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a b s t r a c t 

This paper proposes a privacy-preserving distributed recommendation framework, Secure 

Distributed Collaborative Filtering (SDCF), to preserve the privacy of value, model and ex- 

istence altogether. That says, not only the ratings from the users to the items, but also 

the existence of the ratings as well as the learned recommendation model are kept pri- 

vate in our framework. Our solution relies on a distributed client-server architecture and 

a two-stage Randomized Response algorithm, along with an implementation on the pop- 

ular recommendation model, Matrix Factorization (MF). We further prove SDCF to meet 

the guarantee of Differential Privacy so that clients are allowed to specify arbitrary privacy 

levels. Experiments conducted on numerical rating prediction and one-class rating action 

prediction exhibit that SDCF does not sacrifice too much accuracy for privacy. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Collaborative filtering (CF) is one of the most popular models for recommending items [27] . Its basic idea is to make rec-

ommendation based on the similarity between users or between items. CF-based models are trained by making use of user

feedbacks on items. CF models can be divided into two categories of feedback: numerical and one-class. Numerical feedback

consists of numeric values (e.g., ratings between 1 and 5). One-class feedback is a kind of record/action for a specific ac-

tion (e.g., purchase an item or not). As the training process of CF-based models relies on large-scale data, service providers

should collect a huge collection of user feedback records. However, if the servers are untrusted or contain vulnerabilities,

the collection of user feedbacks may lead to privacy liability due to data leakage. Even if the servers are curious-but-honest,

which means the services are functioning normally, feedback data leakage can still make private attributes and even real

identity of users be inferred by hackers [7,10] . There are three categories of data leakage in CF-based recommenders. The

first is Value Leakage : exposure of the values of feedbacks, such as the rating scores. The second is Existence Leakage : ex-

posure of the existence of feedbacks, such as whether a user rates an item. For example, if the attacker knows that user u

rates a book i , they can be quite certain that u has read i . The third is Model Leakage : exposure of the trained model. Models

are important since given the CF model, attackers can estimate the ratings from any user to any item. 
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Fig. 1. Secured distributed architecture using MF as an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we propose a client-server framework, termed Secure Distributed Collaborative Filtering (SDCF), to preserve

user privacy in CF-based recommendation systems. We elaborate the idea of SDCF in Fig. 1 that uses Matrix Factorization

(MF) as an example. First, we separate the model into two disjoint parts: personal elements and public elements. Personal

elements are user-specific while public elements are those common to every user, such as the item information. We propose

to store only public elements at server side, and users keep both personal ratings and personal elements at client side. Such

setting is able to avoid value and model leakage. Apparently not all CF-based models meet such requirement. As will be

described later, MF satisfies such condition. The next challenge is how to train a model on aforementioned structure since

both parts of elements need to be updated frequently in the training process. Our idea is that during the training, the policy

that users download public elements is based on which users are beneficial in locally updating personal elements. Then

users send required information to the server so that public elements can be updated. This distributed mechanism naturally

prevents both value and model leakages, because users no longer send their ratings to the server. In addition with only

public elements, the server cannot perform recommendation solely. To further prevent the existence leakage, we propose a

two-stage Randomized Response algorithm in SDCF. A strength of SDCF is the guarantee of Differential Privacy (DP) [10,11] ,

which is a kind of privacy quantification used in various domains. Equipped With DP, SDCF allows users to adjust their

privacy levels based on their own privacy budgets. 

Different strategies are leveraged in past studies on privacy-preserving recommender systems. For example, Canny pro-

posed a peer-to-peer network that allows personalized recommendation to be generated by other members without dis-

closing individual user data [8] . McSherry et al. first applied differential privacy (DP) to CF [22] and is followed by sev-

eral studies [1,5,6,13,15,19–21,29,33] . Besides, Vallet et al. [30] proposed a decentralized framework of matrix factorization

without the need of retaining data at server side. Among these studies, some require servers to trust the training stages

[5,20–22,30] , and some consider the scenario of completely untrusted servers as our work. [3,8,15,23,29,33] . Nevertheless,

most of them rely on particular conditions or resources. For instance, Shen et al. required category information of items

[29] , Xin et al.’s work relied on a small group of users to be public [33] , and the approaches proposed by Nikolaenko et al.

[23] Canny [8] need laborious computation for cryptography algorithms. Boutet et al. [6] and Afsharinejad et al. [1] consid-

ered to use obfuscated user profiles for k-nearest neighbors, which preserve existence privacy; Li et al. [19] improved the

performance of collaborative filtering by sharing sanitized data between users. However, in these three studies, the privacy

of trained models is not completely protected. The work of Hua et al. is probably the most similar to our solution [15] . It

assumes that nothing other than the ratings is considered, and preserves the privacy of value and model by a distributed

gradient-transmission architecture. Nevertheless, it requires third-party resources, i.e., additional servers between clients and

the server, as its noise sampling method is vulnerable to the difference attack [15] . The concern of third-party resources is

two-fold. First, the third-party may also be compromised. Second, the employment of additional third-party resources can

increase the cost in both system building and maintenance. Table 1 summarizes the features of different solutions to the

aforementioned studies. 

More recently, some different ideas are proposed to perform privacy-preservation recommendation. An encryption-based

method [16] is developed to encrypt user-item rating data while maintaining the predictability of ratings in a centralized

setting. CryptoRec [31] casts privacy preserving into feature learning problem by modeling user-item interactions in an item-

only latent feature space so that the recommendation can use only pre-trained item information to avoid the leakage of user

privacy. Li et al. [18] recommend users to the propagated information without considering user profile and posting content.

However, in their settings, the rating profile (i.e., diffusion participation records) can be still potentially inferred. Guo et al.

[14] impose differential privacy to social graphs by adding noising links while maintaining the effectiveness of link predic-

tion. Chen et al. [9] develop a privacy-preserving ridge regression (PPRR) over high-dimensional data in distributed context.

However, it is not for recommender systems. Qi et al. [24] deploy a time-aware distributed quality service recommendation

by developing a privacy-preserving Locality-Sensitive Hashing (LSH) technique. Afsharinejad and Hurley [2] analyze how to

create differentially private data sketches of user profiles to protect k-nearest neighbor collaborative from being inferred.

Although such various settings and recent approaches are proposed, they can only achieve some part of our goal: simulta-
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Table 1 

Comparison between Different Solutions under Untrusted Server Scenario. 

without Additional without Existence Model Value 

Information 3rd Party Protected Protected Protected 

[8] 
√ √ √ √ 

[23] 
√ √ √ √ 

[3] 
√ √ √ 

[33] 
√ √ √ 

[15] 
√ √ √ 

[29] 
√ √ √ 

[1] 
√ √ √ √ 

[6] 
√ √ √ √ 

[19] 
√ √ √ 

SDCF 
√ √ √ √ √ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

neously preserving value, model, and existence privacy, and holding the differential privacy in a distributed recommendation

environment. 

To the best of our knowledge, SDCF is the first to preserve value, model , and existence privacy issues and possesses the

guarantee of differential privacy. More importantly, all feedback data are kept only at client side, i.e., it will not have any

chance to be released or transmitted to the untrusted server or any other malicious client. 

We choose Matrix Factorization (MF) [17] to realize SDCF, and develop Secure Distributed Matrix Factorization (SDMF), for

the following reasons. First, MF is natural to divide the model into personal (user) U and public (item) V parts (matrices).

Second, if we use gradient descent-based optimization method to train MF models, the updating of personal elements for

different users can be done independently and locally at client side. This implies that no personal information will be

transmitted to other clients or to the server. Third, the updating of public elements can be done by aggregating the gradients

contributed from clients. It implies that only gradients of the model are transmitted from clients to the server. The attackers

cannot recover original ratings nor personal elements even the gradients are intercepted during data transmission. In this

paper, we adopt MF with Stochastic Gradient Langevin Dynamics (SGLD) [20] , instead of the popular Stochastic Gradient

Descent method. As will be discussed later, SGLD enjoys the advantage of preventing user latent vectors (i.e., personal

elements) from being deciphered. The experiments show that our model can yield reasonably good recommendation results

while guaranteeing decent level of privacy. In Section 5 , we will further discuss how to use SDCF in Factorization Machine -

based model [25] . 

2. Preliminaries 

2.1. Differential privacy (DP) 

Differential privacy provides a mathematical definition to quantify the privacy preserved by an algorithm [10,11] . Here

we explain the meaning of DP in recommender systems. If users aim to preserve the value privacy , a privacy-preserving

algorithm is supposed to lower down the server’s confidence in identifying the actual value of each rating. 

Definition 1 (differential privacy) . A randomized algorithm A with domain R 

n is ε-differentially private, if and only if

any two datasets X, X ′ ∈ R 

n contain at most one different record (i.e., the hamming distance d(X, X ′ ) = 1 ) for possible

anonymized output O ⊆ Range ( A ): 

P r[ A (X ) ∈ O ] 

P r[ A (X 

′ ) ∈ O ] 
≤ e ε, 

where the probability Pr is taken over the randomness of algorithm A , and ε is positive. Lower values of ε indicates higher

degree of privacy guaranteed. 

With Definition 1, we can measure the difference between the outcomes with and without the presence of an element

determined by ε. However, there is a trade-off between user privacy and the utility of an algorithm. Our model is designed

to be a good privacy-preserving algorithm that can maintain the performance while increasing the degree of privacy. 

2.2. Matrix factorization (MF) 

Let U and V be a user set and an item set, and each r ij indicates an observed score that a user i rated an item j in the

rating matrix R ∈ R 

|U|×|V| . MF aims to make UV 

T ≈ R , where U ∈ R 

|U|×K and V ∈ R 

|V|×K for a given dimension number K . The

objective is to find U and V such that the loss function L ( U, V ) can be minimized: 

min 

U,V 
L (U, V ) = min 

U,V 

∑ 

i, j∈ R 
(r i j − u i v T j ) 

2 + λ(|| U|| 2 2 + || V || 2 2 ) , (1) 
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where λ is a given regularization factor to prevent overfitting. Stochastic Gradient Descent (SGD) is a popular technique to

minimize the objective function of MF. It aims to iteratively learn u i and v j according to the following updating rules: 

ˆ ∇ u i L (u i , v j ) = e i j v j + λu i , 

ˆ ∇ v j L (u i , v j ) = e i j u i + λv j , 

u i ← u i − η ˆ ∇ u i L (u i , v j ) , 

v j ← v j − η ˆ ∇ v j L (u i , v j ) , 

(2)

where e i j = u i v j T − r i j is the error of the prediction and η is the learning rate. These updating rules allow the gradients of

u i and v j to be computed independently, and thus enable the deployment in a distributed environment. However, applying

SGD in a distributed manner may expose u i (i.e., model leakage) during gradients transmission. To remedy this problem, we

introduce SGLD below. 

2.3. Stochastic gradient Langevin dynamics (SGLD) 

SGLD [32] is an optimization method, which combines SGD and Langevin Dynamics that samples from the posterior

distribution to prevent overfitting. Specifically, from the Bayesian view of MF, we can convert the objective into the maxi-

mization of posterior distribution of U and V given the observed ratings and parameters: 

p(U, V | R, λr , �u , �v ) ∝ p(R | U, V, λr ) p(U| �u ) p(V | �v ) , (3)

where λr is the global regularization term, �u and �v are diagonal matrices generated by Gamma distribution for the

regularization of u i and v j . Since a hypothesis of normal distribution N can be adopted in Eq. (3) , the log-likelihood can be

derived from: 

F (U, V ) = ln p(U, V | R, λr , �u , �v ) 

= ln p(R | U, V, λr ) + ln p(U| �u ) + ln p(V | �v ) + C 

= ln N (R | UV 

T , λ−1 
r ) + ln N (U| 0 , �−1 

U ) + ln N (V | 0 , �−1 
V ) + C, 

(4)

where C is a constant. To maximize the log-likelihood and also to follow the normal distribution, by adding noises into

gradients to avoid overfitting, the updating rules of SGLD in the t th iteration become: 

ˆ ∇ u i F (u i , v j ) = e i j v j + u i �u , 

ˆ ∇ v j F (u i , v j ) = e i j u i + v j �v , 

ηt = 

η0 

t γ
, 

u i ← u i − ηt 
ˆ ∇ u i F (u i , v j ) + N (0 , ηt I ) , 

v j ← v j − ηt 
ˆ ∇ v j F (u i , v j ) + N (0 , ηt I ) , (5)

where η0 is the initial learning rate, γ is the decay factor, and I is the identical matrix of size K . As Liu et al. [20] had

proved that introducing noises to SGLD can guarantee differential privacy. As will be shown later on, our model using SGLD

can avoid the exposure of model . 

3. Methodology 

3.1. Framework overview 

The overview of the proposed SDMF framework is exhibited in Fig. 2 . It is a distributed framework consisting of several

clients and the server. The key idea is to divide the model into the private (user) part and a public (item) part, and transmit

only gradient values to avoid leakage. Since MF learns two matrices, item and user latent factors, by iteratively performing

updates, we consider item latent factors as the public elements in SDCF. Therefore the public part is the only information

stored in the server, as illustrated in Fig. 1 . In addition, user latent factors are treated as personal elements and thus are

stored with their ratings at client side only. With SGD to optimize MF’s objective ( Eq. (1) ), we define the gradients (denoted

by grad ( v j ) for the latent factors of item i as: grad(v j ) = η ˆ ∇ v j L (u i , v j ) . The updating rule in Eq. (2) can be rewritten as: 

v j ← v j − grad(v j ) . 

The gradients are the only things transmitted from clients to the server. Specifically, in each iteration, each client needs to

download the newest V from the server, then calculates the gradients for u i and v j . The gradients of u i are directly used

to update u i stored at the client side while grad ( v j ) is sent to the server to update v j . However, we further look into the

formation of grad ( v j ) and find that 

grad(v j ) = η(e i j u j + λv j ) . 
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Fig. 2. The overview of SDMF framework. First, each client reads the ratings from their own database and performs PRR to calculate the fake bitmap B ′ 
i 

to 

initialize the training. For every iteration, each client will do three steps: (1) Download the items’ factors V . (2) Read the ratings and user’s factors u i , and 

calculate the gradients for updating u i . (3) Read the ratings, the B ′ 
i 

and u i , and calculate the gradients for updating V . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since v j , η, and λ are public, the server can obtain e ij u j . When u j converges, the server will be able to approximate each u j 
given e ij u j for different items within a few iterations. It is because u j is the greatest common divisor (GCD) of e ij u j values. 

To avoid the exposure of u i , we leverage SGLD instead of SGD to protect the gradients by adding Gaussian noises. The

gradients of items can be re-written as: 

grad(v j ) = ηt 
ˆ ∇ v j F (u i , v j ) − N (0 , ηt I ) 

= ηt (e i j u i + v j �v ) − N (0 , ηt I ) . 
(6) 

Aside from differential privacy proved by Liu et al. [20] , the noises introduced make it hard to recover u i from grad ( v j ) by

GCD. In addition, since the noises in each iteration are sampled with different values, we are immune to the difference attack

mentioned in the work of Hua et al. [15] . Note that the difference attack is an attack that removes the noises by calculating

the difference between gradients of two consecutive iterations. Therefore, even if the gradients are exposed, the privacy of

model and value can still be preserved. 

3.2. Randomized response (RR) algorithm 

Nevertheless, the existence is still possibly exposed due to the action that user i sends grad ( v j ) of item j to the server in

SGLD. Thus, instead of sending gradients of all rated items, we send the gradients of some unrated items to the server so

that exact rated items are unknown. We implement such idea with the technique of randomized response. A straightforward

solution consists of two steps. First, we create a binary matrix to represent the existence of ratings, as illustrate in the left

part of Fig. 3 , in which each user i maintains a binary vector B i whose element B ij indicates whether user i rates item j .

Second, in t th iteration, the client does not send the gradients of all rated items, but the gradients of a set of perturbed

items determined by a bit array S t 
i 
. This naive algorithm is shown in the upper right of Fig. 3 . Specifically, the bit array S t 

i 
of user i is used to protect the user’s existence by randomizing the rated and unrated items. If S t 

i j 
= 1 , item j ’s gradient will

be sent to the server, otherwise not. We generate the bit array S t 
i 

of item i based on its binary vector B i , given by: 

P (S t i j = 1) = 

{
p, if B i j = 0 

q, if B i j = 1 

, ∀ j ∈ V, (7) 

where p and q are two given probabilities to determine the number of perturbed unrated and rated items in S t 
i 
. Higher

p leads to larger disturbance in the randomization while higher q preserves the actual rating behavior. Note that in each

iteration t , the bit array S t 
i 

of item i is re-generated. 

Unfortunately, such simple randomization is vulnerable to the average attack . Specifically, untrusted server may collect

the gradients for a sufficient number of iterations T and obtain the rating actions by averaging the derived bit array of user

i with the following formula: 

1 

T 

T ∑ 

t=1 

(S t i j ) ≈
{

p, if B i j = 0 

q, if B i j = 1 

(8) 

To address this, we aim at realizing the idea of randomized response (RR), which is originally presented by RAPPOR [12] , in

order to construct a secured and distributed recommender system. Note that we are the first that implements the concept
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Fig. 3. Representing the existence of ratings by a binary matrix (left). Using RR to sample a noised bit vector S t 
i 

from binary vector B i of user i (upper 

right). Two-stage RR algorithm (lower right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of randomized response in distributed recommendation. The proposed two-stage RR algorithm is to strengthen the pertur-

bation of rated and unrated items via the binary vector B i and the bit array S ij . The Permanent Randomized Response (PRR)

stage prevents rating exposure caused by the average attack over multiple iterations while the Instantaneous Randomized Re-

sponse (IRR) stage preserves privacy in every single iteration. Note that PRR will be executed only once during initialization

and IRR will be executed in the beginning of every iteration. 

3.2.1. Permanent Randomized Response (PRR) 

We generate a perturbed binary vector B ′ 
i 

to permanently replace the original B i so that we can apply the RR mechanism

based on not only the actual rating actions but also some fake “1”s and “0”s. With such strategy, the average attacker will

not be able to derive B i since all information sent to server are generated from both fake and actual rating actions. To

implement such idea, when initializing the optimization process, we sample the perturbed binary vector B ′ 
i 

for each user i

by 

B 

′ 
i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , with probability 1 
2 

f 

0 , with probability 1 
2 

f 

B i j , with probability 1 − f 

, ∀ j ∈ V, (9)

where the parameter f is a probability specified by the client to control the strength of perturbation, and thus determines

the percentage of actual rating actions in B ′ 
i 
. With a higher f , it will be more private with more perturbation but provide

less information for the prediction model. Then B ′ 
i 

is fixed and becomes the input of IRR in each iteration. Note that instead

of letting the client provide the probability parameter f , the value of f is automatically determined by the differential privacy

parameter εI , which will be introduced and discussed in Section 3.4 . 

3.2.2. Instantaneous Randomized Response (IRR) 

With the perturbed binary vector B ′ 
i 

derived from PRR, IRR is to implement the naive approach by generating the bit

array S t 
i 
. Specifically, for each iteration t , we sample a bit array S t 

i 
for every user i based on two probabilities p and q using

Eq. (7) , in which the original binary vector B i is replaced by the perturbed version B ′ 
i 
. Then the client sends gradients of

user i to every item j if S t 
i j 

= 1 . Note that, since the bit array S t 
i 

is generated by the perturbed binary vector B ′ 
i 

in Eq. (9) ,

the average attack at server side can at most recover the perturbed version B ′ 
i 
. We discuss the properties of DP for both PRR

and IRR in Section 3.4 . 

3.2.3. Number of gradients sent to the server 

Given that we can determine the degree of privacy by adjusting the probability parameters f, p and q , in this subsection,

we discuss how these parameters affect the number of gradients sent to the server that influences the transmission cost of a

distributed recommender system. Recall in Eq. (7) that the probabilities p and q determine the perturbed rated and unrated

items via the bit array. We can estimate the number of gradients sent by first calculating the probabilities of sending the

gradients of unrated and rated items, denoted by p � and q � , respectively. 

Lemma 1. The probability of sending gradients of unrated item j to the server is: 

p � = P (S t i j = 1 | B i j = 0) 
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Fig. 4. Steps to sample e ij for unrated items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= P (B 

′ 
i j = 1 | B i j = 0) P (S t i j = 1 | B 

′ 
i j = 1) 

+ P (B 

′ 
i j = 0 | B i j = 0) P (S t i j = 1 | B 

′ 
i j = 0) 

= 

1 

2 

f × q + 

(
1 

2 

f + (1 − f ) 
)

× p. (10) 

The probability of sending gradients of rated item j to the server is: 

q � = P (S t i j = 1 | B i j = 1) 

= P (B 

′ 
i j = 1 | B i j = 1) P (S t i j = 1 | B 

′ 
i j = 1) 

+ P (B 

′ 
i j = 0 | B i j = 1) P (S t i j = 1 | B 

′ 
i j = 0) 

= 

(
1 

2 

f + (1 − f ) 
)

× q + 

1 

2 

f × p. (11) 

Let the number of items rated by user i be h i , the expected number of gradients sent to the server is 

z = h i × q � + ( |V| − h i ) × p � . (12) 

It is obvious that the fewer gradients to send, the smaller the transmission cost will be. The server will get less information

to update the model. Therefore, our model can flexibly allow users to adjust these parameters according to their needs. In

our experiments, for each user i , we set z to be | R | 
|U| , which is the average number that each user has rated, so that the total

amount of gradients that the server receives is the same as the original MF, and we can make a fair comparison. Note that

with z and Theorem 2, which allows users to specify a privacy budget εI , we can obtain p � and q � . 

3.3. The gradients of unrated items 

Now we have only one remaining issue: what to transmit to the server for an item not rated by the user? For a rated

item j , the user i can simply send her gradient grad(v j ) = ηt (e i j u i + v j �v ) − N (0 , ηt I ) , where e ij is the difference between

the predicted and the observed values, u i v T j − r i j , as mentioned in Eq. (2) . However, if item j is unrated, we cannot get e ij 
because r ij does not exist. Therefore, we sample “fake” e ij from the distribution of observed e ij of user i . As pointed out in

the Bayesian view of SGLD ( Eq. (3) ), the probabilities of U and V given the observed ratings are assumed to be in normal

distributions. Consequently, we can shift N (R | UV T , λ−1 
r ) in Eq. (4) to be zero mean to obtain the distribution of e ij , which is

also a normal distribution. Therefore, we develop the sampling method for unrated item to have three steps, as illustrated in

Fig. 4 . First, given a certain user i , we can count the sample mean μ and standard deviation σ from the rated items so the

distribution of e i can be derived. Second, we sample e ij for each unrated item j from N (μ, σ ) within a given range [ −α, α] .

Third, the gradients grad ( v j ) with sampled e ij can be derived. 

Since e ij is sampled from the distribution of the rated items, the attacker cannot distinguish “fake” gradients from actual

ones. Besides, the bound in α can constrain the range of e ij to avoid imposing serious noise on the recommendation model.

Furthermore, we will discuss how α can be set to control the privacy level in Section 3.4 . 

3.4. Differential privacy in our framework 

An important feature in our framework is that the level of privacy is controllable based on the parameter f in PRR, the

probabilities p , and q in IRR, as well as the range factor α in computing gradients of unrated items. In this section, we aim
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to provide theoretical analysis on how the Differential Privacy (DP) is related to these parameters so that one can determine

the correspondent parameters for arbitrary privacy levels. Although the total privacy budget scales up with the number of

iterations, we can focus on the privacy level of each iteration. The reason is that the number of iterations that SGLD requires

to converge to a certain performance is varied in different datasets. Therefore, we keep it a decision that should be made

by the service providers according to their particular goals. 

DP of two-stage randomized response algorithm. To control the privacy level of the proposed two-stage RR algorithm, we will

set a few privacy budgets to control the difficulty for the server to identify the rated items according to the number of times

the gradients of items are sent from the user. In the following, we prove the DP in PRR and IRR with the privacy budgets

εP and εI , respectively, and derive the relation between these privacy budgets and the probabilities f, p , and q . 

Theorem 1. With a privacy budget εP , PRR is εP -differentially private if 

εP = 2 h i ln 

(
1 − 1 

2 
f 

1 
2 

f 

)
. 

Proof. Given the number of rated items h i and the item set V, for any binary vector B i with |V| elements and containing h i
“1”s, without loss of generality, we can set B i as b � = { b 1 = 1 , ..., b h i = 1 , b h i +1 = 0 , ..., b |V| = 0 } . 

Assume O B derived from Eq. (9) in PRR, for all b ′ ∈ O B (for simplicity, we let b ′ be any possible B ′ 
i 
), given B i = b � , the

probability of B i being changed into some B ′ 
i 
= b ′ is 

P (B 

′ 
i = b ′ | B i = b � ) = 

(
1 − 1 

2 

f 

)b ′ 1 (1 

2 

f 

)1 −b ′ 1 

× · · · ×
(

1 − 1 

2 

f 

)b ′ 
h i 
(

1 

2 

f 

)1 −b ′ 
h i 

×
(

1 

2 

f 

)b ′ 
h i +1 

(
1 − 1 

2 

f 

)1 −b ′ 
h i +1 

× · · · ×
(

1 

2 

f 

)b ′ |V| (
1 − 1 

2 

f 

)1 −b ′ |V| 

Then for any pair of B 1 and B 2 in any possible B i , we can derive the ratio in differential privacy ( Definition 1 ) as below: 

P (B 

′ 
i 
∈ O B | B i = B 1 ) 

P (B 

′ 
i 
∈ O B | B i = B 2 ) 

= 

∑ 

b ′ ∈ O B 
P (B 

′ 
i 
= b ′ | B i = B 1 ) ∑ 

b ′ ∈ O B 
P (B 

′ 
i 
= b ′ | B i = B 2 ) 

≤ max 
b ′ ∈ S 

P (B 

′ 
i 
= b ′ | B i = B 1 ) 

P (B 

′ 
i 
= b ′ | B i = B 2 ) 

= 

(
1 − 1 

2 

f 

)2(b ′ 1 + b ′ 2 + ···+ b ′ h i −b ′ 
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−b ′ 
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−···−b ′ 
2 h 

) 

×
(

1 

2 

f 
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≤
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1 
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)2 h i 

= e εP , when εP = 2 h i ln 

(
1 − 1 

2 
f 

1 
2 

f 

)
�

Theorem 2. With a privacy budget εI , IRR is εI -differentially private, if 

εI = h i ln 

(
q � (1 − p � ) 

p � (1 − q � ) 

)
, (13)

where p � and q � follow Lemma 1. 

Proof. Assume O S derived from Eq. (7) in IRR, for s ∈ O S (for simplicity, we let s be any possible S t 
i 
), given B i = b � , the

probability of B i being changed into some S t 
i 
= s is 
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P (S t i = s | B i = b � ) = (q � ) s 1 (1 − q � ) 1 −s 1 × · · · × (q � ) 
s ′ 

h i (1 − q � ) 
1 −s ′ 

h i 

× ( p � ) 
s ′ 

h i +1 (1 − p � ) 
1 −s ′ 

h i +1 × · · · × (p � ) s 
′ 
|V| (1 − p � ) 1 −s ′ |V| . 

Then for any pair of B 1 and B 2 in any possible B i , we can derive the ratio in differential privacy (Definition 1.) as below: 

P (S t 
i 
∈ O S | B i = B 1 ) 

P (S t 
i 
∈ O S | B i = B 2 ) 

= 

∑ 

s ∈ O S 
P (S t 

i 
= s | B i = B 1 ) ∑ 

s ∈ O S 
P (S t 

i 
= s | B i = B 2 ) 

≤ max 
s ∈ O S 

P (S t 
i 
= s | B i = B 1 ) 

P (S t 
i 
= s | B i = B 2 ) 

≤
(

q � (1 − p � ) 

p � (1 − q � ) 

)h i 

= e εI , when εI = h i ln 

(
q � (1 − p � ) 

p � (1 − q � ) 

)
. 

�

Practically, εI is smaller than εP because εP is the privacy guarantee of the worst case suffering from the average attack

over several iterations. In our implementation, we set εP = 2 εI and find f by εP . Consequently, given εI specified by the

client, we can obtain p and q by solving Eqs. (10) –(13) . 

DP of computation of gradients to unrated items. Here we explain how to use the range factor α to control the difficulty

for the attacker. The goal is to distinguish fake gradients of unrated items from gradients of rated items at server side

according to the numerical values of gradients. Note that such privacy level is different from the DP of Randomized Response

algorithm, which is the difficulty of detecting rated items according to discrete results of being sampled or not. 

Theorem 3. With a privacy budget εg , gradients for unrated items are εg -differentially private, if 

εg = ln 

( (
1 

2 

er f 

(
x − μ

σ
√ 

2 

)
| α−α

)−1 
) 

, (14) 

where α is the range factor, and erf () is the Gauss Error Function: 

er f (x ) = 

1 √ 

π

∫ x 

−x 

e −t 2 dt. 

Proof. Based on Section 3.3 , we have the normal distribution of the observed e ij : 

f (x ) = 

1 

σ
√ 

2 π
e 

−(x −μ) 2 

2 σ2 , 

where μ and σ are mean and standard deviation of the observed e ij . Assume e ′ is any possible e ij , then for any possible

item pair of j 1 and j 2 , we derive the ratio in differential privacy (Definition 1.) as below: 

P (e i j = e ′ | j = j 1 ) 

P (e i j = e ′ | j = j 2 ) 
≤

f (e ′ ) ∫ α
−α f (x ) dx 

f (e ′ ) = 

1 ∫ α
−α f (x ) dx 

= 

1 

1 
2 

er f 

(
x −μ

σ
√ 

2 

)
| α−α

≤ e εg , when εg = ln 

( (
1 

2 

er f 

(
x − μ

σ
√ 

2 

)
| α−α

)−1 
) 

. 

�

Since it is difficult to directly solve Eq. (14) , in our implementation, we set 

αMax = Max (| μ + 2 σ | , | μ − 2 σ | ) 
so that [ −α, α] can cover more than 95% of the ratings in the distribution. Then we do binary search in (0, αMax ) to find an

α that 

e εg −δ ≤
(

1 

2 

er f 

(
x − μ

σ
√ 

2 

)
| α−α

)−1 

≤ e εg , 

where δ is a very small number (e.g. 10 −6 in our experiments) so that 

εg ≈ ln 

( (
1 

2 

er f 

(
x − μ

σ
√ 

2 

)
| α−α

)−1 
) 

. 

3.5. Implementation details of SDMF 

We further explain the procedure on the client and the server during the training process of SDMF. 
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Algorithm 1 Client ( i, t ). 

Require: Data Input: { V , h i , R i , B i }, Model Input: { η0 , γ , �u , �v }, Privacy Input: { εg , εI , εP } 

1: if t = 0 then 

2: Initialize u i 
3: Find f with εP 

4: B ′ 
i 
← P RR (B i , f ) 

5: Find p and q with εI and h c 

6: if t > 0 then 

7: ηt ← 

η0 
t γ

8: Download V from Server 

9: S c (t) ← IRR (B ′ 
i 
, p, q ) 

10: ū i ← 0 

11: for j ∈ V do 

12: if B i j = 1 then 

13: e i j ← u i v T j − r i j 

14: ū i ← ū i + (ηt (e i j v j + u i �u ) − N (0 , ηt I )) 

15: ū i ← 

ū i | R i | 
16: Calculate μ and σ of { e i j|∀ B i j = 1 } 
17: Find α with μ, σ and εg 

18: for j ∈ V do 

19: if S i (t) j = 1 and B i j = 1 then 

20: grad(v j ) ← ηt (e i j u i + v j �v ) − N (0 , ηt I ) 

21: Send ( j, grad(v j ) ) to Server 

22: if S i (t) j = 1 and B i j = 0 then 

23: while True do 

24: Sample e i j ∼ N(μ, σ ) 

25: if α > x > −α then 

26: break 

27: grad(v j ) ← ηt (e i j u i + v j �v ) − N (0 , ηt I ) 

28: Send ( j, grad(v j ) ) to Server 

29: Send ”finish” to Server 

30: u i ← u i − ū i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.1. Client side 

A list of step-by-step actions in each iteration t is shown in Algorithm 1 . A client first initializes its latent factors. Then it

decides the two probabilities used in IRR, p and q , and conducts PRR as Eq. (8) when t = 0 . In every iteration t , it downloads

the item latent factors and calculates the prediction error e ij of the rated item. After generating the mean and standard

deviation of e ij , the client can find a suitable α. Later, the client will conduct IRR as Equation to generate S t 
i 

of this iteration

t . For every item j that S t 
i 
= 1 , if it is a rated item, the client sends the server j and grad ( v j ) as in general SGLD; if it is an

unrated item, sample e ij in N ( μ, σ ) (and re-sample if it is not within a bound of [ −α, α] ), sending grad ( v j ) calculated with

this sampled e ij and j to the server. After the client finishes the sending of gradients to the server, it sends a “finish” signal

to the server and updates its user latent factors with the average updating calculated before. 

3.5.2. Server side 

Algorithm 2 shows how the server performs training, obtains gradients , and updates item latent factors. Comparing with

Algorithm 1 , it can be seen that the server needs to do very little computation. The server is only in charge of controlling

the start of a new iteration and updating item latent factors with whatever grad ( v j ) it receives. In this process, nothing

but the item latent factors need to be stored, thereby the privacy is preserved. Besides, we can make all clients compute

gradients of all their ratings at the same time in each iteration. With such parallelization, the time that the server has to

wait for all gradients will be largely reduced, comparing to a centralized training of MF. 

Note that the stopping criteria can be customized to fit different services, and here we provide two commonly-used

ones: the convergence of model and the maximum number of iterations. First, if the stopping criterion is set to be the

convergence of the model, we can make each client send only one additional bit to the server, in which such a bit represents

whether their own latent factors have converged. When every client sets the bit to “True” and the item latent factors also

converge, the server can stop the training process. The second criteria is simply setting a maximum number of iterations

to stop the training process no matter the latent factors converge or not. As the privacy budget scales with the number of

iterations, there are trade-offs between performance and privacy. It can be seen that the convergence of model can reach

better performance while setting a large enough number of iterations guarantees the privacy. 
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Algorithm 2 Server. 

Require: U , V 
1: Initialize V 

2: t ← 0 

3: for i ∈ U do 

4: Call Client i to run Client( i , t) 

5: t ← 1 

6: while not reach stop criteria do 

7: Initialize V̄ with all zero 

8: Initialize Count = 0 

9: for i ∈ U do 

10: Call Client i to run Client(i, t) 

11: while True do 

12: Wait until receiving a ( j, grad(v j )) 
13: V̄ j ← V̄ j + grad(v j ) 
14: C ount ← C ount + 1 

15: if receive ”finish” from all of the Clients then 

16: break 

17: V ← V − V̄ 
Count 

18: t ← t + 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Discussion 

In the following, we will discuss two practical issues of the proposed model that should be considered in real-world

application. 

First, as trade-offs for privacy, the clients have to do more computation and transmission in our proposed framework

than in the conventional scenario. For each client, the time complexity for computing the gradients in a single iteration is

O ( h i K ), where h i is the rated items by user i and K is the latent dimension number. For the server, the time complexity for

updating item latent factors is O ( 
∑ 

∀ i ∈U h i K ) . However, the actual computation time may depend on the devices that the

clients and the server use. As for the transmission overhead, in every iteration, since the space complexity for each client to

download item latent factors is VK, the space complexity for uploading the gradients is O ( h i K ). 

The second issue should be considered is that some clients may be offline in some iterations. It is difficult to force all

the clients to always online or online at the same time. So there will be some iterations that only some clients do updating

actions to the latent factors. However, service providers can give some daily rewards or incentives to encourage the clients

to be regularly online every day to increase the number of online users. Besides, the more frequently online users will

get better prediction because they contribute more updates according to their rating data. Therefore, the service providers

can use and promote such fact to encourage users to be online. Note that in fact, in modern commercial services or social

media platforms, various practical incentive mechanisms had been adopted and deployed to attract users and boost the

consumption volume. 

4. Evaluation 

We conduct experiments to evaluate the utility of SDMF. Specifically, the experiments aim at examining the trade-off be-

tween privacy and performance of the proposed SDMF. The evaluation is designed to answer three questions: (1) Can SDMF

maintain high accuracy while preserving certain level of privacy? (2) How does the privacy budgets ε I and εg affect the

accuracy in the proposed two-stage RR method? (3) How does SDMF perform on numerical and one-class rating prediction

tasks? Note that the experiments here focus on the effect of using DP to preserve existence privacy, so we do not compare

with other DP methods such as [15,29] since their DP algorithms aim to preserve value privacy, which SDMF can completely

preserve with the architecture. 

4.1. Datasets & evaluation settings 

We use three popular public rating datasets for the experiments: two MovieLens datasets 1 (ML-100K and ML-1M) and

Netflix data [4] . Note that we subsample Netflix data to a subset with 10,0 0 0 users and 50 0 0 items, all with more than

10 ratings to avoid cold-start users, who will contribute little due to the RR algorithm. The statistics of MovieLens-100K,

MovieLens-1M and the subsampled Netflix dataset are shown in Table 2 . 
1 https://grouplens.org/datasets/movielens/ . 

https://grouplens.org/datasets/movielens/
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Table 2 

Statistics for the datasets. 

Dataset #Users #Items #Ratings 

MovieLens-100K 943 1682 10 0,0 0 0 

MovieLens-1M 6040 3900 1,0 0 0,209 

Netflix (subsampled) 10,0 0 0 50 0 0 573,595 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task 1: Numerical Rating Prediction . We randomly split both rating datasets into 80% as the training set and 20% as the

test set. This random splitting is repeated for 30 times to obtain the average Root-Mean-Square Error (RMSE). In order to

examine how different privacy levels affect the performance, we vary the controllable parameters, i.e., the privacy budgets

εg and εI in SDMF. As data quality (or noise introduced) is determined by ε-differential privacy, higher values of εg and εI

lead to weaker privacy protection, but maintain the accuracy of the recommendation model. Hence, we choose to have a

wide range of privacy budgets so that the trade-off between performance and privacy can be observed. The privacy budgets

εg and εI are chosen from {4, 1, 0.25, 0.0625}, resulting in 16 combinations of privacy budgets in total. Note that we set

εP = 2 εI so that we do not show the results of different values of εP . 

We follow Hua et al. [15] to set K = 50 , which is a K that can reach good performance on MovieLens dataset and Netflix

dataset. The other settings of parameters are: γ = 0 . 6 , and, ( �u , �v ) ∼ Gamma (1, 100). The learning rate η0 is 5 × 10 −6 for

MovieLens-100K, 5 × 10 −7 for MovieLens-1M, and 5 × 10 −7 for Netflix, which are tuned to have better performance based on

a validation set made by randomly splitting the training set into 80%–20%. Besides, SDMF will be compared to the baselines

and competitive methods as listed in the following. 

• Non-private MF: Performing recommendation using the original MF with SGLD. We compare this non-private version

with SDMF to understand how the noises introduced for preserving privacy affect performance. 

• Input Perturbation SGLD (ISGLD): We make a comparison to a naïve strategy of simply adding noises to ratings. Note

that this solution can only preserve value privacy, not model privacy nor existence privacy. We add Laplacian noises

to ratings and train MF using SGLD on these perturbed ratings to derive ISGLD. The ε-differential privacy of adding

Laplacian noises to ratings has been proved in [5] . We compare SDMF with ISGLD with privacy budget ε set to 4 and

2, while the former is the largest number we set for privacy budgets in SDMF and the latter is what reported to have

comparable performance as item average baseline by Berlioz et al. [5] . 

• SDMF α = ∞ : This is an SDMF given no constraint on the sampled fake gradient. Hence, it would lead to the highest

privacy level for given fixed εg and εI in SDMF. 

Note that the meanings of our ε, εI and εg are different from the privacy budgets in previous studies [1,15,28,29,33] ,

because their purposes are to preserve the privacy of value and model while our privacy budgets are used for preserving

the privacy of existence . It is meaningless and unfair to compare our framework with them. Therefore, we only present the

results of ISGLD to reflect the level of the increasing of error after the decreasing of privacy budgets. 

Task 2: One-Class Rating Action Prediction . To conduct experiments of SDMF on the task of one-class feedback, we choose

to predict the rating actions via Bayesian Personalized Ranking Matrix Factorization (BPRMF) [26] in ML-100K, ML-1M, and

the subsampled Netflix dataset. That says, BPRMF is considered MF technique in our SDMF. The split of training and testing is

set by the leave-one-out strategy, which is the same as BPRMF [26] . Specifically, we first randomly select one rating action of

each user to be added into the testing set while the training set consists of all rating actions except those in the testing set.

This process is repeated for 10 times to generate the average Area under ROC Curve (AUC), which indicates the correctness

of pair-wise ranking between a positive (rated) and a negative (unrated) sample. While the gradients of BPRMF is similar

to the basic MF, we can accordingly apply BPRMF to SDMF by changing the error e ij in MF to −e 
−x 

i j j ′ 
1+ e −x 

i j j ′ for rated items and

e 
−x 

i j j ′ 
1+ e −x 

i j j ′ for unrated items, where x i j j ′ = u i v T j − u i v T j ′ denotes the distance between the predicted ranking scores of a rated

item j and an unrated item j ′ . The updating rules of using BPRMF in SDMF, termed SD-BPRMF , is shown in Lemma 2.

Since the optimization of BPRMF computes gradients for unrated items, SD-BPRMF does not need the “fake” errors, and the

privacy budget εg is not applied here. 

Lemma 2. For a rated item j rated by user i, SD-BPRMF randomly samples an unrated item j ′ and updates its latent factors with 

u i ← u i − η0 

(
e −x i j j ′ 

1 + e −x i j j ′ 
(−v j + v j ′ ) + u i �u 

)
+ N (0 , ηt I ) , 

v j ← v j − η0 

(
−e −x i j j ′ 

1 + e −x i j j ′ 
(u i ) + v j �v 

)
+ N (0 , ηt I ) , 

v j ′ ← v j ′ − η0 

(
e −x i j j ′ 

1 + e −x i j j ′ 
(u i ) + v j ′ �v 

)
+ N (0 , ηt I ) . 
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We compare the performance of SD-BPRMF with the privacy budget εI ∈ {4, 1, 0.25, 0.0625} and a non-private version of

BPRMF using SGLD as the baseline. The settings of parameters are: K = 10 , ( �u , �v ) ∼ Gamma (1, 100), γ = 0 . 6 , and εP = 2 εI .

The learning rate η0 is 5 × 10 −6 for both MovieLens datasets (MovieLens-100K and MovieLens-1M), and 10 −7 for Netflix

dataset, which are chosen according to the validation set. 

4.2. Experimental results 

Since the number of training iterations is positively correlated with the transmission overhead in our framework, there

is a trade-off between recommendation performance and computational cost while the privacy cost is scaled up by the

number of iterations as well. Therefore, we show the experimental results by presenting the learning curve (i.e., RMSE vs.

“number of iterations” up to 100) for each model. Based on the results, service providers are allowed to choose the most

appropriate numbers in their applications. 

Task 1 . The learning curves on ML-100K are in Fig. 5 a and b, the ones on ML-1M are in Fig. 6 a and b, and the ones on

Netflix are in Fig. 7 a and b. It can be seen that the distance between ISGLD ( ε = 4 ) and ISGLD ( ε = 2 ) gets much greater

than the ranges that the same curves in SDMF spread. Such results reflect that the performance of SDMF is less sensitive

to the privacy budget than ISGLD. This result also shows that SDMF has the advantage to maintain the accuracy while still

enjoying the additional protection on existence and model privacy. While comparing two privacy budgets, in Figs. 5 a, 6 a,

and 7 a, we can see εg has a negative relation to RMSE, which means more privacy yields lower accuracy on prediction.

Although SDMF of α = ∞ can already provide comparable performance with ISGLD ( ε = 4 ), controlling α enjoys arbitrary

adjustment of the balance between privacy and accuracy to handle different circumstances. On the other hand, in Figs. 5 b,

6 b, and 7 b, εI has less influence on the performance than εg . The difference between the privacy budgets is caused by their

different meanings. Since εg is for the privacy level of the fake gradients, it directly affects the amount of noises that are

injected to the model. In addition, εI is used to control the frequency of updating a rated and unrated item. Since SGLD

has a nature to take the advantage of the randomness to prevent overfitting, the decreasing of εI will not largely increase

the errors. It turns out to indicate that our two-stage RR algorithm can achieve good privacy without sacrificing too much

accuracy. In a nutshell, the RMSE values eventually saturate to reasonable quality as the iteration number increases, and

the performance of εg = 4 is indeed comparable to the non-private baseline. Such results imply that the proposed SDMF

can preserve the rating privacy of users while maintaining the performance of recommender systems. In our opinion, we

believe the distributed framework that directly preserves the value privacy of data without adding large amount of noises is

the key to our superior performance comparing to previous studies. 

Task 2 . The results of predicting one-class actions on ML-100K, ML-1M, and Netflix are shown in Fig. 8 a,b and c, respec-

tively. Comparing to the non-private baseline, the loss values in AUC on the three datasets are 0.03, 0.07, and 0.05. Similar

to Task 1, εI has little influence on the performance. However, the gap between private version and non-private version is

greater than that in Task 1. In our opinion, this is caused by the loss of information due to PRR ( Section 3.2.1 ). In one-

class rating action prediction, what PRR does is equivalent to deleting some rating actions from the training set, and thus

generates more performance damage than in numerical rating prediction. Nevertheless, as we are the first to exploit dif-

ferential privacy in one-class recommendation task, such loss is acceptable because the accuracy is still high enough to be

with certain utility. 

5. Application to factorization machine 

Here we discuss how to apply the proposed SDCF to Factorization Machines (FM) [25] , which is another widely-used and

robust model for recommendation systems. We choose FM not only because it can be optimized with gradient descent but

also because many of CF-based methods such as MF, SVD++, and K-Nearest Neighbors (KNN) can actually be expressed as

Factorization Machines with different settings of parameters [25] . The basic idea of FM is to learn the interactions between

variables. To simply explain FM, let us assume the input data of the prediction task is a matrix X ∈ R 

n ×m , where x ∈ R 

m 

describes a sample with m variables. To model the interactions of d -order, for the c th column of total m columns in X , FM

will learn a bias weight w c and d latent vectors v l c ∈ R 

k l , where k l is the number of dimensions for the l th latent vector.

Therefore, the predicted target (e.g., the rating scores), denoted by ˆ y (x ) , is defined as 

ˆ y (x ) = w 0 + 

m ∑ 

c=1 

w c x c + 

d ∑ 

l=2 

m ∑ 

c 1 =1 

· · ·
m ∑ 

c d = c d−1 +1 

( 

l ∏ 

ζ=1 

x c ζ

) 

k l ∑ 

a =1 

( 

l ∏ 

ζ=1 

v l c ζ a 

) 

. 

For recommendation systems, each rating will be formulated as an x such that the information about the user and the

item can be represented in a format of dummy code as shown in below: 

x = ( 0 , · · · , 0 , 1 , 0 , · · · , 0 ︸ ︷︷ ︸ 
|U| 

, 0 , · · · , 0 , 1 , 0 , · · · , 0 ︸ ︷︷ ︸ 
|V| 

, x |U| + |V| +1 , · · · , x m ︸ ︷︷ ︸ 
other variables 

) , 
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Fig. 5. MovieLens-100K. 

 

 

 

 

 

 

where other variables describe information such as time, age of user, categories of item, and other attributes about the

rating. To incorporate SDCF with FM, we can consider v l c and w c for all c ≤ |U| as personal elements while other bias weights

and latent vectors are treated as public elements. In this way, users can download public elements, update their own v l c and

w c , and then send gradients for other bias weights and latent vectors to the server. 

6. Conclusions and future work 

This paper proposes a framework, SDCF, to preserve the privacy of value, model , and existence in recommender systems

under a distributed setting. The key contribution is the proposed two-stage Randomized Response algorithm, which is able

to compute gradients of matrix factorization for unrated items in a secure manner under client-server context. More impor-
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Fig. 6. MovieLens-1M. 

 

 

 

 

 

 

 

 

 

tantly, we have also proven that the proposed two-stage RR algorithm can theoretically meet differential privacy. Experi-

mental results conducted on well-known MovieLens and Netflix datasets demonstrate that the ability of SDCF to be applied

to both prediction tasks of numerical ratings and one-class rating actions without sacrificing too much accuracy. Moreover,

low influence to the performance of the proposed parameter εI exhibits the effectiveness of Instantaneous Randomized

Response in the training process. Therefore, we suggest that Randomized Response algorithms can be further applied to

more tasks in machine learning to preserve privacy. Moreover, we show that the proposed randomization method can be

also applied to a more general recommender, Factorization Machine, which allows features of users and items to boost rec-

ommendation accuracy. Last, to improve the feasibility of SDCF for practical usage, in the future we plan to work on the

scenario of active learning to lower down the transmission overhead and the scenario of online learning to renew the model
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Fig. 7. Netflix (subsampled). 

 

 

 

 

 

 

 

 

without re-training from scratch. Besides, we plan to extend this framework to content-based recommendation models as

well as other models that also use gradient descent to learn latent representations (e.g., deep learning framework) so that

the applications will not be limited to only recommender systems. In addition, we also plan to boost the efficiency of the

proposed SDCF framework from two aspects. First, real-world recommender systems usually need to tackle a large number

of users and items that make the user-item rating matrix too big. The efficiency of matrix factorization naturally become

a critical issue. Therefore, our framework will further incorporate the technique of parallel SGD [34] that partitions the big

matrix for fast SGD. Second, we will implement the idea of Fully Homomorphic Encryption [16] as a kind of preprocessing

for the raw user-item ratings. By doing so, the computation cost of the proposed distributed perturbation mechanism can

be lowered down by decreasing the volume of perturbation. 
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Fig. 8. Task 2: Comparison of different ε I . 
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