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A General Framework for Implicit and Explicit
Social Recommendation

Chin-Chi Hsu, Mi-Yen Yeh, Shou-De Lin

Abstract—Research of social recommendation aims at exploiting social information to improve the quality of a recommender system.
It can be further divided into two classes. Explicit social recommendation assumes the existence of not only the users’ ratings on items,
but also the explicit social connections between users. Implicit social recommendation assumes the availability of only the ratings but
not the social connections between users, and attempts to infer implicit social connections between users with the goal to boost
recommendation accuracy. This paper proposes a unified framework that is applicable to both explicit and implicit social
recommendation. We propose an optimization framework to learn the degree of social correlation and rating prediction jointly, so these
two tasks can mutually boost the performance of each other. Furthermore, a well-known challenge for implicit social recommendation is
that it takes quadratic time to learn the strength of pairwise connections. This paper further proposes several practical tricks to reduce
the complexity of our model to be linear to the observed ratings. The experiments show that the proposed model, with only two
parameters, can significantly outperform the state-of-the-art solutions for both explicit and implicit social recommender systems.

Index Terms—Recommender Systems, Social Networks
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1 INTRODUCTION

SOCIAL recommendation, a study aiming at incorporating
social information of users into a recommender system,

has attracted decent attention in recent years. It can further
be divided into two tracks: explicit social recommendation
and implicit social recommendation. In explicit social recom-
mendation, a variety of models have been developed to
exploit the existing social network information to enhance
the performance of a recommender system [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13]. A common and
arguably most successful strategy is to integrate the social
information, such as trust or friendship, into a collaborative
filtering model in a certain way. Figure 1 describes an
explicit social recommendation system given edge strength
information is available, while Figure 2 shows another kind
of explicit social recommender system where only binary re-
lationship information (e.g., whether two people are friends)
is available. Suppose there is a rating dataset including
some ratings of four users {U1, U2, U3, U4} to four items
{V1, V2, V3, V4}. Such data can be denoted by a matrix where
the ”?” entries represent unknown ratings. A social-based
recommender system reads the matrix together with a given
or inferred user social network as the training examples, and
then predicts the unknown ratings.

Note that ”social recommendation” in this paper does not
refer to recommending links in social networks; instead
social networks serve as auxiliary information to improve
the quality of a recommender systems.

The information of the strength of social relationship can
be very useful to a recommender system, as it is reasonable
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Fig. 1. Explicit social recommendation based on collaborative filtering
techniques, assuming the social strength information(i.e. edge weight,
scale of trust or friendship) is available.

to assume people trust the ratings from their closer friends
comparing to those from their acquaintances. Given the
rating data along with a binary social network, several
works [1], [2], [9], [14] of explicit social recommendation
have proposed methods to determine the social connection
strength between users to enhance the quality of recommen-
dation (see Figure 2).

Unfortunately, such trust or friendship data may not
necessarily be available for every recommendation scenario
due to the budget or privacy concerns. To address such
concern, there emerges another research direction named
implicit social recommendation, which aims at mining implicit
user social relationship from historical rating data for better
recommendation. Without any explicit social data, certain
methods [15], [16], [17], [18], [19] have been proposed to
generate an implicit social network from given ratings (see
Figure 3). The pseudo links and/or their strengths can
then play as a surrogate of the explicit social network to
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Fig. 2. Explicit social recommendation without social strengths between
two connected users. Several existing solutions attempt to guess the so-
cial strengths using historical ratings to improve the overall performance.

U1

U3 U4

U2

Implicit Social Network

Rating Data Prediction

? ?

?

?

Learning

?

?

V1 V2 V3 V4

U1 1 ? 2 ?

U2 ? ? 4 3

U3 2 5 ? ?

U4 ? ? ? 4

V1 V2 V3 V4

U1 1 4 2 4

U2 1 5 4 3

U3 2 5 2 3

U4 2 4 3 4

Generation Algorithm

Collaborative Filtering

Fig. 3. Implicit social recommendation. A pseudo user social network is
generated according to the rating data. It plays as the surrogate of the
true social network for existing explicit social recommendation.

be incorporated into any explicit social recommendation
model.

The goal of this paper is to propose a unified framework
to accommodate both scenarios described above. Further-
more, it aims to address the following concerns in the
existing social recommender systems.

Concerns for explicit social recommender systems:
the quality of the given social information is sometimes
questionable. Since most of the social data are collected
from the web or social network services, inevitably they
contain noises. For example, past empirical studies [4], [20]
have shown that the auxiliary of friendship links is less
useful than trust links in boosting the recommendation
performance. Furthermore, although it is generally believed
trust or friendship are positively correlated with the level of
common-taste of people, this study [21] has shown that two
users may not have similar rating tastes even they strongly
trust each other. Thus, directly utilizing any given social
connection may harm the recommendation performance.

Some concerns have been raised on using explicit social
networks for recommendation. A past work [19] has con-
ducted analysis on three social recommendation datasets
to report three observations as follows: (1) Explicit social
networks as adjacency matrices are typically sparse, which
limits the amount of information that can be revealed. (2)

For a user, the number of ratings is positively correlated to
the number friends. It implies that explicit social networks
could not help inferring preferences of cold-start users, who
rate few items in rating datasets and likely do not possess
too much social information. (3) Active users users rates
many items) do not really possess similar rating patterns
with their friends since active users does not necessary
make friends based on interest sharing. It violates a common
assumption in existing social recommendation works that
friends share similar preferences. Consequently, this work con-
cludes that explicit social networks are not always beneficial
for recommendation.

Concern for implicit social recommender systems: most
related works attempt to empirically define ad-hoc metrics
to generate an implicit social network, and then feed it
into an explicit social recommendation model. Such strategy
requires careful tuning of thresholds and parameters in the
metrics for different domains and different rating scales,
thus can hardly be generalized. As will be shown in our
experiments later on, efforts spent to determine a common
parameter that can be effective in inferring implicit social
networks across different datasets are usually futile, thus
hinders the effectiveness of such models.

To address the above concerns, we propose a general
social recommender model applicable to the scenarios with
or without an explicit social network, as shown in Figure 4.
Given an explicit binary social network, our model learns
the strength of links from rating data to boost the quality
of rating prediction. When the explicit social network is
missing, our model learns jointly the existence and strength
of social relationships from ratings. Different from most of
the previous solutions for implicit social network that treats
the learning of the social network and recommendation
as two sequential but independent tasks, we propose a
Variational Expectation Maximization (VEM) based solution
that conducts the learning of social structure and rating pre-
diction together. By jointly learning the social relationship
and ratings from data, our data driven solution can not only
absorb the potential damage brought up by noisy explicit
social network, but also alleviates the concern of certain ad-
hoc, less-general rules for deriving implicit social networks.
To improve the usability and scalability, we further describe
some implementation tricks to avoid quadratic time and
space complexity. Experiments show that the proposed solu-
tion outperforms the state-of-the-art models in both explicit
and implicit scenarios.

Another major strength of our model is that it learns the
importance of each latent feature to determine the similarity
between users. Conventional social recommender systems
tend to regularize the latent factors of users so that the users
with social connections tend to have similar latent factors.
However, in the traditional setup, each latent dimension is
assumed to contribute equally to the determination of sim-
ilarity. We argue that this assumption is problematic since
the “area of similarity’ between every pairs of friends can
be very different. For instance, A and B may become friends
because they both like watching romance movies (assuming
romance as one latent dimension), but it does not mean that
A and B shall like action movies equally (assuming action
represents another latent dimension). Similarly, friends A
and C may have similar taste for action movies, but not
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Fig. 4. The goal of our work in this paper. If there exists a binary
social network from external source, then our proposed model works
as Figure 2 illustrates. However, even without any given information of
social structure, we would like to design a collaborative filtering model
to automatically learn the underlying pairwise social connections from
existing rating data. We hope that such social learning could boost the
prediction accuracy of the recommender system.

necessary for other types of movies. The example shows that
assuming two friends share similar latent vector (i.e. possess
similar taste on all the latent dimensions) is an overly-strong
assumption. In our model, such assumption is relaxed. In-
stead we let the model learn which latent dimension(s) best
capture the similarity between two friends. In the previous
example, our model can learn from data that A and B
become friends because they have similar taste on romance
movies, thus will only synchronize their preference on this
dimension. We believe this is another major reason that our
model can significantly outperform the competitors.

Another interesting finding we would like to share is
that our solution can be applied to learn “implicit item
relationship” as well. That is, we treat items as humans and
learn their relationships for recommendation. Technically,
our model learns which latent dimension(s) between two
items should be aligned, and experiments show that con-
sidering such implicit item relationship in our model can
further boost the recommendation quality significantly.

Below are the main contributions in this work:

• We propose a unified framework that can be adopted
in either explicit and implicit social recommendation.

• To learn our joint learning framework, we designed
a VEM-based optimization with two practical tricks
to avoid quadratic complexity and cumbersome pa-
rameter tuning process.

• The experiments show that our model can not
only outperform the state-of-the-art recommendation
models and social recommendation models, but also
produce superior results comparing to explicit social
recommendation models.

Finally, we share the detailed mathematical derivation as
well as the source code for reproducing the results. 1

2 RELATED WORK

As summarized in Section 1, prior works consist of either
explicit social recommendation (using information from ac-

1. https://github.com/ntumslab/SocialCovariancePrior

cessible external social networks) or implicit social recom-
mendation (network topology and edge strengths inferred
from the rating data). We review these two classes of works
in this section.

Explicit social recommendation usually incorporates ac-
cessible social relations among users. In real-world applica-
tions, the relation of two users is usually defined by trust or
friendship. Roughly speaking, trust indicates an one-way re-
lation created by a user toward another. UserA trusting user
B does not necessarily imply B also trusting A. Conversely,
friendship represents a mutual relationship between two
users. User A making friends with user B implies A is also
a friend of B. We refer readers to researches [20] and [4] that
conduct experiments to compare the properties of these two
types of relationships. Though some previous works rely on
using the trust networks while others focus on friendship
networks, we find that most of the proposed models are
applicable for either case, regardless of whether directed
trust networks or undirected friendship networks are ex-
ploited. Early solutions of explicit social recommendations
[3], [5], [10] determine the recommended items by exploring
the trust networks. Later on, researchers start to bring social
information into the matrix factorization models with vari-
ous assumptions social recommendation integration. SoRec
[7] uses the shared user latent factors for both the rating
matrix and the social matrix factorization. RSTE [8] predicts
a user’s ratings by the linear combination of the user and his
or her trustees’ latent factor vectors. SocialMF [6] defines
that a user’s latent factors should be close to the linear
combination of his or her trusted friends’ latent factors.
Social Regularization [9] considers a pairwise assumption
that two users trusting each other should have similar latent
factors, and thus appends a regularization term to the classi-
cal matrix factorization model. There exist works modeling
social influence based on collaborative filtering, such as
conditional random field [12] and probabilistic Poisson fac-
torization [1]. TrustSVD [4] incorporates the trust networks
with SVD++, a variant of matrix factorization modeling the
implicit influence from user latent factors through observed
ratings. PTPMF [11] supposes that an observed social link
shall be either weak or strong preference transfer between
two connected users, and then declares two types of user
latent factors to distinguish the social influence of weak-
tied friendship and strong-tied friendship. However, often
an explicit social network is available but the edge strength
information is missing or less believable due to privacy or
the budget constraints. Some solutions are proposed to ex-
tract helpful edge strength features from the existing given
ratings. For example, combining with SocialMF, Fazeli et al.
[14] survey and compare the performance of different trust
strength metrics on an explicit social network. Fang et al.
[2] fuse support vector regression with matrix factorization
to learn both ratings and strengths from an explicit trust
network. Social Regularization [9] considers cosine similar-
ity or Pearson correlation coefficient between two users as
candidates of social strength definition. Compared with the
above approaches, the main contribution of our model is
that it obtains the strength of each individual social connec-
tion through learning the importance of each latent dimension.
Therefore, our model is flexible enough to determine the
different types of social relationships between users, and
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thus learns the importance of each individual connection.
Implicit social recommendation attempts to extract latent

social relations between two users from the given rating
behaviors. The generated information serves as the surro-
gate of the explicit social networks in the explicit social
recommender systems. Despite the quadratic time com-
plexity of evaluating pairwise user or item social relations,
Guo et al. [15] study user-based collaborative filtering that
recommends items using a trust network generated from
the predefined trust metrics. With the existence of extra
features, Lin et al. [16] (rating time) and Guo et al. [22]
(text review) present methods to obtain implicit social net-
works. There are some works that apply matrix factorization
techniques on implicit social networks. RSTE [18]/Social
Regularization [17] read implicit social networks generated
by the evaluation of cosine similarity/Pearson correlation
together with predefined thresholds to determine the social
connections. Recently a novel generation method CUNE [19]
has been proposed for implicit social recommendation by
performing network embedding in a predefined user social
network that comes from ratings. The method also requires
a predefined threshold e.g. k to determine the top-k friends
with the highest cosine similarity of network embeddings
of two connected users. Comparing to the above models,
the main strength of our approach is that it models the
rating prediction and the social strength learning as a joint
optimization task. These two tasks can mutually reinforce the
quality of each other to achieve better results. Our approach
is data-driven and thus does not need ad-hoc metrics or
handcrafted thresholds to determine the existence/strength
of social relationship.

3 MODEL DESIGN

In this section, we would like to present our unified so-
cial recommendation model, named Social Covariance Prior
(SCP). We first state the formal problem definition in Section
3.1, followed by the review of PMF in Section 3.2. Section 3.3
presents the overview of SCP.

3.1 Problem Definition
We are given rating data denoted by matrix R ∈ RN×M ,
where N is the number of users and M is the number
of items. An observed or non-missing entry Rij records a
numerical rating score that user i, 1 ≤ i ≤ N , gives to
item j, 1 ≤ j ≤ M , as a training instance. Some datasets
also provide an explicit social network to represent the social
relations among users. An adjacent matrix S(E) ∈ RN×N

denotes the social network, where entry S
(E)
if is binary

(whether user i trusts or makes friends with user f ). The
goal of explicit social recommendation is to predict the
unobserved values in R by incorporating both observed
values in R and social information from S(E). For implicit
social recommendation, the goal is, even without S(E), to
mine an implicit social network S(I) from R to enhance the
prediction accuracy.

3.2 Probabilistic Matrix Factorization (PMF)
Since the proposed SCP model is an extension of probabilis-
tic matrix factorization, we first briefly introduce PMF. Mnih

et al. [23] proposed a probabilistic view of matrix factoriza-
tion. Matrix factorization assumes a low-rank R ≈ U>V .
That is, R can be approximated by the multiplication of
user latent matrix U ∈ RK×N and item latent matrix
V ∈ RK×M (K � N,K � M ), where column vectors
Ui, Vj reflect latent rating characteristics of user i and item
j, respectively. Note that throughout this paper, we use K
to denote the number of latent factors. The corresponding
objective function is shown as follows:

arg min
U,V

1

2

N∑
i=1

M∑
j=1

δij

(
Rij − U>i Vj

)2

+
αU
2

N∑
i=1

‖Ui‖22 +
αV
2

M∑
j=1

‖Vj‖22

(1)

δij ∈ {0, 1} indicates whether Rij is observed in the
training data. αU , αV are regularization parameters. Under
probabilistic view, an observed rating Rij is generated by a
normal distribution of mean U>i Vj as the likelihood func-
tion. Corresponding to l2-norm regularization, zero-mean
spherical Gaussian priors are used to generate Ui and Vj .
Hence, the overall posterior to be optimized is

arg max
U,V

p(U, V |R, θ)

=

N∏
i=1

M∏
j=1

N (Rij |U>i Vj , σ2
R)δij

N∏
i=1

N (Ui|0, σ2
UI)

M∏
j=1

N (Vj |0, σ2
V I).

(2)

N denotes a normal distribution, where the mean is the in-
ner product U>i Vj and the variance is σ2

R. σ2
U , σ

2
V are shared

variances among users and items, and I is the identity
matrix. θ = {σ2

R, σ
2
U , σ

2
V } denotes all the hyperparameters.

Note that N for vectors Ui and Vj becomes multivariate
normal distribution. A common solution to (2) is to take
(− log) (then we obtain (1)) and perform optimization using
stochastic gradient descent (SGD). The probabilistic view
enables us to combine matrix factorization with other prob-
abilistic models like Latent Dirichlet Allocation (LDA) [24]
more naturally. Moreover, the Bayesian treatment such as
Markov Chain Monte Carlo (MCMC) [25] and variational
inference [26], [27] can then be applied.

3.3 Social Covariance Prior (SCP)
3.3.1 SCP for Implicit User Social Recommendation
We first describe a general version of our model that as-
sumes the non-existence of the social connections, where
the implicit relationship has to be inferred using the ratings.

The fundamental idea is that we propose a series of
social-based priors to regularize the underlying pairwise
distances among user latent factors:

∏
(i,f)∈EU

[
N (Ui|Uf , S−1

Uif )W(SUif |K,ΛU )

] 1
TUi

, (3)

where EU represents the set of directed edges in the user
social network. Since an explicit social network is not avail-
able, here we assume EU is a fully connected graph. TUi is the
number of user i’s neighbors (i.e., trustees or friends). Such
prior will be incorporated into the original PMF equation
to describe the user social network structure to be learned.
Similar to previous works such as [9], SCP assumes that
the social influence is implicitly transferred through the
factorized matrix U . We model a pairwise social relation
using a K-dimensional multivariate normal distribution N
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with the mean as neighbor f ’s latent factor vector, which
regularizes the latent factors of social neighbors to be similar
“to some extend” (i.e. rather than forcing the whole latent
vector to be similar). The major difference from the previous
works is that we introduce the personalized inverse covari-
ance matrix SUif to fine-tune the similarity metrics between
users. For each potential connection between persons i and
f , we want to learn SUif to capture their similarity, or social
edge strength (i.e. scale of trust or friendship), on the latent
vectorsUi andUf . The SUif is designed as a diagonal matrix
to be learned, where the values of each diagonal element
represent the variance of each dimension in the latent factor
Ui. That says, SUif captures the strength of each latent
dimension toward defining the edge strength. With such
prior, we are now capable of modeling different “types” of
social relationships, such as “A and B are friends because
they are similar in latent dimension D1 and D2; while A
and C are friends since they are similar in dimension D3, D4,
and D5”. Besides, to facilitate efficient learning, we choose
Wishart distribution W , the conjugate prior of precision
matrix, with a fixed degree of freedom K and a scale matrix
ΛU shared by all SUif as regularization for S. As will be
described later on, ΛU will also be learned from data. Note
that the zero-mean Gaussian spherical prior can be replaced
with more general Gaussian priors such as those used in
BPMF [25] or PPMF [26]. Nevertheless, here we apply the
simple prior as the probabilistic view of l2-norm for fair
comparison with previous social recommendation models
widely using l2-norm regularization.

One major issue to address for implicit social recom-
mender systems lies in the concern of efficiency. Because
we need to learn SUif for a fully connected graph, it nor-
mally takes O(N2) time and space to evaluate all pairwise
strengths between nodes. In Section 4.5.1, we will discuss
how to address this issue.

3.3.2 SCP for Explicit User Social Recommendation

Explicit social recommendation can simply be treated as a
special case in our model: when we are allowed to access
explicit binary social networks together with rating data,
we can simply define the edge sets EU as the explicit social
network. If the input network is undirected, each edge
(i, f) is modelled as two directed edges (i, f), (f, i) ∈ EU .
Thus, instead of going through all pairs of nodes, if edge
(i, f) /∈ EU for users i, f , then we do not attempt to learn
the similarity SUif and assume Ui is independent of Uf .
Note that SCP does not utilize explicit edge strength even
if it is provided. First, to our knowledge, there are very few
publicly available explicit social network with edge strength
information. Second, as mentioned previously, noisy edge
strength could degrade the prediction performance, so we
would rather learn it from data. Figure 5 marks the differ-
ence between incorporating an explicit social network and
learning an implicit social network.

3.3.3 SCP for Item Social Networks

Since our model mines the implicit relationship between
users, we can as well apply the same concept to mine the
implicit relationship between items. Thus, the item social
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Fig. 5. Two scenarios of SCP learning a user social network. (a) If
an explicit binary social network is accessible, then SCP learns the
similarity (i.e. social strength) of each edge by rating data, regardless
of external social strengths. (b) Without explicit social networks, SCP
assumes that any pair of users have potential social relationships, and
then learns every pairwise similarity. Note that one edge contains two
directions to be learned different similarity values

prior that is symmetric to (3) can be incorporated into our
optimization procedure:

∏
(j,g)∈EV

[
N (Uj |Ug, S−1

V jg)W(SV jg|K,ΛV )

] 1
TV j

. (4)

Similar to the user social prior, the item social prior captures
the similarity between two items by aligning their latent fac-
tors. Furthermore, every two items can be “similar” in dif-
ferent aspects captured by latent dimensions. For instance,
movie A and B are similar because there is overlapping
between the main actors. On the other hand, movie C and
D are similar because they are talking about a similar topic.

3.3.4 Social Covariance Prior Overview
Integrating the components from previous sections, we now
propose the general SCP model as follows:

arg max
U,V,SU ,SV

N∏
i=1

M∏
j=1

N (Rij |U>i Vj , σ2
R)δij

N∏
i=1

N (Ui|0, σ2
UI)1−bU

∏
(i,f)∈EU

[
N (Ui|Uf , S−1

Uif )W(SUif |K,ΛU )

] bU
TUi

M∏
j=1

N (Vj |0, σ2
V I)1−bV

∏
(j,g)∈EV

[
N (Vj |Vg, S−1

V jg)W(SV jg|K,ΛV )

] bV
TV j

,

(5)

where bU , bV ∈ [0, 1] are balance parameters. They control
the regularization ratio between the social prior and the
zero-mean Gaussian spherical prior. Later on in our experi-
ment, we will show that setting bU = bV = 1 yields better
results, meaning that the original Gaussian spherical prior
can be ignored. Figure 6 displays the graphical structure of
SCP.

4 MODEL LEARNING

In this section, we will discuss how the variables in our
model can be derived through the mean-field Variational
Expectation Maximization (VEM) [28] method, one of the
common Bayesian learning algorithms. The learning process
and the prediction are described in Section 4.1 to 4.4. Section
4.5 describes several implementation tricks to improve the
time and space efficiency. Finally we analyze the complexity
of both time and space in Section 4.6.
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Fig. 6. Graphical model for Social Covariance Prior (SCP). In Sec-
tion 4, we learn SCP using Variational Expectation Maximization
(VEM) where E-step learns variational parameters θ′ of random vari-
ables {Ui, Vj , SUi, SV j} and M-step learns model parameters θ =
{ΛU ,ΛV , σ2

U , σ
2
V , σ

2
R}.

Stochastic Gradient Descent (SGD) is considered as a
popular method to learn parameters in social recommen-
dation. Its main advantage over VEM is to maximize the
exact objective rather than the lower bound under VEM.
We choose VEM because of two considerations. (1) Efficient
computation. VEM saves significant efforts for parameter
tuning. As regularization scales in SGD, overall four to
five model parameters in SCP need to be carefully tuned,
which is a time consuming process. VEM learns varia-
tional and model parameters to alleviate potential overfit-
ting to validation data. (2) Efficient space usage. One of
our major contributions is that based on VEM we pro-
pose space-saving tricks that reduce space complexity from
O(NK2 + |EU |K2) to O(NK) where |EU | is the number
of edges, in order to eliminate the number of parameters
that must be kept in memory during the learning process.
Recall that when learning implicit social networks (Section
3.3.1), we have to learn a fully connected graph, and hence
O(NK2 + |EU |K2) = O(N2K2). The trick is to exploit the
fact of repeatedly taking V and E-steps in VEM learning. The
old values of O(N2) social strength variational parameters
x in the E-step can be instantly cast to the computation
of M-step model variables, and hence we can release the
O(N2K2) space of x. Considering learning only diagonal
elements for eachK×K matrix parameter, the overall space
complexity is from O(N2K2) to O(NK). The detail of two
space-saving tricks is presented in Section 4.5.2. However
the first trick cannot work under SGD, since all the old
values of parameters x must be kept to to enable gradient
descents x′ = x − η ∂O∂x with objective function O and
learning rate η. Without the help of the space-saving trick,
the SGD optimization needs to keep O(N2K) parameters
in memory, which is infeasible to accept a large size of N
users.

4.1 Overview
According to Bayesian treatment, we need to maximize the
likelihood of of the observed ratings, given the parameters
θ = {ΛU ,ΛV , σ2

R, σ
2
U , σ

2
V } and averaging over all possible

values of the hidden variables Z = {U, V, SU , SV }:

p(R|θ) =

∫
Z

p(R,Z|θ)dZ,

where p(R,Z|θ) is represented in (5). Unfortunately, the
integration incurs the intractability of the optimization. In-

stead, we can apply a tractable auxiliary probability q(Z|θ′)
to maximize the lower bound of the log likelihood. The lower
bound can be derived from Jensen’s inequality as follows:

log p(R|θ) = log

∫
Z

q(Z|θ′)p(R,Z|θ)
q(Z|θ′) dZ = logEq(Z|θ′)

[
p(R,Z|θ)
q(Z|θ′)

]
≥ Eq(Z|θ′)

[
log

p(R,Z|θ)
q(Z|θ′)

]
= Eq(Z|θ′)

[
log p(R|θ)

]
− Eq(Z|θ′)

[
log

q(Z|θ′)
p(Z|R, θ)

]
= log p(R|θ)−KL

[
q(Z|θ′)‖p(Z|R, θ)

]
. (6)

Eq(Z|θ′)(X) is the expected value of X over probabil-
ity distribution q(Z|θ′), and KL(p‖q) is the non-negative
Kullback-Leibler divergence of two distributions p and q. To
tighten the lower bound, we should have the divergence
be 0, which implies q(Z|θ′) = p(Z|R, θ). However, the
intractability of p(Z|R, θ) demands a tractable replacement.
An approach to variational tractable q(Z|θ′) is assuming all
the involved hidden variables being independent of each
other:

q(Z|θ′) =

N∏
i=1

N (Ui|λUi, γUi)
∏

(i,f)∈EU

W(SUif |K + 1,ΛUif )
bU
TUi

M∏
j=1

N (Vj |λV j , γV j)
∏

(j,g)∈EV

W(SV jg|K + 1,ΛV jg)
bV
TV j ,

(7)

where θ′ = {λUi, λV j , γUi, γV j ,ΛUif ,ΛV jg}. One advan-
tage is that there is no shared parameter among the hidden
variables in q(Z|θ′). The independence assumption is called
mean-field approximation.

Now we have two sets of parameters: θ from the model
distribution, and θ′ from the variational distribution. VEM
learns patterns by optimizing both sets of parameters that
determine the presence of all probability distributions. Like
classical expectation maximization (EM) algorithm, we it-
eratively execute variational E-step and M-step, updating
θ′ and θ respectively until a local optimum or predefined
maximum number of iterations is reached.

Due to page limits and the symmetric forms of proba-
bility distributions of users and items, the following math-
ematical details focus on the derivation of user parameters.
Readers can refer to our Supplemental Material for more
derivation details of Section 4.2 and 4.3.

4.2 Variational E-step
In variational E-step, we have to optimize variational pa-
rameters θ′ as fixing model parameters θ. Mean-field ap-
proach leads to a general principle [29]. It incurs conve-
nience to derive θ′ in q(Z|θ′). For instance, for some user i,
we have his or her variational distribution q(Ui) as follows:

log q(Ui|θ′) = E−q(Ui|θ′) [log p(R,Z|θ)] + C0,

where −q(Ui|θ′) represents the joint distribution of all the
random variables Z except Ui, and C0 absorbs the terms not
relevant to Ui. We extend the expected value over indepen-
dent variational random variables based on the mean-field
assumption. The extension derivation refers to [30]. All the
expected values as well as covariance matrices can be writ-
ten as parameters in θ. In the end, we complete the square
in order to write down a logarithmic form of multivariate
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normal distribution with mean λUi and covariance matrix
γUi. They are what we need to update at E-Step:

γUi =

[
1

σ2
R

M∑
j=1

δij

(
λV jλ

>
V j + γV j

)
+ (1− bU )(σ2

U )−1I

+
∑

(i,f)∈EU

bU (K + 1)

TUi
ΛUif +

∑
(f,i)∈EU

bU (K + 1)

TUf
ΛUfi

]−1

,

(8)

λUi = γUi

[
1

σ2
R

M∑
j=1

δijRijλV j +
∑

(i,f)∈EU

bU (K + 1)

TUi
ΛUifλUf

+
∑

(f,i)∈EU

bU (K + 1)

TUf
ΛUfiλUf

]
. (9)

We treat the similarity variables SU the same ways. Here we
write down the final equation:

ΛUif =

[
(λUi − λUf )(λUi − λUf )> + γUi + γUf + Λ−1

U

]−1

.

(10)

4.3 Variational M-step
This step takes care of the optimization of model parameters
θ with fixed variational parameters θ′. We can perform the
task by taking the derivative of the lower bound in (6), and
find the closed-form solution of each parameter in θ.

We use σ2
U as example. The lower bound L in (6) is

viewed as function of σ2
U . Let ∂L

∂σ2
U

= 0 and then obtain
the closed-form solution:

σ2
U =

1

KN

N∑
i=1

(
‖λUi‖22 + tr(γUi)

)
. (11)

At M-step, we update σ2
U using the above assignment.

Following similar derivations, we have the update rules of
other model parameters:

ΛU =
1

KN

∑
(i,f)∈EU

1

TUi
(K + 1)ΛUif , (12)

σ2
R =

1

|R|

N∑
i=1

M∑
j=1

δij

[
R2
ij − 2Rijλ

>
UiλV j + (λ>UiλV j)

2

+ tr(γUiγV j) + λ>UiγV jλUi + λ>V jγUiλV j

]
, (13)

where |R| =
∑N
i=1

∑M
j=1 δij is the number of ratings in the

training data.

4.4 Prediction
After the convergence of the VEM, we are able to predict
an unobserved rating Rij using the learned parameters.
Without knowing the true rating likelihood, we apply the
same strategy as M-step: finding Rij to maximize the lower
bound L(Rij) of likelihood. This strategy can be done by
letting ∂L

∂Rij
= 0. The closed-form solution is used to predict

unobserved ratings:

R̂ij = λ>UiλV j . (14)

4.5 Improving Efficiency
In this section we mention some practical tricks to improve
the efficiency of SCP.

Iteration 1 Iteration 2 Iteration 3

Fig. 7. Interpretation of randomized implicit social network. For each
iteration (running E-step and M-step once), every user or item samples
a small number of friends uniformly at random.

4.5.1 Time: Randomized Implicit Social Network
Generating implicit social connections is computationally
expensive since we need to evaluate all possible pairwise
connections. Previous works thus define heuristics to elim-
inate edges that are less likely to reflect strong social re-
lations. For example, Ma et al. [17] leave merely those
edges connecting two users who rate at least 10 identical
items. However, such manually-crafted heuristics might not
be suitable for every scenario, and it still costs O(N2)
complexity to run the algorithm to determine which edge
to be removed.

To address the efficiency issue, our idea is to do random
sampling from a user’s neighbors for each VEM iteration, as
illustrated in Figure 7. To explain the trick, let us have a
deeper analysis on the updating rules of our VEM model.
In fact, there are three updating rules that require the enu-
meration of all possible pairs EU . That is, a set of updated
similarity scale matrices ΛUif for all neighbors f of user
i is computed mainly for the updates of variational mean
vector λUi, λV j (shown in (9)), variational covariance matrix
γUi, γV j (shown in (8)), and model scale matrix ΛU ,ΛV
(shown in (12)). Here we focus on the pairwise update terms
in (8), ∑

(i,f)∈EU

bU (K + 1)

TUi
ΛUif +

∑
(f,i)∈EU

bU (K + 1)

TUf
ΛUfi

=
bU (K + 1)

N − 1

N∑
f=1,f 6=i

(
ΛUif + ΛUfi

)
. (15)

The right-hand side of (15) reveals the mean of similarities
between user i and all other users. Note that it is the mean
value that we need. Thus, the law of large number tells
us that for each VEM iteration, as long as we can sample
sufficient amount of users F ⊆ {f : 1 ≤ f ≤ N, f 6= i}
uniformly at random, then the mean of similarities of the
sampled neighbors will approach the original mean as fol-
lows:

bU (K + 1)

N − 1

N∑
f=1,f 6=i

(
ΛUif + ΛUfi

)
≈ bU (K + 1)

|F |
∑
f∈F

(
ΛUif + ΛUfi

)
.

(16)

The same idea is applicable for the terms in (9) (12) as
well since they all involve the estimation of mean values.
In summary, at E-step, we only need to sample a constant
number of neighbors for each user, which allows us to avoid
the curse of evaluating a fully-connected graph.

4.5.2 Space: Saving Matrix Parameter
SCP is composed of three kinds of K × K matrix param-
eters: variational covariance matrices γUi, γV j∀i, j, varia-
tional scale matrices ΛUif ,ΛV jg∀i, j, f, g, and model scale
matrices ΛU ,ΛV . There are overall NK2 values in γUi∀i
and |EU |K2 values in ΛUif∀i, f to be trained, which incurs
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certain burden on the optimization process. Furthermore,
overfitting is also a concern since we have to train a number
of parameters. A simple trick we have applied here is to
make all the matrix parameters diagonal. In other words, all
the off-diagonal elements are fixed to zero. Some previous
works [26], [31] have also utilized such trick. When per-
forming VEM, we need not to update off-diagonal elements
at all. The diagonal trick enables us to save and train NK
values in γUi∀i and |EU |K values in ΛUif∀i, f . Details are
shown in our Supplemental Material.

In Section 4.5.1 we have described a trick to reduce
the time complexity to linear using sampling techniques.
It still requires |EU |K non-zero elements to store each of
the variational scale matrices ΛUif and ΛV jg , and up to
O(|F |NK) storage for implicit social networks. Inspired by
[27], we observe that for our task there is no need to store
those variational scale matrices throughout the process.
First, those variables are used only in the training stage.
They play no role during the prediction stage (see Section
4.4). Second, in the VEM training stage, we observe that
an updated ΛUif is always used in summation in (8), (9)
and (12) later on. Hence, after ΛUif updates its value, we
can use it in (8), (9), and (12) for the summation term right
away, and then its space can be released since it is no longer
needed. In the end, O(|F |NK), the most dominant factor to
space complexity, can be eliminated. In terms of space, our
model becomes more scalable for big datasets after applying
the tricks mentioned. Details are put in the Supplemental
Material.

4.6 Complexity Analysis

Section 4.5.2 has concluded that keeping only diagonal ma-
trix parameters takes only O(NK+MK) in terms of space.
Other parameters do not demand space larger than such.
Consequently, the overall space complexity is constrained
to O(|R| + |E| + NK + MK), where |R| is the number of
ratings in the training data, |E| is the number of edges if an
explicit social networks is provided, or zero for the case of
implicit recommendation.

As for running time, since the number of iterations
needed for convergence varies for different datasets, we
analyze the time complexity of one VEM iteration. For
variational variable sets λU , λV , γU and γV , the update
rules (8) and (9) take total time O(|R|K2 + NK3 + MK3)
including O(K3) time to generate the inverse matrix. In
practice, K is usually small as the size of the latent factor
(e.g., 10 in our experiments). With the trick mentioned in
Section 4.5.2, the similarity-related variables ΛU ,ΛV can
be computed in O(|E|K) time for explicit social networks.
However for implicit social networks, the complexity be-
comes O(|F |NK + |F |MK) where |F | is the fixed number
of sampled users or items, which we have discussed in
Section 4.5.1. To update σ2

R, it takes timeO(|R|K). Note that
in practice |F | andK are far smaller than |R|, |E|, N andM .
Therefore, our model is scalable since the time complexity is
linear to |R|, |E|, N or M .

5 EXPERIMENTS

5.1 Experiment Settings

5.1.1 Datasets

To evaluate the proposed approach, we conduct experi-
ments using four datasets (Epinion 2, Ciao 3, Flixster 4 and
FilmTrust 5) containing explicit user binary social networks
and two datasets (MovieLens 1M 6 and Amazon 7) as the
representative of a large rating dataset without explicit
social network. For each dataset, we discard the repeated
ratings such that if a user rated an item more than once, then
we keep only the latest rating. The statistics of the datasets
are shown in Table 1. For each rating in each dataset, we
subtract it by a constant mean of all ratings in that dataset.
Note that for the largest dataset (Amazon), it takes about 8.5
hours for SCP to finish the computation with RMSE 1.178,
while all competitors failed to finish the computation within
72 hours. Therefore we cannot really compare the results on
Amazon dataset in the following section.

TABLE 1
Statistics of datasets in our experiments. ”N/A” means no explicit user
social network. Cold-start users have less than 20 ratings in a dataset.

Dataset Ratings Users Items Edges Cold-start
users Relation

FilmTrust [32] 35494 1508 2071 1632 854 Trust
Epinions [33] 912441 22164 296277 354897 11362 Trust

Ciao [33] 282650 7375 105114 57544 3889 Trust
Flixster [34] 8196077 147612 48794 2538746 111120 Friendship
MovieLens

1M [35] 1000209 6040 3706 N/A 0 N/A

Amazon [36] 82677131 21176522 9874211 N/A 20594442 N/A

5.1.2 Competitors

Next, we introduce the following baseline and the state-of-
the-art social recommendation models for comparison.

Probabilistic Matrix Factorization (PMF) [23]. As have
described in Section 3.2, PMF is a popular model-based
collaborative filtering approach without using social rela-
tionship. It serves as the baseline in our experiments.

NeuMF [37]. To our knowledge, NeuMF is the state-
of-the-art recommender system that extends vanilla matrix
factorization. It does not import explicit social networks
or assume implicit social networks in its neural network
structure. We compare SCP with NeuMF to show the per-
formance benefit of learning implicit social networks.

Explicit Social Recommendation Models. We imple-
mented several well-known explicit social recommender
systems. The corresponding objective function for each is
shown below:

Social Regularization (SocReg) [9]

arg min
U,V

1

2

N∑
i=1

M∑
j=1

δij
(
Rij − U>i Vj

)2
2. www.public.asu.edu/˜jtang20/datasetcode/truststudy.htm
3. www.public.asu.edu/˜jtang20/datasetcode/truststudy.htm
4. www.cs.ubc.ca/˜jamalim/datasets/
5. www.librec.net/datasets.html
6. grouplens.org/datasets/movielens/
7. jmcauley.ucsd.edu/data/amazon/links.html
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+
αU
2
‖U‖22 +

αV
2
‖V ‖22 +

β

2

∑
(i,f)∈EU

ωif‖Ui − Uf‖22, (17)

where ωif denotes the edge strength between user i and f .
SocialMF [6]

arg min
U,V

1

2

N∑
i=1

M∑
j=1

δij
(
Rij − U>i Vj

)2
+
αU
2
‖U‖22 +

αV
2
‖V ‖22 +

β

2

N∑
i=1

‖Ui −
∑
f∈Fi

ωifUf‖22, (18)

where Fi denotes the set of neighbors of user i.
TrustSVD [4]

arg min
U,V,Y,W,b

1

2

N∑
i=1

M∑
j=1

δij
(
Rij − R̂ij(U, V, Y,W, b)

)2
+
β

2
C1(U)

+
β

2

∑
(i,f)∈EU

(ωif − ω̂if (U,W ))2 +
α

2
C0(U, V, Y,W, b),

(19)

where Y represents latent factors of items that a user rates
in the training data, W denotes latent factors of users that
a user trusts, b is the bias of users and items. Functions
R̂, ω̂ are designed to predict unobserved entries in R,ω
respectively, and functions C0, C1 contain regularization
terms.

PTPMF [11]

arg min
U,V

1

2

N∑
i=1

M∑
j=1

δij
(
Rij − R̂ij(Uw, Us, V, P )

)2
+
αU
2
‖U‖22 +

αV
2
‖V ‖22 +

β

2

N∑
i=1

‖Uwi −
∑
f∈Fi

ωifUf‖22

+
β

2

N∑
i=1

‖Usi −
∑
f∈Fi

ωifUf‖22,+
γ

2
C(P ) (20)

where Uw, Us respectively imply latent factors of users
interacting with friends of weak or strong social strengths.
R̂ denotes the rating estimate. Parameters P learn the user
preferences between weak and strong social strengths. C is
the regularization term.

Both SocReg and SocialMF are well-known explicit social
recommendation works, while TrustSVD and PTPMF are the
state-of-the-art solutions in this domain. Note that all the
four competitors aim to minimize the squared error of rating
prediction, which corresponds to maximizing likelihood
of normal distributions over ratings in SCP. Some of the
previous works in Section 2 are not considered since their
objectives do not target at the minimization of squared error.
We believe that it is fairer to compare all the experimented
models with the same objective form.

Implicit social recommendation. For each of the five
datasets, we follow a classical proposal in [17] to generate
implicit user social networks. That is, the existence of an
edge is confirmed if two users commonly rate at least 10
items and the Pearson Correlation Coefficient (PCC) be-
tween their ratings is larger than 0.5. Then the generated
networks are fed into the above models (i.e. SocReg, So-
cialMF, TrustSVD and PTPMF) as the input social network
to generate the recommendation results. Note that although
[17] proposes the concept of dissimilar edges, it is not
applied in our experiments since it is specifically designed

for SocReg. We also implement the state-of-the-art proposal
CUNE [19] to generate another implicit social network for
each rating dataset. The approaches determine the friend set
of a user with the top-50 highest cosine similarities between
the network embeddings of the user and another. All the
hyper-parameters of CUNE follow the default setting in
[19]. Recall that SCP learns an implicit user social network
optimization itself, therefore it does not use the generated
implicit social network. We show an overview of our exper-
iments using Table 2.

TABLE 2
Overview of our experiments on implicit social recommendation

Two stages of implicit social recommendation

Model 1: Generating
implicit social networks

2: Learning recommendation with
implicit social networks

SocReg [9] Algorithms:
(1) PCC [17]

(2) CUNE [19]

SocReg
SocialMF [6] SocialMF
TrustSVD [4] TrustSVD
PTPMF [11] PTPMF

SCP One-stage approach
Learning implicit social networks and recommendation together

All the competitor approaches are trained using stochas-
tic gradient descent (SGD), as mentioned in the corre-
sponding paper. In the original papers of most competitors,
vanilla SGD is used with a fixed learning rate. To save
tuning time, the learning rate is dynamically adapted by
ADADELTA [38] where the insensitive parameters is set to
ρ = 0.95, ε = 10−6, according to the original paper. NeuMF
using Adam [39] is the exception for better performance,
while it is not the case for the other competitors. We tune
regularization parameters α, β by searching values in {10p |
p ∈ Z,−4 ≤ p ≤ 1}, and let αU = αV . γ = 10−5 following
the experiments in PTPMF. For SCP parameters bU , bV , we
tune them in the value set {0.1k | k ∈ Z, 0 ≤ k ≤ 10}. We
always fix the number of latent factors K = 10, which is
also assumed by all the competitor models in their original
papers. Finally, the number of sampled neighbors |F | = 100
for SCP.

5.1.3 Evaluation
As SCP and all the competitor models minimize the squared
error as their objective, we report model performance us-
ing a common evaluation metric Root Mean Squared Error
(RMSE), which is monotonically increasing in the squared
error. It is widely used for evaluating rating prediction
in a recommender system. Smaller RMSE implies better
prediction performance.

On the other hand, we also evaluate the ranking of the
items for each user using Hit Rate and AUC, the Area under
ROC curve (since some experiments have binary outcomes).
For each user, we examine top 50 recommended items with
the highest predicted ratings, following the setting in [11].

We use 5-fold cross validation, and report average results
of the 5 folds. Moreover, we choose 10% of the training
data as the validation data for each of the model. After each
epoch of the VEM or SGD optimization, we evaluate RMSE
on the validation data. If we observe RMSE decreasing by
less than 10−4, the model stops training as convergence is
considered to be reached. Since SCP and all the baseline
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models optimize MSE for rating prediction, it is proper to
use RMSE to determine the timing of early stopping.

5.2 Experiment Results
Here we would like to evaluate five hypotheses (H1 to H7)
to justify the effectiveness of our model. Furthermore, we
conduct sensitivity analysis of parameters bU , bV in SCP.

5.2.1 Performance Comparisons

TABLE 3
RMSE and one-fold running time (seconds) of PMF using SGD and

VEM methods; (*) denotes the RMSE being significantly lower than the
other under 95% confidence level.

FilmTrust Epinions Ciao Flixster MovieLens 1M

SGD RMSE 0.8187 1.1506 1.0740 0.8744 0.8797
Time 0.34 11.53 3.05 102.32 14.75

VEM RMSE 0.8063 1.1078* 1.0610* 0.8474* 0.8582*
Time 0.43 12.67 1.18 184.87 7.80

H1: VEM-based learning model produces competitive
results in learning PMF comparing to SGD-based learning
methods. One key idea of our model is to resort to VEM
instead of SGD in optimization, since VEM allows us to em-
bed a complex social prior and learn both latent user/item
factors as well as implicit social co-variance together. As
commented at the head of in Section 4, SCP cannot be simply
optimized all the parameters of its social priors using SGD.
Thus we think it is meaningful to compare whether VEM
learns as good and fast as SGD in a traditional PMF setting,
which is equivalent to SCP without social priors, to confirm
VEM being a competitive alternative. Table 3 lists RMSE on
PMF using both techniques. The results show that the VEM-
based learning strategy is at least as good as SGD in terms
of accuracy and efficiency, which strengthen our motivation
of replacing SGD with VEM.

TABLE 4
Performance comparisons between recommender systems with explicit

user social networks. (*) implies the statistically significant difference
between top-1 and top-2 values under 95% confidence.

SocReg SocialMF TrustSVD PTPMF SCP

RMSE 0.818 0.819 0.809 0.821 0.805
FilmTrust AUC 53.315% 53.272% 53.619% 53.024% 53.784%

Hit Rate 5.385% 5.252% 3.899% 7.255% 37.016%*

RMSE 1.139 1.144 1.101 1.148 1.091*
Epinions AUC 56.757% 54.912% 58.832%* 55.187% 57.594%

Hit Rate 0.134% 0.265% 0.173% 0.218% 2.687%*

RMSE 1.046 1.046 1.025 1.071 1.013*
Ciao AUC 50.623% 50.673% 54.079%* 51.503% 53.229%

Hit Rate 1.432% 1.397% 1.494% 2.188% 4.572%*

RMSE 0.855 0.855 0.870 0.868 0.848*
Flixster AUC 54.492% 54.473% 54.584% 54.318% 54.796%*

Hit Rate 1.078% 1.305% 0.176% 1.983% 6.143%*

H2: Given an explicit social network, our model can
outperform existing explicit social recommender models.
Since we claim our model as a general solution for both
explicit and implicit social recommendations, we would like
to first evaluate its effectiveness on explicit social recom-
mendation. Table 4 demonstrates the performance differ-
ences of various social recommender systems and evalu-
ation metrics. For all the four datasets with explicit user

TABLE 5
Performance comparisons between recommender systems with explicit
user social networks. Cold-start users have less than 20 ratings, while

warm-start users rate at least 20 items in a dataset. * implies the
statistically significant difference between top-1 and top-2 values under

95% confidence.

SocReg SocialMF TrustSVD PTPMF SCP

RMSE Warm 0.809 0.809 0.803 0.815 0.803
Cold 0.852 0.856 0.835 0.849 0.811

FilmTrust AUC Warm 54.957% 54.677% 55.176% 54.335% 55.774%
Cold 51.549% 51.759% 51.945% 51.615% 51.639%

Hit Rate Warm 11.927% 11.621% 8.073% 15.841% 52.141%*
Cold 0.375% 0.375% 0.703% 0.679% 25.433%

RMSE Warm 1.040 1.040 1.023 1.058 1.012
Cold 1.079 1.081 1.036 1.141 1.019

Ciao AUC Warm 50.882% 50.982% 56.615%* 52.124% 55.605%
Cold 50.361% 50.361% 51.507% 50.874% 50.820%

Hit Rate Warm 2.846% 2.760% 2.817% 4.320% 8.044%*
Cold 0.165% 0.175% 0.309% 0.278% 1.461%

social networks, SCP is not significantly worse than any
competitor in any metric. The results confirm that SCP can
be regarded as an effective solution to the classical explicit
social recommendation problem.

In Table 4, SCP significantly outperforms other models
in item ranking metrics, despite the fact that it optimizes
RMSE. Also note that by No-Free-Lunch Theorem [40], an
RMSE-optimized model is expected to have high perfor-
mance in RMSE, but does not guarantee the same perfor-
mance in other metrics. Therefore as observed in Table 4,
for some datasets all models do not perform exceptionally
in AUC and Hit Rate. Designing SPC for ranking-based
objection will be the future work of us.

For further investigation, we separate all the users into
two disjoint sets. The cold-start set C consists of users that
have less than c ratings. Other users are classified into the
warm-start set W . In our experiments, c = 20 following the
setting in [37]. Due to page limit, we show cold/ware start
comparion only on two datasets FilmTrust and Ciao in Table
5. The results show that SCP does extremely well on cold
start users, implying that learning hidden social relationship
can provide more information for sparse users and to boost
the prediction outcomes. By Table 1, there are 57% and 53%
of users classified into the cold-start set in FilmTrust and
Ciao. The overall results in Table 4 thus show large value
differences between SCP and other models.

H3: Without a given social network, our model can still
outperform the other implicit social recommender solu-
tions. Now we assume that the explicit user social networks
are not available for training a model. For competitor mod-
els, we generate implicit user social networks as presented
in 5.1.2. Note that SCP does not need the generated network
since the approach assumes a fully-connected implicit social
network and learns the edge strength automatically. Table 6
shows the performance comparisons. The results imply that
SCP significantly outperforms the competitors via either
PCC or CUNE in almost all metrics.

Table 6 also shows the running time of each model
applied to implicit social recommendation 8. While both
PCC and CUNE requires O(N2) user pair comparisons
to determine artificial social edges, SCP uses a random

8. Experiment machine: Eight Intel(R) Xeon(R) CPU X5570, 2.93GHz.
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TABLE 6
Performance and one-fold running time (seconds) comparisons

between recommender systems with implicit user social networks. *
implies the statistically significant difference between top-1 and top-2

values under 95% confidence.

SocReg SocialMF TrustSVD PTPMF SCP

RMSE PCC 0.817 0.815 0.805 0.823 0.798
CUNE 0.816 0.817 0.814 0.823

AUC PCC 53.295% 53.417% 54.005% 52.975% 54.169%
FilmTrust CUNE 53.382% 53.206% 53.732% 53.059%

Hit Rate PCC 5.040% 4.191% 3.806% 3.992% 41.260%*
CUNE 3.024% 5.053% 3.899% 2.215%

Time PCC 2.99 2.57 34.97 14.32 1.19
CUNE 98.61 98.69 160.15 275.74

RMSE PCC 1.144 1.099 1.102 1.123 1.063*
CUNE 1.098 1.123 1.104 1.117

AUC PCC 54.909% 57.054% 58.661% 56.463% 60.101%*
Epinions CUNE 57.982% 55.869% 59.397% 56.162%

Hit Rate PCC 0.278% 0.164% 0.172% 2.133% 4.135%*
CUNE 0.079% 0.184% 0.519% 0.160%

Time PCC 216.52 240.07 3040.72 301.50 99.84
CUNE 2173.74 2086.75 6266.55 7948.12

RMSE PCC 1.046 1.018 1.022 1.036 0.986*
CUNE 1.019 1.049 1.026 1.043

AUC PCC 50.565% 52.501% 54.056% 51.417% 54.492%*
Ciao CUNE 52.617% 51.623% 54.195% 52.037%

Hit Rate PCC 1.473% 0.773% 1.407% 1.334% 7.064%*
CUNE 1.730% 0.849% 1.538% 0.697%

Time PCC 27.82 36.14 698.41 57.93 21.69
CUNE 549.74 553.55 1653.94 2732.47

RMSE PCC 0.862 0.855 0.869 0.871 0.846*
CUNE 0.855 0.854 0.892 0.861

AUC PCC 54.493% 54.532% 54.560% 54.237% 54.935%*
Flixster CUNE 54.516% 54.556% 54.546% 54.495%

Hit Rate PCC 0.075% 1.307% 0.045% 1.058% 8.543%*
CUNE 1.131% 1.141% 0.144% 0.297%

Time PCC 11188.65 11504.58 86281.33 17693.54 306.63
CUNE 75554.39 75660.52 168959.38 107468.44

RMSE PCC 0.876 0.871 0.883 0.875 0.855*
CUNE 0.871 0.868 0.874 0.867

AUC PCC 73.209% 74.305% 74.252% 73.525% 75.489%*
MovieLens CUNE 73.879% 74.338% 74.153% 74.609%

1M Hit Rate PCC 10.377% 8.735% 35.950% 21.026% 74.073%*
CUNE 12.520% 12.669% 64.487% 8.997%

Time PCC 158.25 174.03 3219.03 1168.46 11.44
CUNE 778.33 786.51 3832.90 6625.07

sampling tricks (Section 4.5.1) to alleviate the computation
burden. Consequently SCP is faster than all the competitors
in implicit social recommendation. The experiment results
reflect that SCP incorporates dense implicit social strength
learning without sacrificing efficiency.

H4: Learning implicit item networks are usually useful.
In Section 3.3.3, we propose extended SCP to consider im-
plicit item social networks. Here we want to verify whether
learning both the user and the item networks together can
indeed boost the performance. The results are presented
in Table 7. We realize that it does reach the lowest RMSE
values in all datasets if learning of both user and item
social networks, but not the case if the ranking metric is
used. Concluded from the present experiments, learning
item social networks is effective if we aim to boost rating
prediction (RMSE), but there is the potential cost of lower
item ranking performance.

H5: Learning social strengths can improve recom-
mendation of SCP. To verify the effectiveness of multi-
dimensional edge strength learning in SCP, we fix all the
edge strengths 1. The evaluation of this variant is listed in
Table 7. It shows the importance of learning social strengths
for each edge.

TABLE 7
Performance comparisons between recommender systems without
social networks (PMF and NeuMF) and SCP exploiting: (EU) explicit
user social networks; (IU) implicit user social networks; (IUI) implicit
user and item social networks; (IU S1) implicit user social networks
with all fixed edge strengths 1. * implies the statistically significant

difference between top-1 and top-2 values under 95% confidence. N/A
denotes no explicit social network in the dataset.

PMF NeuMF SCP EU SCP IU SCP IUI SCP IU S1

RMSE 0.820 0.804 0.805 0.798 0.786* 0.801
FilmTrust AUC 53.589% 53.664% 53.784% 54.169% 54.497% 54.478%

Hit Rate 5.332% 19.934% 37.016% 41.260% 24.801% 25.862%

RMSE 1.151 1.141 1.091 1.063 1.037* 1.073
Epinions AUC 53.648% 57.644% 57.594% 60.101% 61.232%* 59.964%

Hit Rate 0.424% 1.696% 2.687% 4.135% 4.360% 3.623%

RMSE 1.046 1.018 1.013 0.986 0.958* 0.992
Ciao AUC 50.750% 54.518% 53.229% 54.492% 55.160%* 54.524%

Hit Rate 1.429% 3.186% 4.572% 7.064% 6.362% 6.986%

RMSE 0.862 0.851 0.848 0.846 0.837* 0.846
Flixster AUC 54.363% 54.669% 54.796% 54.935% 54.964% 54.919%

Hit Rate 1.399% 8.567% 6.143% 8.543% 10.850%* 2.571%

MovieLens RMSE 0.883 0.879 N/A 0.855 0.851* 0.855
1M AUC 74.063% 73.839% N/A 75.489% 75.667% 75.482%

Hit Rate 29.281% 66.030% N/A 74.073% 77.245%* 74.106%

H6: Learning implicit social networks does benefit
recommender systems. Also observing the results in Table
7, we discover that implicit social networks commonly lead
to higher performance than explicit social networks for
SCP. It is consistent with the claim in [19] that learning
implicit social networks can even be a better choice than
gathering information about explicit social networks. This
table also shows that SCP outperforms the state-of-the-art
model NeuMF that does not consider social information at
all.

TABLE 8
Mean average precision of each user’s top-k similar implicit neighbors

of the Pearson correlation coefficient-defined network (PCC),
CUNE-defined network (CUNE) and the SCP-learned network (SCP).

k = 10 k = 20 k = 50 k = 100 k = 200

FilmTrust
PCC 0.350% 0.385% 0.401% 0.401% 0.401%

CUNE 0.589% 0.684% 0.813% 0.813% 0.813%
SCP 1.174% 1.371% 1.525% 1.621% 1.713%

Ciao
PCC 0.013% 0.013% 0.014% 0.014% 0.014%

CUNE 0.065% 0.084% 0.115% 0.115% 0.115%
SCP 0.166% 0.209% 0.277% 0.340% 0.419%

H7: SCP can discover hidden user social connection
better than the human-defined implicit user social net-
work. Although learning hidden social connections between
people is not the goal of this paper, it is not hard to realize
that using Equation 3 we can generate the probability that
the latent factors of two users are similar as a heuristic to
infer social connections. Here we want to verify whether the
discovered network matches the true network better than
the one identified by competitors. To verify our hypothe-
sis, we utilize Mean Average Precision (MAP) to compare
three uncovered implicit user social networks: one comes
from SCP learning, the others come from the competitor’s
solutions using Pearson correlation coefficient and CUNE as
described in Section 5.1.2. We report the comparison using
two smallest datasets, FilmTrust and Ciao, with explicit user
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social networks as ground truth. Table 8 lists the MAP
comparisons of k most similar neighbors of each user in
both user implicit social networks. Results reveal that in all
cases, our model outperforms the competitor in revealing
the connections between users.

5.2.2 Parameter Sensitivity
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Fig. 8. RMSE in terms of different parameter combinations for datasets
MovieLens 100K and FilmTrust.

As have been claimed in Section 3 to 4, our model
automatically learns almost all the hidden variables from
data. Nevertheless, to balance the contribution between
Gaussian spherical prior and social prior, there remains two
parameters bU , bV that still need to be determined through
cross validation. Here we show how these two parameters
influence the overall performance to suggest reasonable
assignments for them.

To learn implicit social networks in SCP, from 0 to 1, we
experiment different combinations of bU , bV settings, and
then draw the RMSE distributions in Figure 8. Due to the
page limit, we present the distributions for only implicit
social recommendation with the incorporation of user and
item social networks on MovieLens 100K, sharing the same
reference as MovieLens 1M, and FilmTrust. The resulting
distribution shown in the left figure (i.e., MovieLens 100K) is
different from that in the right (i.e., FilmTrust), implying dis-
tinct spectrum of social influences between the two datasets.
For example, for MovieLens 100K, the smooth distribution
simply indicates that the overall performance does improve
with more social influence factors considered, where the
worse performance lies in the plane where only smaller
social influence exists. For FilmTrust, it seems that the worst
performance lies in the middle where these two factors are
close to 0.5. We also discover that in general setting bU close
to 1 yields good results. In fact bU = bV = 1 generates
the best results for all the datasets we have tested. Such
finding supports the idea of eliminating Gaussian spherical
priors because of the strong regularization capability of
fully-connected implicit social networks. Without Gaussian
priors, our model gains more freedom to train background
social relations given rating information. That is, if the users
do not have time to tune the parameters using validation
dataset, we suggest the above values as default for implicit
social recommendation.

5.3 Discussions
The most surprising result in our experiments is that SCP
learning implicit social networks outperforms exploiting ex-
plicit social networks. It might seem counter intuition at the

first glance, since explicit social networks bring additional
user attributes other than ratings. Actually our conclusion
is the same as [19], which also obtains higher performance
of implicit social recommendation. In Section 1 we have
summarized that [19] claims three potential drawbacks of
explicit social recommendation. Following we review the
three points to explain the strength of SPC.

Observation 1: Explicit social networks as adjacency
matrices could be too sparse to boost recommendation
performance. However, SCP assumes and learns a fully
connected implicit social network, its adjacency matrix shall
be dense and more information can be provided.

Observation 2: Cold-start users have fewer friends in
explicit social networks. Since SCP implicit social networks
are fully connected, there are (N − 1) friends for each user,
no matter whether it belongs to cold start or not.

Observation 3: There is large difference in rating distri-
butions between active users and their friends. SCP learns
an individual edge strength for each latent factor, and hence
allows two friends to be ’similar’ only in certain latent
dimensions.

6 CONCLUSION

Probabilistic matrix factorization has been a successful ma-
chine learning model toward recommender systems. Based
on the social correlation intuition, we propose a new ap-
proach to incorporate social network information into prob-
abilistic matrix factorization. We list our contributions again:

Contribution 1: In terms of effectiveness, we successfully
build a joint model simultaneously to learn factorized ma-
trices and social network structures. Experiments support
that our new approach outperforms previous works that
either focus on explicit social recommendation or implement
implicit social recommendation in two separate stages.

Contribution 2: Distinct from learning a shared social
strength, our work allows learning an individual social
strength for each latent factor. We believe that the multi-
dimensional social strength learning can benefit the overall
recommendation quality.

Contribution 3: In terms of efficiency, to address the
scalability problem resulting from fully connected implicit
social networks, we propose several practical tricks during
the learning process so the complexity can be reduced from
quadratic to linear.

Future works consist of two parts. First, we would like to
investigate how the content information can be incorporated
into the existing model for a hybrid recommender system.
Second, we will also consider bringing into our model the
temporal information from both social and ratings sides to
further boost the performance.
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