Our designed framework consists of three
components, including primitive functions, a MapReduce-based algorithm, and an optimization
method. We demonstrate that the proposed algorithms are more scalable and efficient than the state-
of-the-art MapReduce-based graph mining package (i.e., PEGASUS). Specifically, we propose a
comprehensive, end-to-end system design for graph mining in a cloud environment. Our framework
contains a File Input Format, Primitive Functions, MapReduce-based Algorithm, and Cache with
Compression methods for optimization. We compile our MGMF as an open source, ready-for-use
library available at http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/. The data sets used in the
experiments are also available online. We also demonstrate the usage of MGMF in diverse scenarios.
Cohen [25] noted that map-reduce-reduce is a common operation for graph mining on MapReduce.
That says carefully design of chained MapReduce operation could further reduce the overhead
between iterations, which becomes one of our future work.

Besides graph mining algorithms, we also proposed an idea of ‘expected accumulated degree’ to
parallelize the preferential attachment mechanism in BA model. We exploit several novel ideas to
further reduce the complexity. We can then parallelize the process in MapReduce and create billion-
size networks that satisfy power-law distribution in minutes. We believe some of our proposed ideas
such as approximating the expected degree values can be applied to other parallelism tasks in social
network.

REFERENCES
[1] M. E. J. Newman, The structure and function of complex networks, SIAM Review 45 (2) (2003) 167-

256.
[2] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: Bringing order to the web.,

Technical Report 1999-66, Stanford InfoLab (November 1999).
[3] H. Tong, C. Faloutsos, J.-Y. Pan, Fast random walk with restart and its applications, in: ICDM '06:

Proceedings of the Sixth International Conference on Data Mining, IEEE Computer Society,
Washington, DC, USA, 2006, pp. 613-622.

[4] U. Brandes, A faster algorithm for betweenness centrality, Journal ofMathematical Sociology 25 (2)
(2001) 163-177.

[5] D. Gregor, A. Lumsdaine, The Parallel BGL: A generic library for distributedgraph computations,
Parallel Object-Oriented Scientific Computing (POOSC).

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel: A
system for large-scale graph processing, in: SIGMOD'10: Proceedings of the 36th SIGMOD
international conference on Management of data, ACM, New York, NY, USA, 2010.

[7] R. Chen, X. Weng, B. He, M. Yang, C. B., L. X., On the Efficiency and Programmability of Large
Graph Processing in the Cloud, Microsoft Research TechReport.

[8] U. Kang, C. E. Tsourakakis, C. Faloutsos, Pegasus: A peta-scale graph mining system, Data Mining,
IEEE International Conference on 0 (2009) 229-238.

[9] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, in: OSDI, 2004, pp.
137-150.

[10] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Commun. ACM 51 (1)
(2008) 107-113.

[11] J. Hebert, Hadoop examples - pagerank, available at http://code.google.com/p/canopy-clustering/
(2007).

[12] B. Cai, W. Xue, X-rime: Hadoop based large scale social network analysis, available at
http://xrime.sourceforge.net/ (2009).

[13] L. Akoglu, P. Chau, C. Faloutsos, U. Kang, K. Maruhashi, M. McGlohon, P. Stancioli, C. E.
Tsourakakis, Available at http://www.cs.cmu.edu/~pegasus/

[14] D. Cutting, Apache hadoop, available at http://hadoop.apache.org/ (2007).
[15] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: SOSP '03: Proceedings of the

nineteenth ACM symposium on Operating systems principles, ACM, New York, NY, USA, 2003, pp.
29-43.

[16] J. Lin, C. Dyer, Data-intensive text processing with MapReduce, in: Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Tutorial Abstracts, Association for Computational
Linguistics, 2009, pp. 1-2.

[17] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, J. Leskovec., Radius plots for mining tera-byte
scale graphs: Algorithms, patterns, and observations, SIAM International Conference on Data Mining.

[18] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan
Kaufmann, 1988.

[19] T. Cormen, Introduction to algorithms, The MIT press, 2001.
[20] J. Scott, Social Network Analysis: A Handbook, second. Edition, Sage Publications, 2000.
[21] T. Schank, Algorithmic aspects of triangle-based network analysis., Ph. d. thesis, University Karlsruhe

(February 2007).
[22] P.Erdős, A. Rényi, On the evolution of random graphs, Publication of the Mathematical Institute of the

Hungarian Academy of Science (1960) 17-61.

[23] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Realistic, mathematically tractable graph
generation and evolution, using kronecker multiplication, Knowledge Discovery in Databases: PKDD
2005 (2005) 133-145.

[24] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social network or a news media?, in:
Proceedings of the 19th international conference on World wide web, ACM, 2010, pp. 591-600.

[25] J. Cohen, Graph twiddling in a mapreduce world., Computing in Science and Engineering 11 (4) (2009)
29-41.

[26] D. Watts and S. Strogatz (1998): Collective dynamics of small-world networks. Nature, 363:202–204.
[27] R. Albert; A.-L. Barabási (2002). “Statistical mechanics of complex networks”. Reviews of Modern

Physics 74: 47–97.
[28] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: Arecursive model for graph mining. In SDM, 2004.
[29] Andy Yoo, Keith W. Henderson. Parallel Generation of Massive Scale-Free Graphs. CoRR, 2010.
[30] Sondow, Jonathan and Weisstein, Eric W. "Wallis Formula." From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/WallisFormula.html
[31] Weisstein, Eric W. "Stirling's Approximation." From MathWorld--A Wolfram Web Resource.

http://mathwor-ld.wolfram.com/StirlingsApproximation.html

	1. Introduction
	1) We propose an efficient framework, MGMF, which comprises primitive functions, distributed algorithms, and optimization methods for various graph mining tasks based on MapReduce. The framework is scalable to the number of machines. The experimental results show that the runtime is reduced to less than 1/3 that of the state-of-the-art MapReduce package.
	2) We propose a social network generation model to use expected cumulative degree of nodes to facilitate the parallelism of PA models when the target size of networks is too large to fit into a single processor’s memory. Such idea, to our knowledge, has not yet been mentioned in the area of social network generation. We further proposed methods to calculate the ‘expected cumulative degree’ in efficient and accurate approximation.
	3) We implemented a high performance open source library for large-scaled graph mining tasks. Our framework is available by this URL: http://mslab.csie.ntu.edu.tw/~noahsark/MGMF/ .

	2. Backgrounds
	2.1 MapReduce, Hadoop, and File Input Format
	2.2 PEGASUS: Matrix-Vector Multiplication on MapReduce
	1) combine2(mi,j,vj): multiplying mi,j and vj
	2) combineAlli(x1,…,xn): summing n multiplication results for vertex i.
	3) assign(vi,vnew): updating the previous value of vi with new result vnew.

	2.3 Barabási–Albert model (BA model)
	2.4 Existing Parallel Algorithms to Generate Scale-free Network

	3. MGMF: MapReduce Graph Mining Framework
	1) Primitive Function: basic functions, such as APIs for programmers to implement different algorithms.
	2) Distributed Algorithm: algorithms with a distributed mechanism to execute the primitive functions.
	3) Optimization Method: some methods used to speed up the system.
	1) Traverse All: This category covers the algorithms that must traverse all edges in each iteration. Algorithms in this category can be handled by iterative matrix-vector multiplication. The computation is repeated until some convergence criterion is met. The time complexity of each algorithm is O(n(|V|+|E|)), where n is the number of iterations. Note that the number of iterations is usually much smaller than |V| or |E|.
	2) Traverse Partial: Only a subset of edges in the graph need to be traversed in each iteration. The algorithms in this category can also be solved by iterative matrix-vector multiplication. However, as only some edges need to be traversed, a pruning method can be applied to simplify the computation. The computation cost is less than that of the Traverse All category. The design of the pruning algorithm will determine the computation cost.
	3) One-Hop: Algorithms in this category only require information from nodes that one hop away from each vertex; and one or two iterations are sufficient for computation (e.g. computing degree distribution). The time complexity is O (|V|+|E|).
	4) Multi-Hop: Algorithms of this category require information from nodes that are several hops away for each vertex. The time complexity is much larger than the order of polynomial to |V| or |E|. For example, the complexity of Betweenness Centrality is equal to O(|V||E|)
	3.1 MapReduce-based algorithms for MVM: One-Stage MVM and Fast MVM
	3.2 MVM algorithms: Traverse All and Traverse Partial
	3.3 One-Hop Algorithms
	3.4 Multi-Hop Algorithms

	4. Parallel Preferential Attachment Model
	4.1 The Parallel BA Approach Overview
	4.2 Expected Value of Accumulated Degree
	4.3 Decomposing Expected Accumulated Degree
	4.4 Approximation and Partial Caching of Initial Product
	4.5 MapReduce Algorithm
	4.6 Complexity Analysis

	5. Experiments
	 In this section, we present our experiments in two parts. In Section 5.1, we evaluate the efficiency and scalability of our MapReduce Graph Mining Framework on the four algorithm categories. In Section 5.2, we evaluate our parallelized preferential attachment model on the property of power-law degree distribution and also the efficiency and scalability.
	5.1 Evaluating MapReduce Graph Mining Framework
	1) Traverse All. Which of the following algorithms can achieve the best performance given the same conditions: Two-Stage MVM, One-Stage MVM or Fast MVM? Which one would yield the best performance if we further exploit the proposed optimization method (i.e., table or combiner)
	2) Traverse Partial. How much improvement can the pruning method achieve?
	3) One-Hop. Are One-Hop algorithms scalable to the number of available machines?
	4) Multi-Hop. How much improvement does the Vertex-Iterator algorithm yield in terms of efficiency?
	5.1.1 Evaluating Traverse All Algorithms: Exemplifying by PageRank
	5.1.2 Evaluating Traverse Partial Algorithms: Exemplifying by Breadth First Search
	5.1.3 Evaluating One-Hop Algorithms: Exemplifying by Calculating the Out-degree Distribution
	5.1.4 Evaluating Multi-Hop Algorithms: Exemplifying by Calculating the Betweenness Centrality

	5.2 Evaluating Parallelized Preferentail Attachment Model
	5.2.1 Property of Power-Law Degree Distribution
	5.2.2 Testing Scalability of The Parallel BA Model

	6. Conclusion
	References

