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ABSTRACT 
This paper presents our solution for KDD Cup 2008 competition 
that aims at optimizing the area under ROC for breast cancer 
detection. We exploited weighted-based classification mechanism 
to improve the accuracy of patient classification (each patient is 
represented by a collection of data points). Final predictions for 
challenge 1 are generated by combining outputs from weighted 
SVM and AdaBoost; whereas we integrate SVM, AdaBoost, and 
GA to produce the results for challenge 2. We have also tried 
location-based classification and model adaptation to add the 
testing data into training. Our results outperform other 
participants given the same set of features, and was selected as  
the joint winner in KDD Cup 2008. 

Keywords 
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cancer image classification, area under free response receiver 
operating curves (FROC). 

1. INTRODUCTION 
The goal of KDD Cup 2008 is to design computational methods 
for the early detection of breast cancer from X-ray images. The 
competitors were given a training set consists of 102,294 
candidate instances from 118 malignant and 1594 normal patients. 
Each instance was described by 117 features. There are two 
challenges in this competition:  

Challenge 1: To maximize the area under the free response 
receiver operating curves (FROC), which is the curve of the 
precision of patients in the clinically relevant region 0.2-0.3 
false positives per image. 

Challenge 2: To minimize the false positive rate while 
maintaining perfect recall.  

Several difficulties have been encountered from the distribution 
of the data as well as the evaluation criterion: 

1. The class distribution in the dataset is imbalanced. Only a small 
fraction of the instances are malignant. In such situation, 
standard classifiers tend to have a bias in favor of the larger 
classes and ignore the smaller ones. 

2. The evaluation criterion in task 1 is the area under FROC (or 
AUC). However, the objective function optimized in most of 
the learning algorithms is the error rate rather than the AUC 
value.  

3. The FROC metric measures the precision per patient (a patient 
is represented by a collection of data points), while standard 
classifiers maximizes the precision per data point. 

Section 2 describes the methodologies applied in our submission. 
Section 3 discusses some other approaches that are tested with 
certain level of success but eventually not used in our submission. 
We conclude and propose some potential future directions in the 
final section. 

2. METHODOLOGIES 
Figure 1 provides an overview of our system. We exploit 
AdaBoost [1], two variations of support vector machine, and a 
linear classifier trained using the Genetic Algorithm for this task. 
We train each classifier independently using 10-fold cross 
validation on the whole training dataset. We also perform an 
experiment to divide the data into four portions (left/right 
combining with CC/MLO) and train an independent classifier for 
each, but found no significant improvement over the accuracy. 
Final prediction values on testing data points are calculated by 
combining the outputs of the classifier committee. 

The parameters of each classifier are tuned using AUC values as 
the objective function. Acknowledging the fact that the testing 
data contains features from only unseen persons, we decide to 
abandon point-wise cross-validation and adopt patient-wise cross-
validation during training. Under this schema the data points of 
each patient is bundled in a group, and thus forced to be in the 
same fold in the cross-validation process. We also used 
stratification technique to ensure that each class is represented 
with approximately equal proportions in every subset. Although 
the prediction performance on validation set is much lower in 
patient-wise CV (≈80% in AUC) than in point-wise CV (>90% in 
AUC), we believe that the former has better chance to avoid 
overfitting on the testing data. 
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The following subsection describes our system in detail: some 
specific adjustments made in tuning up the SVM for this dataset 
and evaluation criteria have been discussed first. Then we discuss 
the AdaBoost (using CART as weak learner) and its performance. 
Sections 2.3 and 2.4 describe how to combine the predictions of 
multiple classifiers for challenges 1 and 2, respectively. The 
corresponding results of each method are listed in table 1 and 
table 2. 

2.1 Classification Using Support Vector 
Machine 
2.1.1 Class-Balanced SVM (CB-SVM) 
The major difficulty in the first challenge is due to the imbalance 
of data since there are 163 times more negative data points than 
positive points. Consequently, standard classifiers tend to bias in 
favor of the larger class since by doing so it can reach high 
classification accuracy. Researchers have proposed several types 
of solutions to deal with class imbalanced problem such as down-
sampling of major class, up-sampling of minor class and adopt 
class-sensitive loss function [2]. In our submission, we applied a 
class-sensitive SVM implemented in LIBSVM [3] whose 
objective is of the form: 
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where (xi,yi) is an instance-label pair in the training data, Ф is a 
function that maps input data into a higher dimensional space and 
C+, C- are weights of training errors with respect to the positive 
and negative examples, respectively. In this task, we set C+ to be 
163 times larger than C-. The output scores are treated as the 
confidence values which represent how confident the classifier 
believes it to be positive. 

In the next stage we pursue parameters adjustment. In this 
particular case, the parameter space consists of training error 
weight C- and the Gaussian kernel width γ, while Gaussian kernel 

function is defined as
2

2),( ji xx
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γ . We apply a nested 

uniform design (UD) procedure [4] to first set out crude search for 
a highly likely candidate region of global optimum and then 
confines a finer second-stage search therein. The UD method 
automatically selects the candidate set of parameter combinations 
and then carries out a k-fold cross-validation to evaluate the 
generalization performance of each parameter combination. We 
chose the area under FROC in the region of 0.2-0.3 false positives 
as the objective function in the UD method. Once the predictions 
of all points are generated (in n-fold CV, every point gets exactly 
one chance to be validated), they will be sent all together to 
generate the AUC score. This design reaches 77.8% in AUC.  

One important observation we have made based on the 
experimental results of this class-balanced SVM is that it is easier 
to identify candidates of patients who have more positive 
instances than patients with fewer positive instances. For example, 
for patients with more than 10 positive points, the average rank of 
their highest positive candidate is 960, but for patients with only 
one positive candidate, the average rank of these positive 
candidates is 23478. We believe this is because in class-balanced 
SVM all positive points are treated equally, and therefore the 
classifier will introduce bias to patients with more positive 
instances. This is unfortunate since our classifier is evaluated 
based on the accuracy per person instead of accuracy per instance. 
This observation motivates us the idea of patient-balanced SVM. 

2.1.2 Patient-Balanced SVM (PB-SVM) 
To conquer the patient imbalanced problem, we develop a patient-
balanced SVM with the following adjustment: 
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where each training data has a corresponding weight Ci. The 
weights can be determined using two constraints: 
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Figure 1: Methodology Overview 
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That is, the summation of weights of all negative examples is 
equal to the summation of weights of all positive examples; and 
each individual patient possesses equal summation of positive 
weights. In this sense, the training error on rare (with respect to a 
patient) positive points will be given higher weights than common 
positive points. The results show that it is 0.8% better than CB-
SVM. 

2.2 Classification Using AdaBoost 
Boosting is a method of finding a highly accurate hypothesis 
(classification rule) by combining many “weak” hypotheses, in 
particular when each of which is only moderately accurate. 

We tried AdaBoost in our submission as well. The main idea 
behind AdaBoost is to construct a highly accurate classifier 
committee by combining many weak learners. The weak learners 
are only moderately accurate but should be diverse. We choose 
Real AdaBoost [5] implemented by [6], which supports real-value 
prediction, and use classification and regression tree (CART) as 
the weak leaner. The major reason to combine these two is 
twofold. First CART is inherently suited for imbalanced dataset 
since its tree is constructed according to the correct classified 
ratio of positive and negative examples. Second, the model 
selection procedure can be done simply and efficiently as we can 
iteratively increase the number of weak learners and stop when 
the generalization ability on the validation set does not improve. 
Similar to what PB-SVM does, we apply a modified dependent 
variable (MDV) AdaBoost [7] to adjust the dependent variable 
from yi=+1 to yi=+1/#positive for positive instances of each 
malignant patient. The original AdaBoost performs slightly worse 
than CB-SVM in the training set, but the MDV AdaBoost gets the 
highest AUC among these four methods. The performance of 
different parameter setting is shown in Figure 2.We have tested 
different maximum split numbers (from 1 to 3) in CART and 
found that the better split number in our task is 2. The patient-
based cross validation reveals that it performs the best when the 
number of weak learners is set to 50. 

 
Figure 2: Model Selection for MDV AdaBoost 

Table 1. Summary of Performance of Base Classifiers on 
Training Set and Testing Set 

Base Classifier AUC on Trainin
g Set (in %) 

AUC on Testng 
Set (in %) 

CB-SVM 77.8 81.3 

PB-SVM 78.6 86.7 

Original AdaBoost 77.1 80.2 

MDV AdaBoost 79.1 87.9 
 

2.3 Combining SVM and AdaBoost for 
Challenge 1 
Table 1 shows results on training and testing set of the four base 
classifiers. Literature indicates that combining divergent but fairly 
high performance models into an ensemble can usually lead to a 
better generalization performance. Table 2 summarizes the results 
of some plausible ensembles. 

The first method we have tried is to train a linear classifier using 
prediction scores of the three base classifiers together with the 
original 117 dimensional features. The result is slightly better 
than the best single classifier (from 79.1% to 79.9%). However, it 
doesn’t generalize well on testing data. We deem that this cascade 
training method tends to overfit the training data. Second, we 
simply average the orders (not absolute prediction values) of the 
three base predictions and inverse the average rank as the 
prediction. The result goes up a little bit to 80.2%. Third we tried 
to average the orders of two better classifiers: PB-SVM and MDV 
AdaBoost and found a notable 2.1% absolute improvement 
comparing to MDV AdaBoost. This becomes one of our final 
submissions to KDDCUP 2008. Finally we train a simple 
weighted order averaging method to combine the four base 
classifiers. The possible integer weights of each classifier are 
from 0 to 10. It performs slightly better than the previous method 
and become another submission. However, it still suffers from the 
overfitting problem. 

Table 2. Comparison of Different Ensemble Methods on 
Training Set and Testing Set 

Ensemble Method AUC on Training
 Set (in %) 

AUC on Testng 
Set (in %) 

Linear Classifier 79.9 85.3 

Avg. of Three 
Classifiers 80.2 89.0 

Avg. of Two Best 
Classifiers 81.2 89.5 

Weighted Avg. of 
All Base Classifiers 81.8 87.6 

 

2.4 Methods for Challenge 2 
The aim of challenge 2 is to increase the precision while ensuring 
perfect sensitivity (i.e. no false negative). To tackle this challenge, 
we first generate predictions from four different classifiers: 
AdaBoost, CV-SVM, PB-SVM, and the Genetic Algorithm (GA). 
In GA, we use the area under FROC directly as the fitness 
function. The experiments show that GA does better in 
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recognizing patients that have fewer positive points. Using the 
prediction scores of a classifier, we first rank the patients by 
comparing their top-ranked candidates, and then give one vote to 
the top x% of the patients. Since there are four classifiers, a 
patient will receive at most four votes. Eventually we pick the 
patients who receive at least y votes as the positive ones and the 
rest as negative ones. The results of 10-fold cross-validation show 
that when we set x=80% and y=2, it can reach 100% sensitivity in 
every fold with better precision (23%). 

3. DISCUSSION 
This section discusses some other ideas that we have implemented 
for this challenge. The experimental results reveal that they might 
not be as good as the previously discussed ones but still possess 
their own value and could be applicable to other cases. 

3.1 Location-based Clustering and 
Classification 
Another observation we have made is that the image data might 
possess features reflecting their location information on the chest, 
which might have nothing to do with its cancer status (i.e. 
whether it is malignant or not). To eliminate the interference from 
these features, we plan to first cluster the data points using their 
X-Y coordination (i.e. the relative coordination from center) and 
train independent classifiers in each cluster. In this sense, a data 
point is compared with only points in the same region. Therefore, 
when a test data comes in, our system first determines which 
cluster it belongs to, and applies the corresponding classifier on it. 
To test this idea, we tried to use K-means first to cluster points 
into 20 groups based on their location, and use them to train 40 
different classifiers (it is twice as many since we distinguish CC 
from MLO data points). The experimental results reach roughly 
70% in AUC. The reason why it is not as competitive is due to the 
fact that dividing data into smaller groups makes the already 
sparse positive data even sparser, which inevitably lower the 
classification performance.  

3.2 Model Adaptation Using the Testing Data 
According to the experiment we have described, there is a large 
performance gap between point-wise CV (>90%) and patient-wise 
CV (80%). This reveals the fact that a classifier can perform 
much better if it sees some instances of a patient in training. 
Based on this intuition, we design a method to incorporate highly 
confident testing data points to adapt the trained model. First we 
train a classifier using training data and generate predictions on 
testing data. Then we add the highly confident testing data into 
the training set to train an adapted classifier. Finally this adapted 
classifier is used to generate the final prediction on the testing 
data. The preliminary experiments we have pursued using 
manually selected threshold shows limited improvement. 
However, we would like to perform a more thorough experiment 
(including automatic choosing of threshold) on the testing data of 
KDDCUP 2008 after the announcement of testing labels.  

3.3 Exploiting Patient ID Feature 
As reported by Perlich et al. [8], the  patient ID (PID) in the 
dataset reveals powerful predictability to class label and can 
significantly improve the results. Here we would like to test how 
well our model performs while such leakage information is added 
as an additional feature. The PID is discretized in the same 
manner as suggested in [8]. The AUC on testing data using MDV 

AdaBoost reaches 94.69%, which is 1.4% higher than the best 
results reported in [8]. This experiment confirms that such leakage 
information on patients is very important, and our model still 
outperforms other models when this feature is applied.   

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a solution for imbalanced data 
classification that aims at optimizing the area under FROC for 
KDD Cup 2008 which addresses three challenging issues: dealing 
with imbalanced class distribution, optimizing area under FROC 
criterion and maximizing precision per patient. We propose to 
integrate patient-balanced and class-balanced SVMs (both of 
which select parameters using a nested uniform design procedure) 
with modified dependent variable AdaBoost for challenge 1. We 
apply another ensemble system which combines the above three 
methods plus GA to predict the labels of patients for challenge 2. 
The parameters for challenge 2 are adjusted to maintain 100% 
sensitivity and optimize the precision. The results for both 
challenges are promising, though (in particular for challenge 2) 
still have room for improvement. 

There are several plausible future directions. First, we would like 
to investigate how the domain knowledge (e.g. the alignment of 
CC and MLO data or the other medical information about the 
patient) can be incorporated into the system. Second, we would 
like to add several other classifiers (e.g. CRF, maximum entropy 
model, etc.) into the ensemble. Third, we are interested in 
exploring better ensemble methods for integration. 
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